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Background: Lower-grade gliomas (LGGs) are characterized by remarkable genetic
heterogeneity and different clinical outcomes. Classification of LGGs is improved by the
development of molecular stratification markers including IDH mutation and 1p/19q
chromosomal integrity, which are used as a hallmark of survival and therapy sensitivity of
LGG patients. However, the reproducibility and sensitivity of the current classification remain
ambiguous. This study aimed to construct more accurate risk-stratification approaches.

Methods: According to bioinformatics, the sequencing profiles of methylation and
transcription and imaging data derived from LGG patients were analyzed and
developed predictable risk score and radiomics score. Moreover, the performance of
predictable models was further validated.

Results: In this study, we determined a cluster of 6 genes that were correlated with IDH
mutation/1p19q co-deletion status. Risk score model was calculated based on 6 genes
and showed gratifying sensitivity and specificity for survival prediction and therapy
response of LGG patients. Furthermore, a radiomics risk score model was established
to noninvasively assist judgment of risk score in pre-surgery. Taken together, a predictable
nomogram that combined transcriptional signatures and clinical characteristics was
established and validated to be preferable to the histopathological classification. Our
novel multi-omics nomograms showed a satisfying performance. To establish a user-
friendly application, the nomogram was further developed into a web-based platform:
https://drw576223193.shinyapps.io/Nomo/, which could be used as a supporting
method in addition to the current histopathological-based classification of gliomas.

Conclusions: Our novel multi-omics nomograms showed the satisfying performance of
LGG patients and assisted clinicians to draw up individualized clinical management.
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INTRODUCTION

Gliomas are infiltrative neoplasms of the central nervous system
that exhibit variable genetic heterogeneity, epigenetic signatures,
and clinical outcomes (1). According to histopathologic
characteristics and morphologic signatures, gliomas are divided
into 4 subgroups (2). The lower-grade glioma (LGG) is defined as
pathological grade I to grade III glioma, which is consistent with
the genetic categorization from The Cancer Genome Atlas
(TCGA) (3) . Epidemiological ly , LGGs account for
approximately 20% of all gliomas and present a significant
indolent course with most lethal morbidity among patients from
35 to 45 years old (4, 5). The prognosis and therapeutic sensitivity
of LGGs vary remarkably due to the different gene signatures (6).
After receiving effective therapies, most LGG patients exhibit more
favorable prognosis. However, a smaller subset of infiltrative LGGs
shows more significant invasion and rapid progression to
glioblastoma (grade IV glioma) even after receiving maximum
treatment (7). Traditional classification strategies have barely
reflected the heterogeneity of LGGs. Therefore, development of
more precise and reliable identification of LGGs is essential for
individual precision treatment of LGG patients.

Studies based on multi-omics analysis have corroborated a
wide range of molecular biomarkers that are crucial to glioma
subtype identification, prognosis prediction, and individualized
therapy selection of LGG (2). Accumulating data have indicated
that the mutation status of isocitrate dehydrogenase (IDH) and
the integrity status of chromosome 1p and 19q (1p/19q) provide
superior prognostic implication in comparison to the classical
histopathological classification of LGGs (8). Comprehensive
transcriptional analysis using TCGA Research Network
indicates that IDH mutation and 1p/19q combined deletion
(IDHmut/1p19qcodel) gliomas reveal more favorable outcomes
with a median overall survival (OS) of approximate 10 years.
In contrast, IDH wild type and intact 1p/19q (IDHwt/1p19qnon-
codel) show more severe outcomes with a median survival period
of 1.7 years (8). Therefore, evaluation of the IDH and 1p19q
status has become a standard practice in the diagnosis of LGGs.
However, recent studies have shown that the classification
method based on IDH and 1p19q is deficient for stratification
of risk for glioma patients (9). Chan et al. (10) find that IDH-
mutated LGGs are not a homogeneous subtype as was originally
thought; only 49 samples present longer progression-free
survival and OS among 157 IDH-mutated LGGs. Similarly, the
dramatically different survival was observed among patients with
the same 1p19q status (11). Therefore, additional prediction
biomarkers should be identified to establish more accurate
management of LGG patients.

Accumulating evidence has reported the underlying molecular
mechanism of malignant subtype transition, and radio-resistance
and chemo-resistance of gliomas contradict the transcriptional
aberrations and are correlated to DNA methylation alterations
(12). Moreover, the aberrance of DNA methylation in the
promoter regions of tumors is generally considered as a
hallmark that contributes to the transcriptional downregulation
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of tumor suppressor genes and the upregulation of oncogenes
(13). Binder et al. (14) report an integrative, multidimensional
stratification of LGGs through a combination of genomic,
epigenomic, and transcriptomic signatures to formulate
individualization of treatment. Similarly, Mazor et al. (15) reveal
that extensive interaction between genetics and epigenetics exists
during the neoplasia of glioma, indicating that the reliable
biomarkers should be identified through the combination of
methylation and expression analysis. Nevertheless, only a
portion of DNA methylation alterations generates malignant
initiation or progression in tumor, which is similar to driver
mutations that provide selective growth dominance and
promote tumorigenesis (16). Therefore, identification of tumor
progression-related types of DNA methylation alterations
provides significant benefits to clarify the biological behavior
and explore potential therapeutic targets of glioma. Bai et al.
(17) find that the DNA methylation-driven gene (DMDG)
signature is significantly associated with the OS of gastric cancer
patients. Long et al. (18) also identify and validate two DMDGs
with an advantageous accuracy for distinguishing hepatocellular
carcinoma from normal samples and dysplastic nodules. However,
the DMDGs that could be used for survival prediction and clinical
management of LGG patients remain unknown.

Although the molecular biomarkers presented satisfying
guidelines for patients, they also have a common deficiency due
to the fact that the necessary information can only be obtained
after surgical resection. Therefore, none of these biomarkers can be
used for pre-surgical evaluation and management (19, 20).
Magnetic resonance imaging (MRI) is a widely used noninvasive
preoperative test that provides preliminary information regarding
subtype and malignancy of brain tumors (21). It has been reported
that conventional MRI features, including unilateral growth,
sharpness of tumor margin, and heterogeneous intensity, are
strongly relevant to prognosis. However, these features lack
satisfactory precision and are dependent on radiologists’
subjective judgment and personal experience (22). Radiomics is
an emerging research method based on MRI and has attracted
substantial attention since it has the potential to provide spatial
and temporal heterogeneity and present the accuracy of molecular
marker predictions in glioma (23). Su et al. (24) demonstrate
radiomics features that provide high discriminatory accuracy in
predicting the H3 K27M mutation status of midline glioma; the
aera under the curve (AUC) is 0.903. Therefore, radiomics analysis
could provide a more elaborate investigation of multiple imaging
features and enables high-throughput mining of quantitative
image features from preoperative medical imaging to improve
diagnostic, classification, prognostic, and predictive accuracy (25).
Nevertheless, few studies regarding radiomics for accurate pre-
surgical prediction of DMDG expression in LGG have
been reported.

In this study, we used gene methylation, and transcriptomic
and radiomics data to develop a novel LGG categorization
strategy. It might be useful to optimize the individualized
therapy decision and thus improve the outcomes of
glioma patients.
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METHODS

All methods are described in Supplementary Methods.
RESULTS

Identification of DNA
Methylation-Driven Differentially
Expressed Genes in IDHmut/1p19qcodel

and IDHwt/1p19qnon-codel Samples
The methods of this study are described in Figure 1. To determine
differentially expressed and methylated genes, we first extracted
mRNA expression and DNA methylation profiles of 259 glioma
samples with WHO grade I–III from TCGA database. Patients
were divided into two subgroups according to the status of IDH
mutation and 1p19q integrity. The clinical and pathological
characteristics between subtypes are presented in Table S1.
Hierarchical bi-clustering was performed for IDHmut/1p19qcodel

samples (n = 165) and IDHwt/1p19qnon-codel samples (n = 94). As a
result, 137 candidates including 74 downregulated genes and 63
upregulated genes were selected (Figure 2A and Table S2).
Subsequently, the MethyMix method was used to filtrate
DMDGs. A total of 433 DMDGs including 318 hypomethylated
genes and 115 hypermethylated genes were determined, among
which the adjusted p-value was less than 0.05 between the hyper-
and hypomethylation groups and the correlation coefficient was
less than −0.3 between DNA methylation and gene expression
(Figure 2B and Table S3). Afterwards, gene ontology (GO)
functional annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed to elucidate
DMDG functional property (p < 0.05). The results demonstrated
that multiple inflammation and tumor progress-related GO terms
and signaling pathways were significantly enriched in IDHwt/
1p19qnon-codel gliomas (Figures S1A, B and Tables S4, S5). The
Venn diagram of DMDGs and DEGs revealed 31 DME genes,
which were simultaneously hypomethylated and upregulated
at the transcriptional level or hypermethylated and
downregulated (Figure 2C).

Establishment and Validation of the
Predictive Transcriptional Risk Score
To further narrow down the scope of the candidate DME genes,
the least absolute shrinkage and selection operator (LASSO)
regression was performed to select the most suitable predictive
variables. To this end, six candidate DME genes (named risk gene
cluster) from a further LASSO Cox regression model were selected
based on minimum lambda with 10-fold cross-validation. These
genes included the following: DNA Damage Inducible Transcript
4 Like (DDIT4L), Epithelial Membrane Protein 3 (EMP3),
Mesenchyme Homeobox 2 (MEOX2), Ovarian Cancer
Immunoreactive Antigen Domain Containing 2 (OCIAD2),
Transforming Growth Factor Beta 2 (TGFB2), and Tumor
Necrosis Factor Receptor Superfamily Member 12A
(TNFRSF12A) (Figures 3A, B). The transcriptional risk score
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predictive model was developed by adding the mRNA expression
level and relevant coefficient of each gene in the LASSO regression
as follows: transcriptional risk score = 0.0350970 × DDIT4L
mRNA expression + 0.1368395 × EMP3 mRNA expression +
0.0974575 × MEOX2 mRNA expression + 0.0723336 × OCAID2
mRNA expression + 0.0738469 × TGFB2 mRNA expression +
0.2045352 × TNFRSF12A mRNA expression. Positive coefficients
of all genes in the LASSO regression suggested that mRNA high
expression levels were correlated with poor OS in LGG patients
and the Kaplan–Meier (K–M) analysis was performed to confirm
the relationship between transcriptional risk score, risk gene
cluster expressions, and OS. The OS of high transcriptional risk
score or mRNA high expression group was significantly shorter
(Figures 3C–I). Of note, the X-tile method was utilized to
distinguish the optimal cutoff value. Additionally, principal
component analysis (PCA) was performed to assess the
distinguished accuracy based on the DME genes. Compared
with the thirty-one DME gene expression levels, the
contributing rate of the first principal component was
observably promoted to 76.2% using the risk gene cluster
expression levels (Figures S2A, B). Despite the fact that the
contributing rate of the first principal component was also
ascending based on DNA methylation levels or the combination
of methylation and expression using risk gene cluster, the clinical
feasibility was inconvenient (Figures S2C, D). Therefore, the
transcriptional risk score model depending on the expression of
risk gene cluster was adopted for further analysis. As shown in the
risk factor association diagram (Figure 3J), the blue dots in the
figure represented the surviving LGG patients while the red dots
represented death, and the corresponding risk gene cluster
expression profiles were visualized as a heatmap. The dotted line
indicated that the optimal cutoff value of transcriptional risk score,
with which all LGG patients were divided into two groups
including 176 low transcriptional risk score samples and 83 high
transcriptional risk score samples. The results showed that along
with the increasing of the transcriptional risk score, the number of
deaths gradually increased as well as the mRNA expression levels
of the risk gene cluster, demonstrating that the patients in the high
transcriptional risk score group exhibitedmore severe survival and
higher risk of death. To further elucidate signaling pathways
underlying our risk score model, we perform the Gene Set
Enrichment Analysis (GSEA) in the two groups. As shown in
Figure S3, a wide range of signaling pathways related to the tumor
immunological process were enriched in the high transcriptional
risk score gliomas, indicating that signals from immune cells or its
presence within the tumor might be crucial factors that affect
progression and recurrence of glioma.

To confirm the consistency between methylation level and
gene expression of the risk gene cluster in LGG patients, a
difference analysis and a correlation analysis were performed.
The results showed that the hypermethylation status and
downregulation level of the risk gene cluster were coincidently
enriched in the IDHmut/1p19qcodel group (Figures S4, S5) and
significant negative correlation between methylation and mRNA
expression could be observed (Figure S6). Figure S7 also
demonstrated the relative hypermethylation in the IDHmut/
May 2022 | Volume 12 | Article 729002
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1p19codel samples and the relative hypomethylation in IDHwt/
1p19qnon-codel samples. Taken together, these findings indicated a
consistent tendency between DNA methylation and the
expression of risk gene cluster and implied a potential
prediction model for gliomas.
Frontiers in Oncology | www.frontiersin.org 4
To verify that the expression of the risk gene cluster was
induced by corresponding DNA methylation alterations rather
than by copy number alterations (CNAs) or mutations, the
cBioPortal database and COSMIC database were used to
investigate the CNA or mutation levels of the risk gene cluster.
FIGURE 1 | The method of this study.
May 2022 | Volume 12 | Article 729002
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As shown in Figure S8, the risk gene cluster was not detected in
either the top 20 CAN genes or mutation genes; moreover, the
genetic mutation ratio of these genes was less than 3% in all
glioma samples. These results indicated that the transcriptional
regulation of the risk gene cluster was driven by DNA
methylation alterations.

Development and Validation of the
Predictive Cytosine-Phosphate-Guanine
Methylation Risk Score
To provide further insight into CpGmethylation, the preprocessed
CpG site methylation value of the risk gene cluster was selected.
Frontiers in Oncology | www.frontiersin.org 5
The correlation coefficients between CpG sites and risk gene
cluster expression were calculated (Table S6). Subsequently, 53
CpG sites were initially filtrated based on univariate Cox
regression analysis among 79 CpG sites (Figure S9A), and the
relevant genomic information was presented using a heatmap
(Figure S9B), which also presented a significant difference
between the high and low transcriptional risk score groups
(Table S7). The results indicated extensive hypomethylation
located mainly in the CpG island, CpG shelf, CpG shore, and
open sea of CpG sites in the high transcriptional risk score group,
which might contribute to the upregulation of the corresponding
risk gene cluster. Moreover, the correlation between 53 CpG sites
A B

C

FIGURE 2 | DME genes were screened in IDH/1p19q subtypes in TCGA dataset. (A) The hierarchical bi-clustering analysis with TCGA dataset indicated significant
DEGs with 74 downregulated and 63 upregulated genes in LGGs classified by IDH and 1p/19q status. (B) The hierarchical bi-clustering analysis with TCGA dataset
indicated significant DMDGs with 318 hypomethylated and 115 hypermethylated genes in LGGs classified by IDH and 1p/19q status. (C) The Venn diagram showed
31 DME genes with 20 hypomethylation that paralleled upregulation and 11 hypermethylation that paralleled downregulation. DEGs were analyzed by the limma
package. DMDGs were analyzed by the MethyMix package.
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A B C
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FIGURE 3 | Establishment and validation of the predictive transcriptional risk score in TCGA dataset. (A) The risk gene cluster was selected by LASSO Cox regression
with 10-fold cross-validation for tuning parameter (l) selection in TCGA cohort, in which the vertical dashed lines showed minimum l value and 1× standard error l value,
respectively. (B) The LASSO coefficient profile of all candidate genes in TCGA cohort, in which the vertical dashed lines showed minimum l value and 1× standard error l
value, respectively. (C–I) The Kaplan–Meier survival curves were performed in transcriptional risk score, DDIT4L expression, EMP3 expression, MEOX2 expression, OCIAD2
expression, TGFB2 expression, and TNFRSF12A expression in TCGA dataset; the optimal cutoff value was derived from X-tile (all p < 0.0001, with log-rank test). (J) The
risk factor association diagram in TCGA cohort. The results showed the blue dots in the figure representing the surviving LGG patients and the red dots representing death,
and the corresponding risk gene cluster mRNA expression profiles were visualized as a heatmap. The dotted line indicated the optimal cutoff value of the mRNA risk score,
in which all LGG patients were divided into two groups including 176 low transcriptional risk score samples and 83 high transcriptional risk score samples.
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and de-/methyltransferase derived from the Molecular Signatures
Database (MSigDB) with GO_DEMETHYLATION and
GO_METHYLATION was tested (Figure S9C). |r| > 0.7 and an
adjusted p-value < 0.05 were set as cutoff criteria for further
filtration of the de-/methyltransferase, of which the annotation
was diagrammatized to present positive and negative de-/
methyltransferase using a Sankey diagram (Figures S9D, E).
Moreover, the protein–protein interaction (PPI) was performed
by GeneMANIA (Figure S9F). The results indicated that de-/
methyltransferase could participate in the regulation of the CpG
sites of the risk gene cluster. Figure S9G demonstrated that 53
CpG sites were mainly distributed in promoter regions (60.4%),
which included 1500 bp upstream of the transcriptional start site
(TSS 1500) (20.8%), TSS 200 (13.2%), the 5’-untranslated region
(5’UTR) (9.4%), and the first exon (1stExon) (17.0%). Interestingly,
the 48 (90.57%) of hypomethylation CpG sites were also mainly
distributed in the promoter region (63.8%) among 53 CpG sites.
Therefore, we can speculate that the upregulation of risk gene
cluster expression could appear due to the hypomethylation of
CpG sites in the promoter regions of the corresponding genes
under the effect of de-/methyltransferase.

Assessment Transcriptional Risk Score
and CpG Methylation Risk Score
To further contrast with transcriptional risk score in the accurate
prediction of patient outcomes, LASSO regression was used to
narrow down the candidate CpG sites. As a result, 3 CpG sites,
namely, cg03208951, cg23344780, and cg23545105, were selected
based on minimum lambda with 10-fold cross-validation
(Figures S10A, B). The CpG risk score predictive model was
developed by adding the product of the CpG methylation level
and relevant coefficient of CpG site in the LASSO regression as
follows: CpG risk score = (−1.0703883 × cg03208951) +
(−1.7594301 × cg23344780) + (−0.4950028 × cg23545105).
Afterwards, the 6-gene transcriptional risk score model and 3-
CpG methylation risk score model were further assessed by
concordance index (C-index) and time-dependent receiver
operating characteristic (ROC) analysis. The results
demonstrated that the prediction accuracy of about 3 years of
transcriptional risk score was higher than CpG risk score and the
long-term prediction accuracy was almost identical (Figures
S10C–F and Table S8). Although the long-term prediction
accuracy was not statistically different, the prognosis of LGG
patients was different and some IDHwt/1p19qnon-codel LGG
patients experienced rapid recurrence in the short term (8).
Therefore, the transcriptional risk score model was selected as
the most efficient prediction methods and was used to establish
the nomogram.

Evaluation of Clinical Significance of the
Model in TCGA Database
We further investigate the predictive accuracies of the
transcriptional risk score indicating the pathological subtypes,
therapy reaction, and patient survival by using TCGA database.
The results showed that the transcriptional risk score was
markedly elevated in IDHwt/1p19qnon-code l gl iomas
Frontiers in Oncology | www.frontiersin.org 7
(Figure 4A). Consistently, an increased transcriptional risk
score could also be observed in WHO grade III gliomas
compared to those with lower WHO grade (Figure 4B).
Interestingly, we also found that the transcriptional risk score
was significantly increased in anaplastic astrocytoma (AA),
which is considered to be more malignant and undergoes
transition to glioblastoma more frequently, compared to other
pathological subgroups of LGG (Figure 4C). Moreover, the
results of ROC analysis indicated that our transcriptional risk
score had encouraging sensitivity and specificity for
distinguishing IDH/1p19q subtypes, WHO grades, and
particular pathology subtypes, especially for discrimination of
astrocytoma from oligodendroglioma or mixed glioma (MG)
(Figure 4D). However, no significant difference could be
observed between MG and anaplastic oligodendroglioma (AO)
(Figures 4C, D). Next, the predictive efficiency of our
transcriptional risk score model in primary or long-term
treatment gliomas was investigated. According to our data, the
transcriptional risk score was significantly increased in advanced
gliomas as opposed to the stable-remission ones (Figure 4E).
Also, the ROC analysis indicated that our transcriptional risk
score was significantly more efficient for treatment prediction
than WHO grade or pathological classification in short-term
outcomes, but the AUC had no significant statistical difference
between the transcriptional risk score and IDH/1p19q
(Figure 4F). The transcriptional risk score was also
significantly increased in advanced gliomas as opposed to the
stable-remission ones in long-term outcomes (Figure 4G).
Moreover, the ROC analysis indicated that our transcriptional
risk score was significantly more efficient for treatment
prediction than WHO grade or IDH/1p19q in long-term
outcomes, but the AUC had no significant statistical difference
between transcriptional risk score and pathology (Figure 4H).
Finally, we used ROC curve to demonstrate that the
transcriptional risk score model was more efficient than the
calculation based on the single indicator to patient survival
(Figure 4I). Taken together, our transcriptional risk score
model showed high sensitivity and specificity and could be
used as a reliable prognostic prediction model in glioma.

Development and Validation of the
Predictive Radiomics Risk Score
It should be noted that this transcription risk score can only be
evaluated after surgical resection and therefore cannot be used for
pre-surgical evaluation of malignancies of LGG. Thus, in addition
to the transcription risk model, a non-invasive pre-operation
quantification method should be established. To this end, we
used a radiomics method to explore the related features with
transcription risk score and further estimate the risk score level for
LGG patients in pre-surgery (Figure 5A). Preprocessed contrast-
enhanced MR images of 85 patients with pathological diagnosis
and continuous follow-up were used to identify the most
correlated radiological features. All of the 107 radiological
signatures with intra-class correlation coefficient >0.80 were
enrolled to establish a radiomics risk score model. The
predictive model was established by adding the product of the
May 2022 | Volume 12 | Article 729002
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radiomics feature value and relevant coefficient of each radiomics
features in the LASSO regression based on minimum lambda with
10-fold cross-validation (Figures 5B, C). Finally, 13 radiomics
features were selected and the radiomics risk score was calculated
as follows: Radiomics risk score = 0.1967277 × Voxel Volume +
0.0086076 × Mesh Volume + (−0.1419602 × Sphericity) +
0.1840789 × Maximum 2D Diameter Column + (−0.5034319 ×
Large Dependence High Gray Level Emphasis) + 0.6774184 ×
Frontiers in Oncology | www.frontiersin.org 8
Inverse Difference Moment Normalized + (−0.0740082 × Inverse
Variance) + (−0.6442577 × Cluster Prominence) + (−0.0165486 ×
Skewness) + 0.0521741 × Gray Level Non UniformityGLSZM +
(-0.0176127 × Large Area High Gray Level Emphasis) + 0.3468764
× Zone Entropy + 0.1971442 × Strength. We then verified a
suitable calibration using the calibration curve analysis. The solid
straight line (the 45-degree line) showed an ideal prediction
radiomics model, and the broken lines represented the observed
A B C D

E

I

F G H

FIGURE 4 | Clarifying the efficiency of the transcriptional risk score and indicating the pathological subtypes, therapy reaction, and patient survival in TCGA dataset.
(A) The differential distribution of the transcriptional risk score in IDHwt/1p19qnon-codel and IDHmut/1p19qcodel based on TCGA cohort (***p < 0.001, with t test). (B) The
differential distribution of transcriptional risk score in G2 and G3 based on TCGA cohort (***p < 0.001, with t test). (C) The differential distribution of transcriptional risk
score in pathological subtypes based on TCGA cohort (***p < 0.001, **p < 0.01, *p < 0.05, and ns refer to not significance with t test). (D) The ROC curves analysis of
transcriptional risk score for the IDH/1p19 group, pathological subtypes, and WHO grades based on TCGA cohort. (E) The differential distribution of the transcriptional
risk score in different primary treatment outcomes based on TCGA cohort (***p < 0.001, with t test). (F) The ROC curve analysis of primary treatment outcome using IDH/
1p19q, transcriptional risk score, WHO grades, and pathological subtypes based on TCGA cohort, respectively. (G) The differential distribution of the transcriptional risk
score in different long-term treatment outcomes based on TCGA cohort (***p < 0.001, with t test). (H) The ROC curve analysis of long-term treatment outcome using
IDH/1p19q, transcriptional risk score, WHO grades, and pathological subtypes based on TCGA cohort, respectively. (I) The ROC curve analysis of survival status using
six DME genes, IDH/1p19q, transcriptional risk score, WHO grades, and pathological subtypes based on TCGA cohort, respectively.
May 2022 | Volume 12 | Article 729002
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radiomics model, in which a closer fit to the dashed line means a
better prediction model, and the result showed a satisfying
consequence of this model and indicated that the radiomics risk
score had a more favorable fitting to the transcriptional risk score
(Figure 5D). Importantly, the radiomics risk score showed a
statistically significant negative correlation with the
Frontiers in Oncology | www.frontiersin.org 9
transcriptional risk score model (Figures 5E, F). Moreover,
ROC analysis also indicated that the radiomics risk score model
exhibited remarkably improved sensitivity and specificity
compared to the usage of the single radiomics feature
(Figure 5G). Collectively, we analyzed 85 MR post-contrast T1-
weighted images of LGG patients and identified 13 transcription
A B C

D

G

E F

FIGURE 5 | Development and validation of the predictive radiomics risk score in TCGA dataset. (A) The representative MRI image derived from TCGA.CS.4941
reconstructed by 3D Slicer based on TCIA. (B) The radiomics features were selected by LASSO logistic regression with10-fold cross-validation for tuning parameter
(l) selection in TCGA cohort, in which the vertical dashed lines showed minimum l value and 1× standard error l value, respectively. (C) The LASSO coefficient
profile of all candidate radiomics features in TCGA cohort, in which the vertical dashed lines showed minimum l value and 1× standard error l value, respectively.
(D) The calibration curve of radiomics risk score. (E) The difference of radiomics risk score in different transcriptional risk score groups with an optimal cutoff of 1.7
calculated by X-tile (***p < 0.001, with t test). (F) The correlation presented significant negative correlation between radiomics risk score and transcriptional risk score
in TCGA cohort (p < 0.001, with Pearson correlation). (G) The ROC curve analysis of the transcriptional risk score group using 13 radiomics features and radiomics
risk score, respectively.
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risk score-specific radiomic signatures, and these results
demonstrated that the radiomics-dependent model could be
used as a dependable method for pre-operational assessment of
the transcriptional risk score.

Clinical Validation of the Risk Gene Cluster
To explore the consistency of the risk gene cluster in clinical
samples, immunohistochemistry (IHC) staining was performed
using 61 glioma samples to address the expression level of the
risk gene cluster. The results indicated that the risk gene cluster was
significantly enriched in the IDHwt/1p19qnon-codel group compared
with their corresponding counterparts (Figures 6A, B). Moreover,
the K–M analysis indicated that the higher immunohistochemical
score (IHS) of the risk gene cluster correlated with poor prognosis
for glioma patients, which is consistent with the results obtained
from TCGA database (Figure 6C). The quantitative reverse
transcription PCR (qRT-PCR) analysis was also performed to
quantify the expression levels of the risk gene cluster by using 37
glioma samples with complete radiographic data and survival data
(22 IDHmut/1p19qcodel samples and 15 IDHwt/1p19qnon-codel

samples) and a non-tumor tissue derived from epilepsy patient
used as a control. Consistently, the results showed that the risk gene
cluster was significantly elevated in the IDHwt/1p19qnon-codel group
(Figures 7A–F). Similar to the results from IHC, K–M analysis also
demonstrated prolonged OS for the patients with lower expression
of these risk genes (Figures 7G–M). To further validate the
Frontiers in Oncology | www.frontiersin.org 10
reliability of our model, the transcription risk score model and
radiomics model were calculated using clinical samples. The
transcriptional risk score exhibited satisfying AUCs of 1-, 2- and
3-year OS (0.717, 0.802, and 0.923, Figure 7N) based on qRT-PCR
analysis, and the radiomics score also presented appropriate AUC
(0.706) based on pre-surgical MRIs (Figure 7O). Of note, the cutoff
values were recalculated by X-title. Taken together, these results
indicated that our transcriptome model and radiomics model
showed reasonably good reliability in our clinical cohort.
Establishment and Assessment
of the Comprehensive Nomogram
in TCGA Dataset
Based on our previous results, the transcriptional risk score was
the most appropriate and accurate method compared to the
others. Therefore, we adopted transcriptional risk score
combined with clinical indicators to establish a novel
nomogram for pre-surgical assessment of patient survival and
therapy reaction. To this end, univariate Cox regression followed
by multivariate Cox regression were performed to identify the
most significant independent risk/protective factors. As a result,
transcriptional risk score presented the most significant hazard
ratio (HR) (HR = 2.94, 95% CI: 1.60–5.42, p < 0.01); in addition,
patient age was also confirmed to be an independent risk factor
with an HR of 2.55 (95% CI: 1.76–3.71, p < 0.001) (Table 1).
A

B

C

FIGURE 6 | Validation of the transcriptional risk score using IHC staining in clinical samples. (A, B) Representative IHC images of risk gene cluster in glioma tissues
samples. Upper panel, IDHmut/1p19qcodel. Lower panel, IDHwt/1p19qnon-codel. (C) The Kaplan–Meier survival analysis for risk gene cluster derived from DDIT4L
expression, EMP3 expression, MEOX2 expression, OCIAD2 expression, TGFB2 expression, and TNFRSF12A expression classified by IHS using our clinical samples,
respectively (all p < 0.05, with log-rank test).
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FIGURE 7 | Validation of the transcriptional risk score and radiomics risk score using qRT-PCR in clinical samples. (A–F) qRT-PCR analysis for measuring the
relative mRNA expression of risk gene cluster in 37 LGG tumor tissues grouped by IDHmut/1p19qcodel and IDHwt/1p19qnon-codel (***p < 0.001, **p < 0.01, and
*p < 0.05, with t test, n = 3). (G–M) The Kaplan–Meier survival curves were performed in transcriptional prediction risk score, DDIT4L expression, EMP3 expression,
MEOX2 expression, OCIAD2 expression, TGFB2 expression, and TNFRSF12A expression; the optimal cutoff value was derived from X-tile using qRT-PCR data in
our clinical samples, respectively (all p < 0.05, with log-rank test). (N) The time-dependent ROC curve analysis for transcriptional risk score during 1, 2, and 3 years
in the clinical cohort. (O) The ROC curve analysis of radiomics risk score in the clinical cohort. qRT-PCR, quantitative RT-PCR.
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Therefore, patient age was enrolled in addition to the
transcriptional risk score to establish the prediction nomogram.

Given that the age is well known to affect the methylation
status of genes (26), the interaction between age and
transcriptional risk score was verified via the interaction test.
The result showed that the interaction was statistically
significant, indicating that patient age might affect the
expression of the risk gene cluster (Table 2, p for interaction =
0.033). Therefore, we performed further stratified analyses to
eliminate this ambiguous association (Table 2). Two hundred
and fifty-nine patients were divided into 4 subgroups according
to quartile categories of age, and the transcriptional risk score
was divided into 3 subgroups according to tertile categories of
risk score: Q1 (17–37 years old), Q2 (38–48 years old), Q3 (49–
58 years old), and Q4 (59–87 years old), and low risk (Q1,
transcriptional risk score: 0.3376742–0.6905997), median risk
(Q2, transcriptional risk score: 0.6943530–1.6467377), and high
risk (Q3, transcriptional risk score: 1.6655889–3.4480996); the
median of each subgroup was used for statistical comparison
(Table 2). Significant differences were observed in all age
subgroups (total HR: 2.371, 7.279, 5.285, and 2.078, p for
trend: 0.038, <0.001, <0.001, and 0.002). The results
Frontiers in Oncology | www.frontiersin.org 12
demonstrated that the mortality risk of LGG patients was
gradually elevated along with the increase of transcriptional
risk score in each age subgroup. In particular, we found that
the HR of transcriptional risk score showed an inverted U-
shaped distribution along with the increase of age with the peak
value appearing in the Q2 subgroup (Figure S11A). Collectively,
these data suggested that enrichment of the risk gene cluster
implied the highest risk of death of LGG in 35–45 years.

Next, we used variance inflation factor (VIF) to test the
collinearity, which leads to some weaknesses such as unstable
parameter estimation, unreliable models, and weak predictive
ability. Given the result of the interaction test between age and
transcriptional risk score, we defined the interaction term: age ×
risk score (A.R.). The VIFs of age, risk score, and A.R. were 3.918,
20.954, and 28.425, respectively, which indicated that the
collinearity could exist between risk score and A.R. However,
after mean-centering (each independent variable minus the
corresponding average), the VIFs of age, risk score, and A.R.
were 1.119, 1.231, and 1.106, respectively, pointing out the
nonessential collinearity (27). Afterwards, two models were
respectively constructed to assess whether adding A.R. can
increase the performance of the model. As shown in Table 3,
TABLE 1 | Univariate and multivariate Cox regression of variables.

Univariate Cox Regression Multivariate Cox Regression

Variables HR 95% CI p HR 95% CI p

Age, per 1 SD, years 2.93 2.19–3.92 <0.001 2.55 1.76–3.71 <0.001
Risk score, per 1 SD 3.30 2.56–4.24 <0.001 2.94 1.60–5.42 <0.001
Gender
Female 1 (Ref)
Male 1.23 0.77–1.98 0.388

Group
IDHmut/1p19qcodel 1 (Ref) 1 (Ref)
IDHwt/1p19qnon-codel 7.66 4.54–12.92 <0.001 0.74 0.19–2.80 0.655

WHO Grade
G2 1 (Ref) 1 (Ref)
G3 4.91 2.54–9.48 <0.001 2.19 0.56–8.61 0.264

Pathology
AA 1 (Ref) 1 (Ref)
NA 0.59 0.18–1.96 0.389 2.64 0.42–16.71 0.302
MG 0.34 0.17–0.67 0.002 1.62 0.73–3.60 0.233
AO 0.33 0.18–0.59 <0.001 1.00 0.47–2.15 0.996
NO 0.08 0.03–0.18 <0.001 0.81 0.17–3.89 0.796
May
 2022 | Volume 12 | Article
SD, standard deviation; IDH, isocitrate dehydrogenase; 1p19q, the chromosome 1p and 19q; G2 and G3, WHO grade 2 and grade 3; AA, anaplastic astrocytoma; NA, not otherwise
specified astrocytoma; MG, mixed glioma; AO, anaplastic oligodendroglioma; NO, not otherwise specified oligodendroglioma; HR, hazard ratio.
Bold means the significant statistical difference.
TABLE 2 | Stratification analysis of age and risk score.

Variables Risk score (Median) adjusted HR (95%) Total HR (95% CI) p for trend p for interaction

N Q1 (0.55284) Q2 (0.86109) Q3 (2.54137)

Age, years (Median) 0.033
Q1 (31.5) 68 1 (Ref) 0.840 (0.074–9.526) 4.855 (0.866–27.210) 2.371 (1.048–5.360) 0.038
Q2 (43.0) 64 1 (Ref) 0.00 (0.000–5.828*10165) 25.936 (3.240–207.641) 7.279 (2.659–19.931) <0.001
Q3 (54.0) 62 1 (Ref) 3.196 (0.329–31.028) 41.648 (4.680–370.796) 5.285 (2.549–10.961) <0.001
Q4 (64.0) 65 1 (Ref) 1.220 (0.313–4.761) 4.212 (1.232–14.401) 2.078 (1.322–3.265) 0.002
HR, hazard ratio.
Bold means the significant statistical difference.
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there were no significant increase in terms of log-likelihood ratio
(LLR), C-index, Akaike information criterion (AIC), Bayesian
information criterion (BIC), and AUC of time-dependent ROC.
Compared with model 2, the net reclassification improvement
(NRI) and integrated discrimination improvement (IDI) of
model 1 also did not improve (Table 3, all p > 0.05).
Therefore, the age and risk score were included in the
nomogram based on simplicity and efficiency.

The forest plot presented the age and risk score as independent
risk factors (Figure 8A). The Schoenfeld residual test showed that
all of the variables met equally proportional hazards (PH)
assumption (Figure 8B) and there were no outliers based on the
Deviance residual test (Figure 8C). The Martingale residuals
demonstrated the linear relationship between age and
transcriptional risk score with the logit transformation value of
the hazard and the restricted cubic spline (RCS) analysis also
verified (Figures S11B–E). Considering all the previously
mentioned significant predictive factors, we established a
comprehensive nomogram including age and transcriptional risk
score (Figure 8D). We have also calculated the uncorrected and
corrected C-index, which were 0.873 and 0.870, respectively
(Table 3). The calibration curves of 1 year, 3 years, and 5 years
indicated a suitable calibration efficiency while a closer fitness to
the dashed line indicates a better prediction performance
(Figures 8E–G). The decision curve analysis (DCA) was used to
assess the clinical applicability of nomogram and a net benefit for
diverse prediction models at different threshold probabilities by
adding the benefits and minimizing the harms. As demonstrated
by the favorable probability, the comprehensive nomogram
showed better net benefit than age and risk score (Figures 8H–
J). Moreover, the time-dependent ROC curves verified that the
Frontiers in Oncology | www.frontiersin.org 13
prediction performance of the nomogram was gradually elevated
along with the increase in time and also was better compared to
the single index (Figures 8K–M). To create an intuitive
application, the nomogram was further developed into a web
version and could be dynamically operated online: https://
drw576223193.shinyapps.io/Nomo/. Thus, the comprehensive
nomogram was established according to the multiple prognostic
factors that surpassed each single factor taken alone. The
nomogram could help clinicians make more accurate assessment
of patient prognosis.
Validation of Nomogram Using the
CGGA Dataset
To confirm the reliability of the comprehensive nomogram, the
gene expression profiles were extracted from the CGGA dataset
and then used for further model validation. Consistently, the
expression level of the risk gene cluster was increased in IDHwt/
1p19qnon-codel samples and correlated with more severe
prognosis of glioma patients (Figures S12, S13). Furthermore,
the calibration curves of the comprehensive nomogram for the
possibility of 1-, 3-, and 5-year OS displayed obvious
concordance between the predicted results and observations
(Figures S14A–C). In addition, the uncorrected and corrected
C-index were 0.837 and 0.831, respectively, indicating that the
comprehensive nomogram had an appropriate discrimination in
the CGGA cohort. Similar to the results from the TCGA cohort,
the ROC analysis demonstrated that our nomogram exhibited
gratifying sensitivity and specificity on prognostic prediction
with the AUCs of 0.845, 0.900, and 0.883 for the 1-, 3-, and 5-
year survival, respectively (Figure S14D). Collectively, the results
TABLE 3 | The filtration of models.

Variables Model 1 Model 2

P p

HR of age, per 1 SD, years 2.535 (1.806–3.557) <0.001 5.166 (2.436–10.957) <0.001
HR of risk score, per 1 SD 2.858 (2.201–3.713) <0.001 11.854 (3.082–45.594) <0.001
HR of A.R., per 1 SD —— 0.208 (0.049–0.878) 0.033
LLR 125.7 <0.001 130.3 <0.001
C-index
Corrected 0.870 —— 0.869 ——

Uncorrected 0.873 —— 0.873 ——

AIC 531.012 —— 528.406 ——

BIC 535.537 —— 535.194 ——

AUC
1 year 0.888 —— 0.891 ——

2 years 0.922 —— 0.931 ——

5 years 0.966 —— 0.976 ——

NRI (model 2 vs model 1)
1 year 0.030 (−0.173–0.318) 0.585
3 years 0.394 (−0.126–0.537) 0.08
5 years 0.614 (−0.385–1.578) 0.113

IDI (model 2 vs model 1)
1 year −0.021 (−0.047–0.004) 0.126
3 years 0.035 (−0.002–0.082) 0.06
5 years 0.061 (−0.020–0.191) 0.100
May 2022 | Volume 12 | Article
SD, standard deviation; LLR, log-likelihood ratio; AIC, Akaike information criterion; BIC, Bayesian information criterion; NRI, the net reclassification improvement; IDH, integrated
discrimination improvement; C-index, Concordance index; AUC, area under curve; A.R., age × risk score; HR, hazard ratio.
Bold means the significant statistical difference.
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FIGURE 8 | Establishment and assessment of the comprehensive nomogram in TCGA dataset. (A) Univariate and multivariate analyses of the transcriptional risk
score, clinical factors, and pathological subtypes with OS. The statistical significance level was indicated by different colors; red indicated statistical significance, and
black indicated no significance. (B) The Schoenfeld residual suggested that this model met the PH. The Schoenfeld model residuals of age and transcriptional risk
score were plotted to obtain a preliminary assessment in which these predictive indicators should be enrolled in the nomogram. (C) The Deviance residuals test
indicated that there were no outliers. (D) Comprehensive nomogram including age and transcriptional risk score was established to predict 1-, 3-, and 5-year OS
probability in LGGs. (E–G) The calibration curves of 1, 3, and 5 years showed more appropriate calibration ability in TCGA cohort, in which the blue dotted lines
represented the ideal predictive model, and the red solid line represented the nomogram model. (H–J) The DCA curves showed a comparable net benefit if the
threshold probability for a patient or a doctor was within a range from 0 to 0.80 during 1, 3, and 5 years. The y-axis represented the net benefit. The x-axis
represented the predicted OS probability. The oblique smooth solid line represented a type of hypothesis in which all patients survive at a corresponding time. The
horizontal smooth solid line represented a type of hypothesis in which none of the patients survive for more than 1 year. (K–M) The time-dependent ROC curve
analysis for the nomogram and single indicator during 1, 3, and 5 years in TCGA cohort, respectively. ***P < 0.001.
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demonstrated that the comprehensive nomogram model
validated both the training and the validation cohorts well.
DISCUSSION

Although a wide range of molecular biomarkers, most notably
IDH mutations and 1p/19q integrity, have allowed for a more
granular method with which to categorize glial tumors with clear
prognostic implications, it is also inadequate for stratification of
risk for gliomas simply according to IDH and 1p19q status (9,
28). Aberrant alteration of DMDGs in the promoter regions can
be detected and have been proven to be associated with
oncogenic transformation and prognosis of patients (18, 29).
The DMDGs that could be used for survival prediction and
clinical management of LGG patients remain unknown.
Therefore, development of reliable biomarkers based on
DMDGs in LGGs becomes an urgent need.

In the present study, 259 patients from TCGA dataset with
pathological LGG diagnosis were stratified into two groups
according to IDH mutation and 1p19q chromosomal integrity.
With statistical screening, six DME genes, namely, DDIT4L,
EMP3, MEOX2, OCIAD2, TGFB2, and TNFRSF12A, were
identified as the risk gene cluster that revealed similar survival
patterns and its’ downregulation remarkably correlated with
prolonged survival in the IDHmut/1p19qcodel LGG subtype.
Additionally, investigation of the potential CpG sites of risk
gene cluster demonstrated 32 CpG sites distributed in promoter
regions (60.4%) and 30 CpG sites among these were
hypomethylation (93.75%), which was consistent with the
previous studies (14, 30). Moreover, the PPI network showed a
complex interaction between risk gene cluster and the de-/
methyltransferase. These results indicated that the regulation
of the risk gene cluster was related to these de-/methyltransferase
via reduction of the corresponding CpG site methylation
probably through co-expression and physical interaction.
Importantly, risk gene cluster showed better performance
compared to CpG risk score, indicating that mRNA expression
profiles could be more suitable for prediction of patient survival
in LGGs. Notably, previously reported predictable models
showed nonnegligible limitation because of the ignorance of
the interaction effects of age and methylation levels (29).
Therefore, we found that the statistical difference of the
interaction of age and risk score was statistically significant
(p for interaction = 0.033), indicating that patient age could
affect the level of methylation. According to stratification
analysis, we found firstly that the HR of risk score presented
an inverted U-shaped distribution along with the increase of age,
in which the peak value was detected at the 38- to 48-year-old
subgroup. Thus, we speculated that patients with LGG could
present the highest risk of death due to the upregulation of the
risk gene cluster; the risk gene cluster was more suitable to assess
the prognosis in the 38- to 48-year-old subgroup. Taken
together, the established novel multi-omics models are helpful
Frontiers in Oncology | www.frontiersin.org 15
in clinical management of LGGs, particularly in those with
ambiguous pathological signatures.

Among these six DME genes, DDIT4L and its homolog
DDIT4 are upstream inhibitors of mammalian target of
rapamycin (mTOR) in partial tissues and cell models; mTOR
responds to various stimuli such as growth factors, cellular
energy status, oxygen concentrations, and stress to control cell
metabolism and growth (31, 32). Koga et al. (33). demonstrate
that the promoter methylation level of DDIT4L is predominantly
detected in advanced-stage tumors and it can be useful for
evaluating melanoma tumor progression. Ozdemir et al. (34).
find tumor suppressor genes, including DDIT4L, that are
significantly elevated in the metformin and pioglitazone
combination-treated anaplastic thyroid cancer cells. However,
the expression and methylation level of DDIT4L in glioma are
barely reported. EMP3 is a member of the peripheral myelin
protein 22-kDa (PMP22) gene family, and it is demonstrated that
reintroduction in EMP3-deficient cancer cells inhibits colony
formation and tumor growth in xenografts (35). Hong et al. (36).
find that SK-BR-3 cells exhibit remarkable proliferation and
invasion inhibitory effects in vitro when EMP3 is knocked
down by shRNA, which demonstrates that EMP3 could
function as an oncogene in human breast cancer. However,
transcriptional silencing of EMP3 in neuroblastoma and
glioma cell lines is associated with aberrant methylation at
exon 1 of EMP3; hypermethylation level is associated with
poor 2-year survival and neuroblastoma-caused mortality,
indicating a tumor-suppressing function (37). These
contradicting results require further experimental validation.
MEOX2 belongs to the homeobox gene family and has been
established as a growth arrest-specific homeobox by cyclin-
dependent kinase inhibitor p21 and p16 activation (38). The
dual role of MEOX2 is also reported in recently published study.
Bao et al. (39) find a cluster risk gene signature including
MEOX2, which is related to shorter prognosis in a cohort of
mesenchymal glioblastomas. Conversely, MEOX2 has been
reported to downregulate in glioblastoma cell lines compared
to normal astrocytes; thus, it could be an antioncogene (40).
OCIAD2 is an immunoreactive protein with an unclear function,
the expression of which is diverse in different cancers (41). The
expression of OCIAD2 was highly expressed in the invasive
adenocarcinoma than in the in situ adenocarcinoma in lung
cancer, whereas the expression level is significantly reduced in
liver cancer and gastric stroma carcinoma, when compared with
that in the corresponding normal tissues (42, 43). In glioma, the
role and function of OCIAD2 also remain controversial.
Downregulation of OCIAD2 is detected in glioblastoma rather
than in anaplastic astrocytoma, and hypermethylation of
OCIAD2 in glioblastoma is related to a dramatic reduction in
the expression level of OCIAD2 (44, 45). On the other hand,
Nikas et al. (46). have reported that OCIAD2 is overexpressed in
gliomas that have a poor prognosis. TGFB2, a member of the
transforming growth factor-b family, is specifically
overexpressed in highly aggressive glioma and is involved in
May 2022 | Volume 12 | Article 729002
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brain tumor development (47). Enriched TGFB2 expression
levels are usually observed in the later stages of tumor
progression and in up to 95% of high-grade gliomas, which
initiates an autocrine loop to promote its own expression and
enable oncogenic activity (48). Besides, this cytokine also has a
dual role in oncogenesis, which can act as either a tumor
suppressor or as a tumor promoter in various conditions and
tumor stage (49, 50). TNFRSF12A is the smallest member of the
TNF superfamily of receptors; it contains a short cytoplasmic
demise domain and has been reported to be elevated in different
cancers (51–53). It is reported that TNFRSF12A/TNFRSF12 (only
known ligand for TNFRSF12A) signaling is related to tumor
metastasis and progression, as well as immune surveillance and
angiogenesis (54). Sequencing analysis has confirmed that
TNFRSF12A mRNA levels are low in normal brain and
increase with glioma grade (55). Moreover, TNFRSF12A is a
strong prognostic predictor for patients diagnosed with
oligodendroglial or astrocytic tumors (56). Interestingly, it is
reported that only IDH1/2 wild-type gliomas (59% GBMs and
41% LGGs) highly expressed MEOX2 compared with IDH1/2-
mutated gliomas in TCGA dataset. EMP3 is overexpressed in
oligodendroglia tumors with integrity of 1p and 19q
chromosome arms (57, 58). Taken together, the dual functions
of these risk genes in oncogenesis could exhibit tissue-specific
expression, and transformation from tumor suppressor to tumor
promoter could be presented due to epigenetic reversal in IDH-
mutated/wild-type LGGs; IDH mutation results in dramatically
e levated leve ls of 2-hydroxyglutarate (a potent ia l
oncometabolite) (59) and could influence the functions of
these risk genes. Therefore, we considered that the
upregulation of the risk gene cluster could be a stimulator that
contributes to malignant transition in LGGs.

In this study, we developed for the first time a radiomics
model using MR post-contrast T1-weighted images to assist the
assessment of the level of risk gene cluster in LGGs before
surgery. Eventually, 85 patients and 13 important radiomic
features, namely, 4 shapes, 1 gray-level dependence matrix
(GLDM), 3 gray-level co-occurrence matrices (GLCMs), 1 first
order, 3 gray-level size zone matrices (GLSZMs), and 1
neighboring gray tone difference matrix (NGTDM), were
included. According to our radiomics score, tumor shape
features played an important role in predicting transcriptional
risk score, among which the AUCs of shape features surpassed
almost other features. The result is consistent with a previous
study that used a random forest model to predict the presence of
H3 K27M mutation in spinal cord diffuse midline gliomas and
found that the maximum length of the tumor was the most
important radiological feature in the model (60). In this study,
we found that the radiomics risk score showed a negative
correlation with the transcriptional risk score. We speculated
that the negative correlation between radiomics risk score and
transcriptional risk score in LGG could be affected by expression
of genes, which changes the morphological feature or regional
cerebral blood flow that is reflected in MRI. Tumor shape
features are independent of the gray-level intensity distribution
in the region of interest (ROI). The study reveals that patients
Frontiers in Oncology | www.frontiersin.org 16
with spherical tumors survive significantly longer than those
with irregular tumor surface in glioblastomas, which indicate
that tumors with irregular surface could be more malignant than
spherical tumors (61). Texture features, including GLDM,
GLCM, GLSZM, and NGTDM, are another group of widely
used radiomics features based on gray-level intensity. There is a
biological rationale that IDH-mutated glioma shows lower
cerebral blood volume due to lower levels of hypoxia-
inducible-factor 1-alpha via the 2-hydroxyglutarate-mediated
activation of EGLN prolyl 4-hydroxylases, and present a
decrease in proangiogenic signaling that is reflected as lower
cerebral blood volume in perfusion-weighted MRI in
comparison with IDH wild-type glioma (62). Collectively, the
radiomics score also showed favorable sensitivity (92.5%) and
specificity (71.9%), which will be helpful to clinicians to estimate
the benefits and making individualized clinical management
before the surgical resection.

Herein, we established and validated a predictable multi-
omics model based on transcriptional signatures and clinical
characteristics to predict patient outcomes and guide clinical
decisions. Although our novel biomarker presented several
advantages compared to the current diagnosis strategies,
ambiguity and limitation still exist and need to be further
studied. As previously described, our nomogram model
derived from RNA sequencing data showed a higher precision
and more favorable discrimination; however, the current
methods for determination of transcriptome signatures are
mainly through RNA sequencing or qRT-PCR, which are
technologically complex and could only be achieved post-
surgically and thus cannot be used as a pre-operational
management strategy. Considering the urgent need for rapid
noninvasive diagnosis methods, the radiomics risk score model
was further developed. This model also showed satisfying
sensitivity; however, the enrolled radiomics features cannot be
transferred into visualized findings on CT/MRI. Also, the
radiomics features used in this study were extracted from
contrast-enhanced T1W1 MRI images. As is well known, T2-
FLAIR images provide more detailed information and clear
identification of infiltrating tumor edge, which is essential for
maximum surgical resection (63). Therefore, more radiomics
characteristics should be enrolled in subsequent studies by
involving T2-FLAIR and other scanning sequences to establish
more efficient radiomics models. Finally, due to the small scale of
our cohort, the described multi-omics models were validated by
retrospective methods, which is not sufficient to achieve a
universally applicable conclusion. Large-scale multicentric
prospective studies should be further performed using artificial
intelligence techniques such as deep learning to improve the
current models.
CONCLUSIONS

Our novel multi-omics nomograms represented satisfying
performance of LGG patients and assisted clinicians to draw
up individualized clinical management.
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Supplementary Figure 1 | The GO annotation and KEGG signaling pathway
analysis in TCGA dataset. (A), the GO annotation exhibited several significant terms
in IDHwt/1p19qnon-codel gliomas. (B), the KEGG signaling pathway demonstrated
that multiple inflammation and tumor progress-related signaling pathways were
significantly enriched in IDHwt/1p19qnon-codel gliomas. The GO annotation was
Frontiers in Oncology | www.frontiersin.org 17
performed by DAVID. The KEGG signaling pathway analysis was performed by
ConsensusPathDB.

Supplementary Figure 2 | The PCA was performed to assess the distinguished
accuracy in TCGA dataset. (A), the PCA presented subtype using thirty-one DME
genes expression levels. (B), the PCA presented subtype using risk gene cluster
expression levels. (C), the PCA presented subtype using risk gene cluster
methylation levels. (D), the PCA presented subtype using the combination of risk
gene cluster expression and methylation.

Supplementary Figure 3 | The GSEA in low- and high risk score group in TCGA
dataset.

Supplementary Figure 4 | Assessment the differential distribution of gene
methylation level of the risk gene cluster in LGG patients using TCGA dataset. (A-F),
the differential distribution of risk gene cluster methylation level in IDHwt/1p19qnon-
codel and IDHmut/1p19qcodel in TCGA cohort (all ***P<0.001, with t test).

Supplementary Figure 5 | Assessment the differential distribution of mRNA
expression level of the risk gene cluster in LGG patients using TCGA dataset. (A-F),
the differential distribution of risk gene cluster mRNA expression level in IDHwt/
1p19qnon-codel and IDHmut/1p19qcodel in TCGA cohort (all ***P<0.001, with t test).

Supplementary Figure 6 | Assessment the correlation between mRNA
expression level and methylation level of the risk gene cluster in LGG patients using
TCGA dataset. (A-F), the correlation presented significantly negative correlation
between expression and methylation of risk gene cluster in TCGA cohort (all
P<0.001, all r<-0.6, with Pearson correlation).

Supplementary Figure 7 | Assessment the distribution of methylation of the risk
gene cluster in LGG patients using TCGA dataset. (A-F), the distribution of
methylation level between two mixture components in TCGA cohort, which the
horizontal black bar demonstrated the relative hypermethylation in the IDHmut/
1p19codel samples and the histogram represented the relative hypomethylation in
IDHwt/1p19qnon-codel samples.

Supplementary Figure 8 | Verification CNA and mutation characteristics of DME
genes. (A, b), showed the top 20 genes with mutation and CNA in all glioma types
based on cBioPortal database, respectively. (C), the genetic alterations waterfall
plot of the risk gene cluster which were less than 3% using cBioPortal database.
(D), showed the top 20 genes with mutation in all glioma types based on COSMIC
database. (E, F), the genetic alterations of the risk gene cluster which were less than
3% using COSMIC database.

Supplementary Figure 9 | Filtration of the CpG sites of risk gene cluster in TCGA
dataset. (A), the volcano plot showed the result of univariate Cox regression
analysis among 79 CpG sites in TCGA cohort, which the red dots represented
significant 53 CpG sites with P<0.01. (B), the heatmap showed the distribution of
53 CpG sites methylation and relevant location in genome between high- and low
risk score based on TCGA cohort. (C), the correlation heatmap between 53 CpG
sites and de-/methyltransferase. (D, E), the Sankey diagram presented the
interaction between significant de-/methyltransferase and corresponding CpG sites
(|r|>0.7 and P<0.05, with Pearson correlation). (F), the PPI showed the interaction
between significant de-/methyltransferase and risk gene cluster. (G), the distribution
of 53 CpG site in genome. Especially, the CpG sites were derived from Illumina
Human Methylation 450 platform and preprocessed by ChAMP package. The PPI
was analyzed by GeneMANIA.

Supplementary Figure 10 | Development and validation of the predictive CpG
risk score in TCGA dataset. (A), the CpG sites were selected by LASSO Cox
regression with10-fold cross-validation for tuning parameter (l) selection in TCGA
cohort, which the vertical dashed lines showed minimum l value and 1 times
standard error l value, respectively. (B), the LASSO coefficient profile of all
candidate CpG sites in TCGA cohort, which the vertical dashed lines showed
minimum l value and 1 times standard error l value, respectively. (C), the
assessment between 6-gene transcriptional risk score and 3-CpG risk score by C-
index based on pec package. (D-F), the time dependent ROC curves analysis
showed performance of 6-gene transcriptional risk score and 3-CpG risk score
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during 1-, 3- and 5-years, respectively. LASSO, least absolute shrinkage and
selection operator.

Supplementary Figure 11 | Statistical test the suitability of age and
transcriptional risk score. (A), the HR of transcriptional risk score showed an
inverted U-shaped distribution along with the increase of age. (B, C), the Martingale
residuals demonstrated the linear relationship between age and transcriptional risk
score with the logit transformation value of the hazard. (D, E), the RCS analysis
verified the linear relationship between age and transcriptional risk score with the
logit transformation value of the hazard.

Supplementary Figure 12 | Assessment the differential distribution of mRNA
expression level of the risk gene cluster in LGG patients using CGGA dataset. (A-F),
the differential distribution of risk gene cluster mRNA expression level in IDHwt/
1p19qnon-codel and IDHmut/1p19qcodel in CGGA cohort (all ***P<0.001, with t test).

Supplementary Figure 13 | The survival plot of the risk gene cluster in LGG
patients in CGGA dataset. (A-G), the Kaplan-Meier survival analysis of DDIT4L
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expression, EMP3 expression, MEOX2 expression, OCIAD2 expression, TGFB2
expression, TNFRSF12A expression and transcriptional risk score which classified
by optimal cutoff value derived from X-tile based on CGGA database, respectively
(all P<0.001, with log-rank test). (H), the risk factor association diagram in CGGA
cohort. The results showed the blue dots in the figure represented the surviving
LGG patients while the red dots represented death, and the corresponding risk
gene cluster mRNA expression profiles were visualized as a heatmap. The dotted
line indicated that the optimal cut-off value of mRNA risk score, with which all LGG
patients were divided into two groups including 65 low transcriptional risk score
samples and 50 high transcriptional risk score samples.
Supplementary Figure 14 | The validation of nomogram in CGGA dataset.
(A-C), the calibration curves of 1-, 3- and 5-years showed more appropriate
calibration ability in CGGA cohort, which the blue dotted lines represented
the ideal predictive model, and the red solid line represented the nomogram
model. (D), the time dependent ROC curves analysis for nomogram during
1-, 3- and 5-years in CGGA cohort, respectively.
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