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Abstract  
Next generation sequencing is currently a cornerstone of genetic testing in routine 
diagnostics, allowing for the detection of sequence variants with so far unprecedented 
large scale, mainly in genetically heterogenous diseases, such as neurological disorders. It 
is a fast-moving field, where new wet enrichment protocols and bioinformatics tools are 
constantly being developed to overcome initial limitations. Despite the as yet undiscussed 
advantages, however, there are still some challenges in data analysis and the interpretation 
of variants. In this review, we address the current state of next generation sequencing 
diagnostic testing for inherited human disorders, particularly giving an overview of the 
available high-throughput sequencing approaches; including targeted, whole-exome and 
whole-genome sequencing; and discussing the main critical aspects of the bioinformatic 
process, from raw data analysis to molecular diagnosis. 
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Introduction 
So far, more than 7000 rare mendelian disorders are described 
and half of them affect the peripheral and central nervous 
system. The inherited neurological disorders are a group of 
heterogenous diseases from clinical and genetic point of 
view, often characterized by progressive and severe disability 
(Warman Chardon et al., 2015). The wide range of clinical 
manifestation includes ataxias, encephalopathies, genetic 
form of brain malformations, myopathies and muscular 
dystrophies, neuropathies and form of dementia. There is a 
significant phenotypic overlap between different forms of 
neurological diseases. For example, Emery-Dreyfuss muscular 
dystrophy can present similar proximal muscular weakness 
than the limb girdle muscular dystrophies, making sometimes 
difficult the precise diagnosis. From genetic point of view, 
the identification of the causative mutation can be very 
challenging, due to the heterogenous genetic nature of these 
disorders (Vgontzas and Renthal, 2019). For example, more 
than 300 genes are associated with ataxia or more than 50 
genes are causative of the hereditary spastic paraplegia. On 
the other hand, there are rare neurological diseases for which 
the genetic basis is still unknown. Moreover this heterogenous 
picture is often characterized by reduced penetrance, variable 
onset and variable expressivity (Fogel, 2018). For that reasons, 
many patients affected by rare neurological disorders spend 
many years before receiving a molecular diagnosis or remain 
genetically undiagnosed (Adams and Eng, 2018).

For patients with rare neurological disorders, the rapid and 
correct diagnosis can reduce the time from onset of symptoms 
to medical treatment, reducing multiple specialists’ visits, 
number of different clinical exams and avoiding ineffective 
medical treatments. 

In this scenario, a precise molecular diagnosis may have 
several benefits on patient care. For example, the accurate 

genetic characterization can be useful for the prevention 
harmful immunosuppressant therapy in patients affected 
by progressive muscular dystrophies presenting like an 
inflammatory myopathy (Adams and Eng, 2018). Other 
example is the importance of the detection of causative 
mutations in the GAA gene associated with Pompe disease, 
that allow a timely enzyme replacement therapy that can 
significantly improve muscle strength and reduce mortality 
(Chan et al., 2017). Therefore, an early and accurate molecular 
diagnosis can be fundamental to initiating the timely and 
optimal treatment for patients affected by rare neurological 
disease. 

Next generation sequencing (NGS) is a widely used approach 
for genetic testing in clinical laboratories. NGS presents the 
great potential to find causative mutation, de novo or inherited 
mutations, associated with genetic disorders characterized by 
variable phenotypic presentations and heterogeneous genetic 
background, such as in neurological disorders.  

Prior to the advent of the high-throughput technologies, 
Sanger sequencing, referred to as a ‘first-generation’ 
sequencing, was the most-used method for the exon-by-exon 
analysis of a single or few genes in the diagnosis of inherited 
disorders (Sanger and Coulson, 1975; Yohe and Thyagarajan, 
2017; Fernandez-Marmiesse et al., 2018). In recent years, 
while Sanger sequencing remains the gold standard, NGS 
has vastly changed genomics, allowing the fast generation 
of massive parallel sequencing reactions, overcoming the 
limitation of the single-gene analysis with the generation of 
a genome-scale data that was unthinkable in the previous 
Sanger era (Malentacchi et al., 2015; Yohe and Thyagarajan, 
2017; Caspar et al., 2018). NGS opened a new scenario in 
the molecular diagnosis of Mendelian disorders, allowing 
for the detection of germline mutations exploiting different 
approaches, encompassing the targeted analysis of a panel of 
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selected genes (targeted sequencing, TS), the sequencing of 
the entire genome (whole-genome sequencing, WGS) or of 
the entire coding region (whole-exome sequencing, WES; Di 
Resta and Ferrari, 2018).

The use of high-throughput technologies allows an increased 
diagnostic rate than single-gene testing approach in the 
molecular diagnosis of diseases with an unknown genotype-
phenotype correlation. Moreover, our limited knowledge 
on variable disease expressivity and penetrance in some 
neurological disorders can be expanded exploiting, for 
example, WES or WGS, that can allow the identification of 
novel disease genes. This would represent a key development 
toward a deeper understanding of disease variability in the 
future, with the potential for improved risk prediction in 
patients affected by neurological disorders. Indeed, so far, 
research use of high-throughput sequencing has successfully 
identified new pathogenic variants in new genes responsible 
for numerous rare genetic disorders (Dias et al., 2019; Maver 
et al., 2019; Royer-Bertrand et al., 2019). 

In addition, for the effective use of the NGS approaches in 
diagnostic laboratories, geneticists and clinicians should 
take into account information on the relevant workflows 
including analysis and sequencing depth to understand the 
specific clinical application and diagnostic capabilities of 
these gene sequencing techniques. Due to the large amounts 
of data generated from NGS, even from small gene panels, 
bioinformatics pipelines are required to effectively process 
and evaluate the sequence information (Wong et al., 2019). 
Therefore, data analysis workflow and the choice of the most 
proper bioinformatic pipelines represent crucial issues in the 
application of NGS in clinical diagnostics, also determining 
sensitivity and accuracy in the detection of sequence variants. 
Furthermore, after prioritization, the interpretation, exploiting 
several available software tools, and the classification of 
detected variants are fundamental to reaching a molecular 
diagnosis (Mancini et al., 2015; Strande et al., 2018). 

In the first section of this review, advantages of the three 
different approaches in the diagnostic practice are discussed, 
taking into account that NGS methods presents several pitfalls. 
Future trends of high-throughput technologies in genetic 
diagnostics are briefly discussed with a particular attention to 
the advent of third generation sequencing, characterized by 
long-read method, that is expected to further change also the 
clinical genome sequencing in the near future.

Then, in the second part we review the step-by-step process 
of data analysis, focusing on a selection of available tools and 
addressing the main critical issues related to the translation 
of NGS data to clinical application. The search of references 
has been done using PubMed. The cited references have been 
published in the last 5 years, with exception for few specific 
references in 2010. The bibliography were searched in the last 
8 months. 

Next Generation Sequencing Approaches 
So far, NGS testing is used in clinical laboratories for the 
detection of germline mutations associated with different 
forms of inherited disorders, exploiting different approaches, 
including the analysis of selected genes panels (TS), WES or 
WGS (van Dijk et al., 2014; Caspar et al., 2018). 

The main advantages and disadvantages are discussed below 
and summarized in Figure 1. 

Targeted sequencing
The first approach, the TS, is used for screening of several 
disease-genes in the same run and it is useful for many 
neurological diseases characterized by an oligogenic 
inheritance. For example, many forms of ataxias, epilepsies 
and limb girdle muscular dystrophies are characterized by 

clinical overlap and different genes are associated with similar 
clinical presentation. For example, in limb girdle muscular 
dystrophies genetic diagnosis the TS approach allows a 
three times greater diagnostic rate than single-gene testing 
approach (Volk and Kubisch, 2017; Di Resta et al., 2018; 
Micaglio et al., 2019).

TS is a rapid diagnostic test characterized by a high read depth 
for the entire targeted region (200–1000×), allowing for the 
detection of low alternate allele frequencies, present in cases 
of germline mosaicism (Feliubadaló et al., 2017). Moreover, 
the analysis of disease-related genes minimizes the chance 
of detecting incidental findings, that are secondary findings 
not strictly related to the clinical reason for which the genetic 
test was requested. Indeed, according to the guidelines of the 
American College of Medical Genetics and Genomics, only 
causative genes should be included in the diagnostic testing 
(Rehm et al., 2013; Kalia et al., 2017). 

However, TS presents some limitations. At first, it is difficult to 
detect copy number variations (CNVs), due to a low coverage 
in GC-rich regions, such as the first exons, or by the absence 
of enrichment probes for a specific region (Meienberg et 
al., 2016; Caspar et al., 2018), depending on the adopted 
technology.

Moreover, since so far there is no an international consensus 
for the disease-related gene lists associated with a specific 
phenotype, the content of the clinical gene panels can be 
different among different diagnostic laboratories (Yohe and 
Thyagarajan, 2017; Courtney et al., 2018). Furthermore, a 
periodical update of the gene panels is needed, due to the 
identification of novel causative genes, mainly for inherited 
forms for which genetic basis is not completely understood. 
The clinical cases that remain undiagnosed after TS require 
further genetic analysis, such as the sequencing of a different 
gene panel or WES or WGS.

Whole-exome sequencing
WES are often performed in unsolved cases after TS approach 
(Worthey et al., 2011; Sawyer et al., 2016; Eldomery et al., 
2017) or in cases affected by rare or unknown diseases, 
exploiting trios analysis, testing the proband and his/her 
parents (Di Resta and Ferrari, 2018; Splinter et al., 2018; 
Mazzarotto et al., 2020; Rossi et al., 2020). 

Exome encompasses the entire coding regions of the genome, 
harboring the 85% of all known disease-causing variants 
(Abecasis et al., 2010). WES allows not only to analyze 
encoding regions already associated with human disorders, 
but also to identify new causative genes in diseases for 
which genetic basis is not completely characterized (Bick 
and Dimmock, 2011; Zhu et al., 2015). In particular, the 
trios analysis represents a cost-effective approach, which 
significantly increases the diagnostic yield, facilitating the 

Figure 1 ｜ Comparison of pro and cons of different NGS approaches. 
The advent of NGS has opened a new era in molecular diagnosis. The massive 
parallel sequencing allows the screening of a panel of genes (targeted 
sequencing) or of the entire genome (whole-genome sequencing) or all of the 
coding regions (whole-exome sequencing). Each approach is characterized by 
advantages and still unsolved limitations, summarized in the figure. CNV: Copy 
number variation; NGS: next generation sequencing.
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filtering and interpretation of the variants. In using the WES 
approach, the chance of detecting incidental findings in a 
diagnostic test can be reduced, limiting the bioinformatic 
analysis to a gene panel of interest with the possibility of 
subsequently expanding the computational analysis, if it is 
necessary (Bick et al., 2017). 

However, WES suffers from some limitations. First, as 
discussed in TS, WES is not characterized by uniformity of 
target coverage, due to poor enrichment in GC-rich regions 
and the use of short reads covering the coding sequence 
(Yohe and Thyagarajan, 2017). It can create bias toward 
exonic variant identification in a subset of low covered 
genes or detection of large deletion, expansion, or structural 
rearrangement (Wells et al., 2019). In this regard, several 
studies showed that WGS approach can be more powerful 
than WES in detecting exonic variants, including also CNV 
(Belkadi et al., 2015; Meienberg et al., 2015, 2016), as further 
discussed. Second, it is estimated that 15% of variants with 
putative role on mendelian traits are localized in non-coding 
regions and all these variants would be missed exploiting WES 
(Mazzarotto et al., 2020). 

Whole-genome sequencing
The limitations discussed above can be overcome by exploiting 
the WGS approach (Meienberg et al., 2016; Lionel et al., 
2018). 

WGS may solve the WES-negative cases in patients affected by 
a disorder with a strong familial segregation (Bick et al., 2017). 
WGS is characterized by a uniform coverage in coding and 
non-coding regions, leading to a low chance of losing disease-
causing variants due to intrinsic technical errors. 

For the first t ime WGS was successfully used in the 
neurogenetics field for the identification of a causative coding 
mutation in a family affected by a rare form of autosomal 
recessive Charcot-Marie Tooth disease or subsequently, 
for example, in molecular diagnosis of sensory and motor 
neuropathy with microcephaly or an early-onset epilepsy 
(Lupski et al., 2010; Gonzaga-Jauregui et al., 2013; Martin et 
al., 2014).

Moreover, WGS allows for the detection of CNVs, gross 
chromosomal abnormalities and deep intronic variants, 
leading to a higher diagnostic yield compared to WES or TS, 
reaching about 73% of genetically-solved cases (Clark et al., 
2018; Scocchia et al., 2019). 

However, it is important to keep in mind that approximately 
3–4 million variants per individual are commonly identified 
through WGS and for sure, as in the WES approach, the 
analysis of the entire genome can lead to a high chance 
of detecting incidental findings. It again can be avoided by 
focusing the initial analysis only on a gene panel of interest 
(Barbitoff et al., 2020).

Moreover, the application of WGS in diagnostic routine may 
present some issues, such as the high costs for sequencing 
or for computational infrastructures suited to store and 
analyse terabytes of data; moreover, it is important taking 
into account the great complexity for data analysis and variant 
interpretation. 

The first issue can be overcome in the near future, considering 
the continuous decreasing of sequencing costs and the 
improvement of the new high-throughput platforms (van Dijk 
et al., 2014; Meienberg et al., 2016). 

On the second point, based on our current knowledge, it is 
certainly more difficult to predict the possible pathogenic 
effect of a intergenic, regulatory or deep intronic variant 
(Kremer et al., 2017; Lionel et al., 2018). However, in the 
near future, WGS will be exploited by a larger number of 
laboratories, enabling much research on such variants, 

allowing a better understanding of their pathogenic role and 
increasing the yield of genetic testing (Meienberg et al., 2016). 
Moreover, knowledge of the variants in non-coding regions is 
also important to better understand their clinical implications, 
that is important for their further classification in the near 
future and for new insight into disease pathophysiology 
(Vgontzas and Renthal, 2019).  

Next Generation Sequencing Data Analysis 
T h e  a n a l ys i s  o f  t h e  s e q u e n c i n g  d ata  re q u i re s  a n 
important computational effort. Due to the complexity 
of the bioinformatic process, so far dedicated and skilled 
bioinformaticians have an essential role in the genetic 
laboratory,  in order to continuously implement the 
computational pipeline in the clinical NGS service (de Leng et 
al., 2016). 

The entire workflow of the NGS data analysis can be 
distinguished in primary, secondary and tertiary analysis; 
starting from the mapping of reads, to the reference genome, 
and on to variant calling and interpretation (Figure 2). Below, 
we give an overview of the main steps of the entire process. 

Primary and secondary analysis: from the raw data 
conversion to the variant calling
The first step of NGS analysis includes the conversion of the 
output signal generated by sequencing platforms to short 
sequences of nucleotides, or reads, and the assignment of the 
base quality scores and the generation of the FastQ file, the 
raw data file (Wong et al., 2019). 

Secondary analysis includes the alignment of shorts reads to 
the reference genome, generating SAM/BAM file, and variant 
calling, obtaining the vcf file. So far, several tools are available 
for this process (Table 1). 

The BWA/GATK pipeline is recognized as the current standard 
for the alignment of short reads and calling of single 
nucleotide variants or indels in TS, WES or WGS analysis. 
It is based on a robust read mapping algorithm and it is 
continuously implemented by its development team at the 
Broad Institute, as the technologies improve, in order to 
formulate and share the best practices recommendations 
(Wong et al., 2019).

In order to improve the specificity of variant calling process, 
the alignment of sequence reads against the full human 
reference assembly is recommended, even if a TS has been 
performed, reducing a possible mismapping due to, for 
example, homologous regions (Gargis et al., 2015). 

Most algorithms used for single nucleotide variants and indels 
calling are not suited to the CNVs detection and dedicated 
tools have been developed, such as Manta, CNVnator, 
BreakDancer or Pindel (Chen et al., 2009, 2016; Ye et al., 
2009; Abyzov et al., 2011). As previously discussed, the WGS 
is the most favourable approach for the identification of CNVs, 
using short-read sequencing. However, new tools have been 
developed for the CNV detection also in TS or WES, such as 
CNVkit, taking into account the intrinsic enrichment bias, 
although they achieve a lower accuracy than the WGS data 
(Talevich et al., 2016). 

Therefore, so far several bioinformatics tools are available and 
the use of several variant callers is recommended to optimize 
the accuracy of the variant calling step in a clinical assay (false 
negative results; Wong et al., 2019). 

Tertiary analysis: filtering, interpretation and classification 
of next generation sequencing  data
The tertiary analysis is the last step of the data analysis 
workflow. It consists in the prioritization and interpretation of 
the identified variants, assessing their functional impact and 
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Table 1 ｜ List of examples of bioinformatic tools used in the alignment 
and variant calling process, or interpretation of next generation sequencing 
data

Tool Function

Primary and 
secondary 
analysis 

BWA, GATK Analysis, alignment, variant calling

Manta, CNVnator, 
BreakDancer, PINDEL, 
CNVkit

Indels and CNV calling

Tertiary 
analysis

ANNOVAR, VEP, VAAR Prediction of the effect of genetic 
variants on genes, transcripts, and 
protein sequences

PhyloP, GERP Analysis of evolutionary conservation
PolyPhen2, SIFT, 
MutationTaster2

Prediction of the effect of the amino 
acid substitution

MaxEntScan, NNSplice Analysis of effect of CNV
DECIPHER, DGV Clinical interpretation of CNV

CNV: Copy number variation.

Figure 2 ｜ Schematic representation of the workflow of next generation 
sequencing data analysis.
The entire process can be divided into three different stages: primary, 
secondary and tertiary analysis. Time and computational efforts are inversely 
related with each single step of the entire process. 

likely pathogenic role, exploiting several tools and algorithms 
that have been developed for this process. 

Tertiary analysis is the critical step and the real bottleneck for 
the clinical application of NGS.

The first process of the tertiary analysis is the variant 
annotation, in which functional information, such as 
conservation, population-specific allele frequency, effect on 
DNA sequence, are assigned to each detected variations (Krier 
et al., 2016; Eilbeck et al., 2017). 

Several tools are available (Table 1) for determining the 
variant location and their effect on transcripts, such as 
ANNOVAR (Wang et al., 2010) or Variant Effect Predictor 
(McLaren et al., 2016), based on Ensemble transcripts, or The 
Variant Annotation Analysis and Search Tool, a suite, freely 
available for academic research, combining information on 
amino acid substitution and allele frequency for probabilistic 
disease-gene discovery (Yandell et al., 2011).

The assessment of the most likely causative variant in a 
plethora of detected variants of unknown significance is the 
most difficult process and a series of appropriate filtering can 
be useful in the operator-dependent evaluation, in order to 
filter out common and nonpathogenic variations. 

Moreover, as discussed above, in order to prioritize the 
large numbers of detected genetic variations for diagnostic 
purpose, a gene list should be defined in the initial analysis, 
filtering and analyzing only variants localized on those known 
genes with a clinical utility and associated with the clinical 
suspicion (Fahrioğlu, 2018). 

At first, a prioritization based on the population frequency can 
be applied, interrogating several databases, such as gnomAD 
(Scheps et al., 2020) or 1000 Genomes (Birney and Soranzo, 
2015), and filtering out the common variations. 

Subsequently, the known disease genotype-phenotype 
association can be evaluated in databases, such as Leiden 
Open Variation Database (Fokkema et al., 2011), Human Gene 
Mutation Database (Stenson et al., 2017), ClinVar (Landrum et 
al., 2014) or Online Mendelian Inheritance in Man (Amberger 
and Hamosh, 2017). 

The inheritance, penetrance and expressivity of the variants 
should also be included in the interpretation criteria (Di Resta 
et al., 2014; Roy et al., 2018).

Other possible criteria for the variant prioritization is based on 
the evolutionary conservation (e,g,. PhyloP or GERP) (Davydov 
et al., 2010; Pollard et al., 2010) and on the in silico prediction 
of the potential effect on the protein structure (Table 1). In 

particular, tools such as PolyPhen2, SIFT or MutationTaster2 
allow for the prediction of the possible impact of an amino 
acid substitution on the structure and function of a human 
protein (Adzhubei et al., 2010; Tosetti et al., 2017), while other 
tools (e.g., MaxEntScan, NNSplice) are specifically dedicated 
to evaluating the potential impact on splicing (Ng et al., 2010). 
The clinical interpretation of the CNVs can also be based on 
their population frequency and size, aided by databases such 
as DGV (Eilbeck et al., 2017) or DECIPHER, that enables the 
sharing and comparison of phenotypic and genotypic data in 
the scientific community worldwide (Firth et al., 2009). 

Moreover, in recent years, collaborative efforts in global 
projects have led to the data sharing of the genotype-
phenotype associations, in order to facilitate the clinical 
interpretation of rare or novel variants identified in similar 
clinical cases (Moorthie et al., 2013). It is important to cite for 
example the Genomics England 100,000 Genome Project, the 
NHLBI Trans-Omics for Precision Medicine the NHGRI Centers 
for Common Disease Genomics, which comprise genome 
sequencing data of tens of thousands of individuals (Siva, 
2015; Kowalski et al., 2019). 

Finally, in order to classify the inherited variants, the American 
College of Medical Genetics and Genomics and the Association 
for Molecular Pathology have developed guidelines, that 
remain a cornerstone in medical genetics (Richards et al., 
2015). These guidelines define a framework for variant 
classification criteria, in order to have a standardized process 
for the clinical evaluation of genetic information, establishing 
the criteria necessary for classifying a genetic variant into five 
possible categories (pathogenic (class V), likely pathogenic 
(class IV), uncertain significance (class III), likely benign (class 
II), or benign (class I)) (Richards et al., 2015). 

These guidelines clearly aim to increase the consistency in 
variant interpretation process between different laboratories, 
since it still presents limitations due to the subjective nature 
of variant classification (Kleinberger et al., 2016). 

Indeed, published data highlight that after the classification 
of the same list of genetic variants between different centers, 
the obtained classification consensus is 71% (Amendola et al., 
2016; Nykamp et al., 2017). In order to overcome this issue, 
several automated tools have recently been developed to 
facilitate and support the classification process in increasing 
the inter-laboratory consistency in the clinical interpretation 
of the identified variants (Nykamp et al., 2017). 

Conclusions and Future Perspective
In recent years, the advent of NGS has opened a new era in 
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neurogenetics and certainly, so far, the second-generation 
sequencing is the cornerstone for molecular diagnosis for 
patients affected by heterogenous genetic diseases. For 
example, its adoption in the clinical molecular laboratories 
significantly increased our ability to identify the causative 
variants in rare neurological diseases. 

In the previous Sanger sequencing era, single-gene tests were 
time-consuming and relatively expensive. Genetic tests were 
requested after the clinical evaluation and other general 
examinations, which suggested a specific gene as the likely 
disease cause. However, as previously mentioned, many 
neurological phenotypes are characterized by heterogenous 
genetic basis and testing all known disease genes was not 
feasible (Fogel, 2018). As a result, many patients remained 
genetically undiagnosed. 

So far, thanks to the reduction of cost of DNA sequencing, NGS 
approach become widely used in clinical laboratories. The 
massive parallel sequencing allows the screening of a large 
number of genes or of the entire genome or all of the coding 
regions, as described in this review. The advances can allow 
a rapid identification of causative genes and a more precise 
genetic diagnosis of many neurological disorders. Thus, 
genetic testing should be considered earlier in the diagnostic 
procedure.

Moreover, the characterization of new causative genes 
responsible for many neurologic diseases has provided new 
insight into their pathogenic mechanisms, leading advances 
in gene therapy and identification of new treatments for 
previously incurable diseases (Žitnik et al., 2018; Vgontzas and 
Renthal, 2019).

However, despite the undoubted advantages, some issues 
should be solved from technical point of view, as discussed 
in this review. For example, one limitation is that NGS relies 
on PCR, that doesn’t allow an efficient amplification of GC 
rich genomic regions. Moreover, while  single nucleotide 
variants or small indel can be detected using short reads, 
the identification of CNV is more challenging exploiting NGS, 
leaving some cases genetically unsolved (Ebbert et al., 2019). 

Now TGS are being developed in order to overcome these 
issues (Ståhl et al., 2016). Their main technical feature is 
the ability to sequence the single molecule, avoiding the 
intrinsic amplification bias of the first and second generation 
sequencing (Ståhl et al., 2016). Two commercial platforms 
such as the PacBio SMRT (Pacific Biosciences, CA, USA) and 
the Oxford Nanopore Technologies (Oxford, UK) have been 
developed. These instruments differ in their chemistry. The 
former is fluorescent detection-based while the Oxford 
Nanopore records a current change, as DNA molecule flows 
through a membrane pore. Both instruments produce long 
reads (up to 40,000 for the PacBio SMRT and up to 100,000 
for the Nanopore). The third generation platforms could 
overcome issues for pseudogene, repeat regions sequencing 
or CNV detection and they can produce genome assemblies 
of unprecedented quality, allowing also the detection of 
epigenetic modifications or whole-transcriptome analysis 
(van Dijk et al., 2018). So far, third-generation sequencers are 
developed mainly for research purpose and they are expected 
to further change also the clinical genome sequencing. 
However, even if these instruments are a great promise for the 
genomic sequencing, it is necessary to overcome their intrinsic 
limitations before transfer to clinical practice may be possible. 
For example, nanopore sequencing still present a quite a high 
error rate (~15%) while SMRT sequencing have a maximum 
read length limited by polymerase processivity (~80 kb).  
Moreover, the cost of sequencing is relatively high per Gb and 
a large amount of starting material is needed (van Dijk et al., 
2018). 

Finally, so far, other challenges remain unsolved in the use of 
NGS for diagnostic testing, regarding the bioinformatic analysis 
and data interpretation, for which there is no clear guidelines. 
For example, as discussed in this review, open questions are 
the management and report of incidental findings or the 
subjectivity of variant classification and interpretation, mainly 
for the effect of variants of unknown significance (cl.III) or 
non-exonic variants (Meienberg et al., 2016).

In conclusion, although there are still open challenges, NGS 
provides an expanding approach to identify rare mutation 
in genetically heterogenous diseases and it is expected 
to lead advances in identification of better treatment and 
gene therapy in a new era of precision medicine for genetic 
neurological disorders. 
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