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ABSTRACT

The ability to correlate chromosome conformation
and gene expression gives a great deal of informa-
tion regarding the strategies used by a cell to
properly regulate gene activity. 4C-Seq is a relatively
new and increasingly popular technology where the
set of genomic interactions generated by a single
point in the genome can be determined. 4C-Seq ex-
periments generate large, complicated data sets
and it is imperative that signal is properly distin-
guished from noise. Currently, there are a limited
number of methods for analyzing 4C-Seq data.
Here, we present a new method, fourSig, which in
addition to being precise and simple to use also
includes a new feature that prioritizes detected
interactions. Our results demonstrate the efficacy
of fourSig with previously published and novel 4C-
Seq data sets and show that our significance priori-
tization correlates with the ability to reproducibly
detect interactions among replicates.

INTRODUCTION

The organization of chromosomes in 3D space has a
significant impact on mammalian gene expression (1).
Variations of the chromosome conformation capture
(3C) technique have demonstrated that, while regulatory
elements and their target gene promoters can be separated
by large linear distances (measured in base pairs) (2), chro-
matin looping can modify the physical proximity of regu-
latory elements and promoters to alter gene expression
(3–5). The interaction between promoters and regulatory
elements can occur within a few kilobases (kb) (6) to
several megabases (Mb) (7) on the same chromosome, or
even on other chromosomes (8). In addition to bridging

genomic loci, chromosome folding is thought to be vital in
concentrating RNA polymerases and transcriptional regu-
lators (9). Known to occur for all three RNA polymerases,
these ‘transcription factories’ contain multiple active loci
and may be a strategy for efficient transcriptional regula-
tion of coregulated genes (10,11). Similarly, correlation of
genome-wide conformation maps with gene expression
and chromatin modification data demonstrates that tran-
scriptionally inactive loci also tend to preferentially asso-
ciate with each other, perhaps preventing undesired gene
expression (12). Taken together, these data provide
support for the hypothesis that 3D chromatin organiza-
tion, among other functions, influences gene expression by
altering the spatial proximity of distal regulatory elements
relative to the genes they regulate.
Circular chromosome conformation capture with

sequencing (4C-Seq) is a variant of 3C technology that
identifies the range of genomic interactions formed by a
specific locus (e.g. a gene promoter) (2,13,14). Currently,
only a few algorithms exist to analyze 4C-Seq data
(13,15,16). To avoid effects due to technical error, such
as amplification bias, some methods use data reduction
techniques that result in a decrease in resolution, while
other methods determine interactions without using such
strategies. When capturing genomic interactions, 3C-
based techniques do not discriminate between functional
contacts and contacts occurring by random chance at the
time of fixation. Therefore, during sequence analysis, it is
crucial that true signal is efficiently distinguished from
background noise.
The currently available 4C-Seq analysis methods vary in

the treatment of raw data and strategy for determining
signal from noise. Further, none provide a methodology
for predicting interactions that are likely to be reproduced
among experimental replicates. To this end, we have de-
veloped a suite of software called fourSig, a conceptually
simple yet powerful statistical method for analyzing
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4C-Seq data. fourSig can analyze data from a wide variety
of 4C-Seq protocols, uses the full range of quantitative
information captured by 4C-Seq, provides variable par-
ameters to adjust for desired resolution and offers a
method of peak prioritization to categorize statistically
significant genomic interactions.
Using previously generated 4C-Seq data sets, we dem-

onstrate that fourSig is as accurate and precise as the
most sophisticated existing methods, but also prioritizes
the statistically significant interactions. To demonstrate
further the high resolution and effectiveness of fourSig’s
prioritization feature, we generated and analyzed a novel
allele-specific 4C-Seq data set. We hypothesized that if
long-range interactions are a general property of tran-
scriptional regulation, 4C-Seq performed at the transcrip-
tion start site (TSS) of a gene that demonstrates an
allelic expression bias may reveal allele-specific interaction
profiles. Such an analysis would shed further light on the
relationship between genomic interactions and gene
expression that is independent of sequence variation.
Ibtk encodes a tyrosine kinase inhibitor that displays

strong allelic expression bias in F1 hybrid trophoblast
stem (TS) cells. After using fourSig to analyze allele-
specific 4C-Seq data from the Ibtk locus, we validated
our method by performing fluorescent in situ hybridiza-
tion (FISH). While both Ibtk alleles have similar inter-
action profiles, we identified several interactions unique
to each allele using the high-resolution analysis offered
by fourSig. Interestingly, one allele-specific interaction
formed predominately by the active Ibtk allele overlaps
with a putative enhancer element. Taken together, our
data demonstrate the utility, accuracy and precision of
fourSig.

MATERIALS AND METHODS

Determination of significant enrichment and
peak prioritization

fourSig is a software suite, written in Perl and R, used to
identify statistically significant interactions from 4C-Seq
data. 4C-Seq reads are initially mapped to the
genome. Mapped data are then transformed into a
database of genomic fragments using samToRetab.pl or
bowtieToRetab.pl (Supplementary Figure S1). Each
database is specific to the design of the 4C experiment.
This database of genomic fragments corresponds to the
restriction site locations of the enzyme used to generate
the 3C library (the template for the 4C library). The
mappability for any given 3C fragment is then determined
based on several factors: the location of 4C restriction sites
(both 4C and linearization), the minimum and maximum
size selected for the sequencing library, the length of po-
tentially captured fragments, the length of the primer used
for amplification and the length of the sequencing reads.
After the template database is produced, the mapped
reads from the 4C-Seq data are assigned to generate a
file that serves as the input file for the fourSig.R
program. By default, fourSig.R removes fragments
marked as unmappable within the input database files.
Any type of 4C-Seq data can be transformed into

fourSig format, and a detailed description of the data
structure may be found in the Supplementary Methods.

fourSig.R allows the user to define portions of the cis-
chromosome to be masked out before determining signifi-
cance thresholds. The region close to the viewpoint will
contain a high concentration of reads per fragment and
will typically require a higher significance threshold than
more distal regions. Therefore, this feature may be used to
focus the significance testing to viewpoint-proximal
regions. Alternatively, regions located near the viewpoint
can be masked out to allow for a lower threshold for sig-
nificance for regions further away. Additionally, a com-
bination of masked analyses could be used to approximate
varying thresholds in cis.

The significance testing itself is described in Figure 1 and
in the text. In short, a threshold for significance is
calculated for each individual chromosome using several
user-defined input parameters. The reads on each chromo-
some are randomly associated with a specified window size
of 3C fragments from that chromosome. fourSig.R then
calculates the significance threshold, the minimum
number of reads within a window required to achieve a
false discovery rate (FDR) that is defined by the user.
The shuffling and threshold determination are repeated as
many times as desired; however, we recommend at least
1000 permutations. Finally, the user can specify the per-
centile from which the smallest calculated threshold that
occurred (we recommend the top fifth percentile) is used
as the final cutoff for significance for that chromosome.
Contiguous windows that are significantly enriched with
reads are then merged into a single interaction, and 3C
fragments on the 50 and 30 ends of each domain that do
not contain reads are removed. The analyses described
here calculated a significance threshold from the top fifth
percentile of 1000 calculations of FDR< 0.01. Parameters
for background masking and window sizes varied depend-
ing on the analysis and are described in the text below.

Additionally, we used fourSig to prioritize interactions
based on the likelihood that they are reproducible. This
method is applied to the windows that comprise an inter-
action, and the entire interaction is categorized based on the
broadest assigned designation. As explained in Figure 2, we
use an algorithm to manipulate the read count from the
fragment in a significant window containing the most reads
and reassess the capacity of the read counts from the remain-
ing fragments to exceed the threshold. This approximates the
expected distribution of Broad and Narrow interaction
categories and allows increased confidence in reproducibility
when focusing primarily on interactions designated as Broad.

Tissue culture

TS cells were cultured as previously described (17,18). TS
cells were removed from feeder cells and grown independ-
ently for two passages on gelatin-coated plates before
sample collection.

Allele-specific quantitative reverse transcriptase
polymerase chain reaction

RNA was harvested from TS cells using the TRIzol
reagent and the manufacturer’s procedures (Ambion),
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treated with DNase I and purified using the protocols
described for the RNeasy Mini Kit (Qiagen). RNA
preps were quantitated using a Nanodrop 8000
(ThermoFisher), and cDNA samples were prepared from

250 ng RNA using SuperScript III Reverse Transcriptase
(Invitrogen). Quantitative polymerase chain reaction
(qPCR) reactions were performed on a Bio-Rad CFX96
Real-Time PCR Detection System (Bio-Rad). Details of

Figure 1. A method for determining significant interactions. (A) The sequence of captured fragments is mapped to the genome, and the number of
reads mapping to each 3C fragment is used as the observed distribution. (B) (Step 1) Sliding windows of a desired number of 3C fragments, W, are
demarcated, and the total reads in each window are determined for the observed data. (Step 2) The reads on the chromosome are distributed
randomly among 3C fragments and a new reads per window is calculated. (Step 3) A cutoff, X, is calculated for a desired FDR using the shuffled
reads per window data. (Step 4) X is calculated from at least 1000 random shuffles to generate a histogram of possible cutoffs for the desired FDR.
(Step 5) The final threshold for calling a significantly enriched window in the observed data set is set at the 95th percentile for calculated Xs. In the
depicted example, a desired FDR of< 0.01 leads to a final threshold of 40 reads per window for calling significant interactions in the 4C data.
(C) Ten significance thresholds were calculated independently using an FDR cutoff based on average randomly permutated distributions (left) and a
cutoff determined from confidence bounds applied to a distribution of FDR calculations (right). The y-axis represents significance thresholds in reads
per window. Both calculations represent an FDR of <0.01.

PAGE 3 OF 16 Nucleic Acids Research, 2014, Vol. 42, No. 8 e68

,


the Ibtk verification may be found in the Supplementary
Methods.

Generation of 4C libraries

Batches of 10-cm2 plates of TS cells grown independent
of feeder cells for preparation of 4C libraries were treated
with 0.25% trypsin to form single-cell suspensions. Plates
were pooled for fixation with 1% formaldehyde, counted
by hemocytometer and stored at �80�C in aliquots of
3� 107 cells.
The protocol for generating initial 3C libraries and sub-

sequent 4C libraries was adapted from previously reported
studies and was modified for optimal use in TS cells (2,12).
3C libraries were generated by initial lysis, quenching of
sodium dodecyl sulfate by TritonX-100, restriction diges-
tion with HindIII (NEB) and proximity ligation with T4
DNA Ligase (Invitrogen). Additionally, a portion of
digested preps were withheld from ligation to serve as

no-ligase controls. Re-ligated libraries and controls were
purified by reversal of cross-links and proteinase K diges-
tion, followed by several rounds of phenol–chloroform
extraction and ethanol precipitation. Resulting samples
were quantitated using the Qubit Assay Kit for dsDNA
(Invitrogen). Effective re-ligation in the 3C libraries was
verified by comparing electrophoretic migration in 0.8%
agarose with no-ligase controls, as well as by amplification
of a ligation product of two adjacent fragments in the
Gapdh locus (Supplementary Table S1, data not shown).
Test amplification of 3C libraries, no-ligase controls and
bacterial artificial chromosome (BAC) ligation controls
was performed using the SsoFast EvaGreen Supermix
(Bio-Rad), and digestion of amplified product by HindIII.

4C library templates for Ibtk were produced by digest-
ing purified 3C products with NlaIII (NEB), performing a
second proximity ligation, linearizing by digestion with
NsiI (NEB). Similar to the 3C libraries, efficient digestion

Figure 2. Prioritization of interactions by distribution shape. (A) A model of a conformation capture event is shown (left) with a symbol legend
(right). A frequently occurring interaction is expected to yield a distribution of reads mapping to locally available fragments and centering on the
point of highest probability of contact (center). (B) Peaks are assigned a priority level corresponding to expected distributions by reassessing the
capacity of a window to exceed the significance threshold on transformation of the read counts for the most abundant fragment (dashed line).
Windows are categorized as Broad (Category 1) if the window is still significant when discounting the number of reads in the most abundant
fragment, Intermediate (Category 2) if the threshold can be exceeded when the most abundant fragment is replaced with the average number of reads
for the adjacent fragments, and Narrow (Category 3) if the significance threshold can only be exceeded when all data are included.
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was tested by electrophoretic migration in 0.8%
agarose. The Ibtk 4C libraries were amplified with Pfx
polymerase (Invitrogen) using a double-amplification
strategy with primers designed to capture an informative
single-nucleotide polymorphism (SNP) on the NlaIII side
of this digestion scheme. The primers for initial amplifica-
tion are homologous to both CAST and B6 sequence and
contain a portion of the sequencing adapters (Nextera V1
Universal for NlaIII side and Illumina TruSeq Indexed for
HindIII side) with four random bases separating the
adapter from the genomic sequence (Supplementary
Table S1). Absence of amplification was observed in
source 3C libraries and the 4C no-ligase controls to
ensure faithful amplification of the intended target. All
amplifications were performed within a linear range, as
determined by an initial test with qPCR.

After the initial amplification, Ibtk 4C intermediates
were purified and size-selected (200–650 bp) by gel extrac-
tion. Size-selected intermediates were then amplified with
Phusion polymerase (NEB) using primers containing
sequence homologous to the portion of the sequencing
adapter used in the first round of amplification and the
remaining sequence needed to complete the sequencing
adapters (Supplementary Table S1). Final products were
purified using Ampure XP beads (Beckman Coulter) and
quantitated using the Qubit Assay Kit for dsDNA before
submission for sequencing. 4C libraries were submitted
to the UNC High-Throughput Sequencing Facility for
paired end sequencing using 2� 150 bp on the Illumina
MiSeq platform (Rep 1) and 2� 100 bp on the Illumina
HiSeq2000 platform (Reps 2 and 3).

A stepwise detail of our 4C protocols can be made avail-
able on request.

Sequence alignment

The C57BL/6 (B6) genome sequence was taken from the
mm9 genome assembly for Mus musculus, and a genome
sequence for CAST/Eij (CAST) was generated by editing
appropriate nucleotides with SNPs for Mus musculus
castaneus (19). Custom Perl scripts were used to handle
raw sequence for identifying allelism of fragments and
aligning captured sequence to B6 and CAST genomes
using Bowtie v0.12.7 (20). Further explanation of the
alignment and allelic assessment may be found in the
Supplementary Methods.

Allelic interactions and set analysis of Ibtk 4C

After significant interactions are assigned, allelic calls
are made based on whether the number of SNPs in
SNP-containing reads detected in the interaction is signifi-
cantly higher than what would be expected by random
chance. Chromosome 9 interactions lacking sufficient
SNP coverage to make an allelic call were assumed
to occur in cis. The proportion of Chromosome 9 inter-
actions identified as occurring in trans (opposing allele)
was used to determine that the likelihood that this
assumption leads to erroneous results is negligible (see
Results).

The positions of detected interactions were cross-
referenced with fragment read data to transform the

interaction data into congruent coordinates between rep-
licate libraries for set analysis. Library intersections were
determined using the VennDiagram package for R (21)
to match fragment coordinates. When generating intersec-
tion lists of interacting fragments, the broadest inter-
action classification (Broad> Intermediate>Narrow)
was retained as the interaction’s assignment.

FISH validation

Probes were fluorescently labeled using the BioPrime
DNA Labeling System (Invitrogen). Ibtk transcript was
detected using a cDNA probe covering �1 kb of
sequence that was generated from a mass-weighted pool
of intron-skipping RT-PCR products. Fosmids (BACPAC
Resource Center) were used to probe DNA at the sites
of predicted interactions and the region immediately
upstream of the Ibtk gene (Supplementary Table S2).
Typically, the Ibtk cDNA probe was labeled with Cy3-
dCTP (GE Healthcare), the fosmid for the Ibtk TSS
probe was labeled with Alexa Fluor 488-dUTP
(Molecular Probes) and fosmids targeting predicted inter-
actions were labeled with Cy5-dCTP (GE Healthcare).
Details of the FISH procedures may be found in the

Supplementary Methods. Z-stack images were taken in
grayscale at 63� using a Zeiss AxioImager M2 equipped
with an AxioCam MRm camera (Carl Zeiss). Merged
Z-stacks were deconvolved using the iterative algorithm
in the AxioVision software package (Carl Zeiss).
Distances were measured in three dimensions from the
approximate centers of DNA-FISH signals using the
ZEN 2011 black edition software package (Carl Zeiss).
Recorded measurements were used to produce cumulative
distance plots with R. To produce representative images,
z-projections for each color channel were produced and
exported with AxioVision, then merged and pseudo-
colored with Adobe Photoshop CS5.1 (Adobe Systems).

RESULTS

Method for statistical analysis of 4C interactions

Determination of significant interactions
4C libraries are generated from downstream processing of
3C templates and are used to identify genome-wide inter-
actions with a fixed locus, referred to as the viewpoint
(Supplementary Figure S2). The end product from a 3C
preparation is trimmed by restriction digestion, self-
ligated and linearized. Although these processing steps
generate many molecules, a certain proportion will
consist of viewpoint sequence flanking an unknown
sequence that was ‘captured’ due to a genomic interaction
at the time of fixation.
The creation of 4C libraries inevitably generates certain

technical limitations that must be considered when
analyzing 4C-Seq data. First, the absolute resolution of
the assay will be limited by the frequency of the restriction
site for the enzyme used to create the initial 3C library.
Second, the choice of enzymes used can result in fragments
that are too large to sequence or too short to map to the
genome or will be cut in such a way that prevents PCR
amplification. Third, because chromatin is essentially a
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polymer in confined space, the probability of contact will
generally be higher for loci that have a shorter linear
distance (base pairs, bp) separating them (22,23). This
has been observed consistently in chromosome conform-
ation experiments and has been substantiated as a general
property exhibited in the identification of topologically
associated domains and the fractal configuration of
chromosomes in the nucleus (12,24,25). It follows from
these properties that in a 4C experiment, one will detect
a higher level of background surrounding the viewpoint
than at other regions of the chromosome. As such, it
would be useful to adjust background thresholds across
the lengths of chromosomes. Furthermore, it is expected
that if two loci are interacting in a functional manner, then
their neighboring sequences will also have a higher chance
of interacting. Importantly, these expectations would not
be found at interactions occurring by random chance.
Taking these issues into consideration, we designed a
novel analysis algorithm for 4C-Seq data, fourSig, to de-
termine significant contacts with the viewpoint and to em-
phasize interactions that are more likely to be consistent
among successive replicates.
Before statistical analysis, fourSig uses a variety of in-

formation, including the size of the 4C primers; locations
of the 3C, 4C and linearization enzymes; and the size
range of sequenced molecules, to determine which 3C
fragments can be identified by 4C. Fragments that are
too large for the sequencer, too small to be aligned
or would not have been amplified by PCR are flagged
such that they can be eliminated from the analysis (see
Supplementary Methods). This allows fourSig to model
accurately the random distributions used for threshold
calculation (described below).
The schematic in Figure 1 describes our method for

determining whether a signal is significant relative to back-
ground. Reads are first mapped to the appropriate 3C frag-
ments (Figure 1A). To determine the significance of a
contact, we use a sliding window analysis to avoid
introducing arbitrary window boundaries. The size of the
windows, W, can be altered depending on the desired reso-
lution of the contact map. Smaller window sizes provide
higher resolution results, which are useful for investigating
the details of specific interactions, while larger window sizes
are better for showing general trends and identifying highly
reproducible interactions (described later).
For each chromosome, the total number of reads in

each window is tallied to generate an observed distribution
(Figure 1B, Step 1). We then generate a randomized dis-
tribution by shuffling the observed reads among mappable
3C fragments. Because a higher background is expected
around the viewpoint, fourSig allows for the regions sur-
rounding the viewpoint to be treated separately (see
below). The total number of shuffled reads per window
is then tallied (Figure 1B, Step 2). The randomized data
are used to calculate X, the minimum number of reads
required for a window to be significant by satisfying a
desired FDR (Figure 1B, Step 3). The final cutoff value
for significance of any given chromosome is calculated
from a minimum of 1000 permutations, resulting in a dis-
tribution of Xs that can be used to define a minimum read
count to qualify a window as significant (Figure 1B, Steps

4 and 5). The permutations empirically derive a distribu-
tion for X, which is used to choose a threshold in which we
have high confidence (see below). Using the example
demonstrated in Figure 1, 99% of the Xs from shuffled
reads were >10, so it is likely that a cutoff as low as 10
reads in a window would be an underestimate of the true
threshold for FDR< 0.01. Similarly, 50% of the shuffles-
generated Xs were >30, so it is likely that 30 would also be
an underestimate. However, only 5% of the shuffles
generated cutoffs >40, so we can be fairly confident that
this threshold does not underestimate an FDR< 0.01.

Comparison of methods for calculating FDR thresholds
The fourSig method was heavily influenced by a previously
described 4C-Seq analysis method (13). However, on exten-
sive trial use of this program, we identified several
opportunities for improvement that served as chief
motivating factors for the development of fourSig.
Among these was a considerable amount of variation in
the calculation of FDR and subsequent thresholds for
trans-interactions in repeat analysis of the same data.
Using a publicly available 4C-Seq data set (26) and the
program described by Splinter et al. (13), we performed
10 separate analyses for data on Chromosome 5, each
with 1000 permutations, resulting in four different signifi-
cance thresholds ranging from 46 to 50 reads per window
(Figure 1C). The average threshold was 47.27 with a
variance of 2.02. Analysis of this data set using simi-
lar conditions with fourSig (i.e. 10 separate runs on
Chromosome 5, each with1000 permutations) resulted in
significance thresholds of either 47 or 48 reads per
window. While the average threshold was still 47.27, the
variance was reduced by almost 10-fold to 0.22-fold
(Figure 1C). In general, both methods resulted in similar
thresholds on average, but the variance was always higher
using the method described by Splinter et al. (2011). One
possible explanation for the increased variance in the
previous method is that the FDR calculation is dependent
on averages, which can be highly influenced by extreme out-
liers. In practical terms, this increased variance may lead to
skewed threshold calculations when the method is applied
only once to a 4C-Seq data set. In contrast, the FDR cal-
culations in fourSig are made after each randomization,
and a single outlier cannot have a disproportionate effect
on the other calculations. Based on this difference, fourSig
should be more robust to outliers generated during
read randomization, thus reducing the potential for
misestimating a suitable significance threshold.

Background masking and prioritization features
fourSig uses two notable features to deal with common
technical issues with interpretation of chromosome con-
formation data. 3C-based experiments typically find
increased local contact probability associated with inter-
acting regions and a disproportionate number of reads
detected near the viewpoint. Therefore, it is possible that
a single threshold calculated from the observed distribu-
tion of an entire chromosome may be set too high to
detect long-range interactions. This tendency would lead
to more conservative significance calls, as the threshold for
the entire chromosome is weighted higher by the influence
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of viewpoint-proximal detections; however, it is reason-
able to desire the implementation of variable position-
dependent thresholds. To this end, fourSig allows the
user to mask the reads for any specific region before
determining a significance threshold. This feature will
completely remove the masked area from analysis and is
especially useful for the region surrounding the viewpoint
because reads mapping to closely neighboring fragments
can sometimes be orders of magnitude larger than those
observed at more distal locations. Using this feature, one
can mask out as large or as small an area as desired,
thereby allowing for limitations of viewpoint-proximal
background influence on threshold calculation.

Another important feature of fourSig is that it assigns a
priority classification for interactions, based on the distri-
bution of reads within the windows. When an interaction
is captured between two loci with significant frequency, we
expect that there will be a large number of reads for the
fragment harboring the point of interaction (Figure 2A).
Owing to various random events, such as incomplete di-
gestions and increased local proximity, reads mapping to
neighboring fragments should also be detected at a lower
level. In the event of a consistent and frequent interaction,
this behavior should give rise to a broader distribution of
reads in the window because more opportunities for
capture are available at the time of fixation. Conversely,
this distribution of reads would not be expected at inter-
actions detected owing to random chance.

Taking these expectations into consideration, we add
additional criteria to the results after assessing the signifi-
cance of a given window. For any given window, fourSig
manipulates the 3C fragment with the most reads mapped
to it and re-evaluates whether the window still passes the
determined significance threshold (Figure 2B). We
describe a window as being ‘Broad’ (Category 1) if the
fragment containing the highest number of reads can be
removed and the remaining read count from all other frag-
ments still exceeds the significance threshold. Just as frag-
ments surrounding the viewpoint will have many reads
mapped to them because of their proximity, fragments
surrounding a true interaction will also be in physical
proximity to the viewpoint and have elevated probabilities
of contact. Therefore, these types of windows reflect the
expected fiber-like nature of chromatin and are most likely
to be reproduced (see results below). If this test fails, the
value for the fragment with the highest read count is
reduced to the average value of the two adjacent frag-
ments. If the window can still exceed the significance
threshold, we designate it as ‘Intermediate’ (Category 2).
Finally, if the window is only significant with the observed
read counts, then it is designated as ‘Narrow’ (Category
3). Interactions that contain multiple windows are
categorized based on the broadest designation assigned.

Comparison of fourSig with existing 4C-Seq
analysis methods

Verification of known Hbb-b1 interactions
The mouse beta-globin (Hbb-b1) locus contains several
well-characterized long-range interactions that associate
with gene expression states (27–29). Soler et al. (26)

report 4C-Seq interaction data from Hbb-b1 in two cell
types: fetal liver (FL) cells, where beta-globin genes are
active, and fetal brain (FB) cells, where the beta-globin
genes are silent. One high-resolution 4C-Seq analysis
method, r3CSeq (13), used these data as a benchmark
for demonstrating sensitivity and accuracy. Additionally,
an alternative method, 4Cseqpipe (12), generated an add-
itional data set at this locus using a non-standard 4C-Seq
protocol as a benchmarking experiment. To compare
the precision and accuracy of fourSig with r3CSeq and
4Cseqpipe, we analyzed an Hbb-b1 4C-Seq data set
with fourSig (26). These data, which have already been
aligned, were downloaded from the r3cseq Web site:
http://r3cseq.genereg.net/Site/index.html. We then con-
verted the aligned reads to read counts per fragment
with samToReTab.pl, a program included in fourSig
(Supplementary Methods). Using equivalent settings
(window size of 1 and only surrounding the Hbb1-b1
viewpoint), fourSig produced results that were nearly
identical to those obtained with r3Cseq (Supplementary
Figure S3A and B). Specifically, both methods detect
interactions upstream of the viewpoint and at the beta-
globin locus control region (LCR) in FL tissue when
compared with FB tissue. Additionally, fourSig results
are consistent with those obtained from 4Cseqpipe (15).
Together, our results suggest that fourSig is as accurate as
existing methods.
Owing to the way in which prioritization is determined,

all enrichments determined by fourSig with a window size
of one fragment are designated as Narrow interactions.
Therefore, we chose to expand the window size and look
chromosome-wide to see how interactions are categorized
when more fragments are available for use. When the
window size is expanded to five fragments, our method
found that compared with the rest of the chromosome,
the density of Broad interactions was higher with
increasing proximity to the viewpoint (Supplementary
Figure S3C and D, data not shown). Comparatively,
there were approximately three times as many Broad inter-
actions in FL cells than were observed in the FB tissue (60
and 18, respectively). As will be shown later, these results
suggest a higher probability of reproducing the inter-
actions near the viewpoint in the FL cells than in FB,
which is consistent with LCR interactions facilitating ex-
pression of Hbb-b1 in the FL. Furthermore, these results
are consistent with previous claims that larger window
sizes improve reproducibility (16).

Additional validation of fourSig against a Nanog 4C
data set
In addition to Hbb-b1 4C, we validated our method
against a second published 4C data set derived from
mouse embryonic stem (ES) cells (30). The original experi-
ment identified genome-wide interactions from the Nanog
locus. Nanog, a transcription factor (TF) required for ES
cell self-renewal, was found to be engaged in interactions
with Rybp, Tcf3, Ezh2 and Smarcad1, all genes implicated
in the maintenance of ES cell pluripotency. Additionally,
their results showed strong signals at the Bcat1 and Kras
loci. The statistical analysis by de Wit et al. (2013) was
performed using a window size of 100 3C fragments;
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however, a much smaller window (W=31) was used for
visualization in their paper. Because the incorporation of
read data in fourSig allows for relatively small window
sizes, we performed an analysis using W=31. When
masking out a 50-kb region on both sides of the Nanog
promoter, we also identified interactions with the Rybp,
Tcf3, Smarcad1, Bcat1 and Kras loci. In addition, these
loci were assigned Broad priority classifications, indicating
that their significance was not derived from a single
fragment within a window (Supplementary Figure S4A).
Interestingly, we were unable to detect significant inter-
actions between Nanog and the Rybp, Tcf3, Bcat1 and
Kras loci with the r3Cseq software (data not shown).
The peak at Ezh2 was relatively small compared with

the other peaks (Supplementary Figure S4A), so we used
fourSig to perform a localized analysis, similar to the
approach used by de Wit et al. (2013). To approximate
the �3000 HindIII fragment background model used in
the previous study, we generated threshold values from a
local distribution derived from the observed data
within 4.5Mb of either side of the Ezh2 locus. This
localized analysis identified a Broad significant interaction
between Nanog and Ezh2 (Supplementary Figure S4B).
Finally, we used the Nanog 4C data set to characterize

the effects of different window sizes on the identification
and categorization of interactions by fourSig. Using
window sizes of 31, 10 and 5 HindIII fragments, we
identified an inverse correlation between window size
and number of detected interactions (Supplementary
Figure S4C). However, the proportion of Narrow categor-
izations as a percentage of total interactions also increases
as the window size is reduced (Supplementary Figure
S4D). Therefore, while a reduction in window size may
lead to a greater number of called interactions, the priori-
tization scheme is effective at illuminating which inter-
actions are representative of single-fragment interactions.

Analysis of a gene with allele-specific expression bias
Long-range contacts have frequently been reported to
have functional association to expression states (8,31,32).
Therefore, we hypothesized that a gene whose alleles are
differentially regulated may show divergent interaction
profiles. To demonstrate the efficacy of fourSig, we
designed and performed an allele-specific 4C-Seq experi-
ment at the TSS of a gene that exhibits a strong allelic
expression bias.
Our laboratory previously produced allele-specific

RNA-Seq data in TS cells derived from reciprocal F1
crosses between B6 mice and CAST mice (18). We
searched these data for candidates that exhibited signifi-
cant allelic expression bias in excess of 2-fold in favor of
one allele. Because strain-specific differences in promoter-
proximal TF binding sites, rather than allele-specific inter-
actions with regulatory elements, could influence expres-
sion bias, we initially looked to exclude genes harboring
sequence variations near the promoter (33). Using the
JASPAR database (34), we extracted binding motifs for
TFs expressed in TS cells and searched for binding sites
that may be disrupted by sequence variations within 10 kb
of the TSS for any biased genes. Most candidates con-
tained comparable TF binding motifs (not shown),

ruling out variations in known TF binding sites within
promoter-proximal sequence as a likely source of regula-
tion. We further constrained our candidate list by
requiring that the 3C fragment containing the TSS also
contained appropriately positioned restriction sites and
SNPs for performing allele-specific 4C (Supplementary
Figure S2). Ultimately, we settled on Ibtk, a gene
encoding an inhibitor of Bruton’s tyrosine kinase
(35,36), as a candidate for performing allele-specific 4C-
Seq. The RNA-Seq data demonstrate that Ibtk expression
is heavily skewed in favor of the CAST allele (Figure 3A).
These results were verified using allele-specific qRT-PCR
in multiple TS cell lines, both CASTB6F1 and B6CASTF1
(Figure 3B and Supplementary Figure S5).

4C for Ibtk locus
Having confirmed the allelic expression bias for Ibtk, we
designed a 4C-Seq strategy to identify allele-specific long-
range interaction patterns (Supplementary Figure S6 and
Supplementary Table S1). Three sequencing data sets rep-
resenting two biological replicates were obtained and
analyzed by fourSig. Each read is a hybrid of known
and unknown sequences. The known sequence was
analyzed for the presence of the B6 or CAST SNP to de-
termine the allelic origin of the viewpoint (Supplementary
Figure S6). Additionally, the unknown sequence was also
analyzed for the presence of a known SNP to determine
the allele to which the interaction occurred. Before
analysis with fourSig, mapped reads were sorted into
separate data sets depending on the allelic origin of the
viewpoint and the allelic origin of the captured sequence.

Because fourSig uses read counts to determine signifi-
cance threshold, it was imperative for us to rule out

Figure 3. Validation of allelic expression bias in Ibtk. (A) The propor-
tion of allele-specific reads detected from RNA-Seq experiments in two
different TS cell lines shows a heavy expression bias in favor of the
CAST allele for Ibtk. Cell lines are labeled to reflect the mode of
parental inheritance of strain (maternal�paternal). (B) Expression
bias of Ibtk was confirmed by allele-specific qRT-PCR. Each cell line
was assayed twice, in triplicate. Results are displayed as Log2 trans-
formations of expression relative to Gapdh.
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any interaction called due to technical errors such as PCR
amplification bias. In our assay, this distinction can
be made due to the inclusion of random barcodes
incorporated between sequencing adapter sequences and
4C genomic primer sequences (Supplementary Figure S2).
Repeated amplification of single contacts will generate
reads containing identical barcodes on both ends of the
read, creating an indicator of the degree to which amplifi-
cation bias may be affecting the detection of a mapped 3C
fragment. We inspected the barcodes in each of our data
sets after sorting the mapped reads by allelic origin and
found no fragments containing a disproportionate
number of reads with identical barcodes (data not shown).

We hypothesized that allele-specific contacts may harbor
putative distal regulatory elements. Therefore, window sizes
were kept small to achieve high-resolution results. We
analyzed Ibtk 4C-Seq data with fourSig using a window
size of five 3C fragments and an FDR< 0.01. Using inform-
ative SNPs in the contacted regions, interactions were
assigned to specific alleles (see Supplementary Methods).
For the present analysis, we excluded trans-interactions
mapping to the opposing Chromosome 9 of the analyzed
viewpoint (Supplementary Figure S7). Interactions
mapping to Chromosome 9 that lacked informative SNPs
were assumed to be in cis. Extrapolation of the average pro-
portion of trans calls in each library would suggest that<1%
of the interactions may be erroneously called cis, making this
a reasonably safe assumption.

To focus analysis on the locations of precise overlap
between replicates, individual 3C fragments found within
the cis-interactions were compared among the three repli-
cates for each viewpoint allele. The intersection of these
libraries is defined as the set of consistent interacting frag-
ments from interactions detected for each viewpoint
(Figure 4A and B). The utility of the peak prioritization
algorithm can be demonstrated through the distribution of
category calls among the replicate sets. The overwhelming
majority of the fragments that were consistently detected
among replicates tend to belong to Broad interactions
(Figure 4C, top). To understand how informative the clas-
sification scheme may be with respect to a single replicate,
the proportions of interaction classifications relative to
all interactions in single replicates were compared. On
average, a substantially larger portion of fragments be-
longing to Broad interactions within individual replicates
were present in the intersection of all three replicates
(Figure 4C, middle). Conversely, the majority fragments
belonging to interactions classified as Narrow tended to be
unique to that particular replicate (Figure 4C, bottom).
These data demonstrate the classification scheme offered
may predict the likelihood that an interaction will be con-
sistently identified among many replicates.

To ensure that further analysis focused on high-
confidence contacts, we selected only fragments from
Broad interactions that were represented in all three
4C-Seq data sets. To visualize the results from the experi-
ments, reads from each data set were summed per 3C
fragment and plotted along Chromosome 9 (Figure 5A).
The majority of reads from repeated interactions were
located within 3Mb of the viewpoint (Figure 5A,
expanded region). Additionally, we found that the

majority of reads within these contacts were shared
between alleles (�66%, Figure 5B), especially in the
region upstream of the Ibtk TSS (Figure 5A). As the
distance from the viewpoint increased, allele-specific dif-
ferences in the location of contacts become more
apparent. In fact, at a distance of 3Mb, interactions
approach near-allelic exclusivity (Figure 5A). Analysis of
the positioning of interactions relative to the viewpoint
validates this visual observation (Figure 5C). No interact-
ing fragments found in common between alleles were
found further than 3Mb from the viewpoint. However,
�80% of the interacting fragments found exclusively on
one allele were also located within 3Mb of the viewpoint.
Therefore, despite sharing a largely similar spatial organ-
ization, there were a substantial number of allele-specific
contacts that are associated with one allele versus another.

Validation of allele-specific contacts by FISH
To test the validity and allelic nature of the interactions
identified by the 4C experiment, we selected three inter-
actions to test by FISH. DNA-FISH probes were made
to measure two allele-specific cis-interactions, one for B6
and one for CAST, and one interaction common to both
alleles (Supplementary Figure S8A). Because the majority
of allele-specific contacts were found within 1–3Mb of the
TSS, interactions for verification were chosen from loci
within this space. To ensure that the FISH test was reflect-
ive of the high resolution and precision with which fourSig
calls interactions, loci for validation of allele-specific
contacts were selected so that the called interactions
were not isolated by large linear distances from inter-
actions found on the opposing allele. Because SNP differ-
ences cannot be used to discriminate between alleles in
FISH experiments, we used the allelic bias in Ibtk expres-
sion to identify the B6 or CAST allele. As such, the
colocalization of Ibtk expression by RNA-FISH with a
DNA-FISH probe for the Ibtk TSS was used to identify
the active (CAST) allele (Supplementary Figure S8B). We
observed monoallelic expression in 92.8% of scored
nuclei, confirming that the use of RNA-FISH is an accept-
able indicator for allelic discrimination (data not shown).
For each experiment, DNA-FISH probes for the Ibtk TSS
and the assayed interaction were cohybridized with the
Ibtk cDNA probe. Measurements were taken from the cen-
ters of DNA signals (Figure 6A and B). For the allele-
specific interactions, the measured distance between Ibtk
and the interacting locus was consistently smaller for the
expected allele (P< 0.001). The repressed allele was con-
sistently closer in space to the B6-specific interaction,
whereas the opposite was found for the CAST-specific
interaction (Figure 6C and D, respectively). No discern-
ible difference in the measure distances between loci was
detected for the interaction common to both alleles
(P> 0.5, Figure 6E). These results validate the interactions
identified by the 4C-Seq experiments and fourSig analysis.

Potential regulatory differences associated with differential
interactions
Closer visual analysis of the allelic interaction data
revealed that, in some instances, strong differences in
read counts can indicate a preferential allelic contact
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even when the 3C fragment in question is found in inter-
actions called for both alleles. Notably, we identified a
3C fragment containing more reads interacting with the
CAST allele versus the B6 allele (Figure 7). We examined
this fragment for a combination of genomic features
associated with active enhancer elements, namely,
H3K27ac, H3K4me1 and DNase (37–39), previously
assessed in TS cells (18). Our analysis demonstrates that
the CAST 3C fragment is enriched for these marks relative
to the B6 fragment. While this fragment is located only
�50 kb downstream of the TSS for Ibtk, the difference in
read counts between the alleles is striking. Also of interest
is that a previous study of the human Ibtk locus identified
the existence of a TSS for an alternative transcript for Ibtk
located in approximately the same relative location (36).

This raises the possibility that in addition to acting as a
TSS for an alternative transcript, modification of this site
may act as an enhancer whose contact with the promoter
is necessary for activating transcription of the gene. The
precedent of this locus for having regulatory function
combined with the presence of active histone marks and
the detection of allele-specificity in our 4C-Seq analysis
lends credibility to the ability of fourSig to identify inter-
actions with putative distal regulatory elements.

Allelic Ibtk 4C analysis using r3Cseq
To determine whether the application of fourSig is
advantageous in utility over an existing method, a
similar analysis was performed using r3Cseq (16) with
default parameters to determine significant interactions.

Figure 4. Significant interactions with the Ibtk TSS. (A and B) 3C fragments found in interactions have similar proportions of overlap between
replicate 4C-Seq experiments. A similar number of interacting fragments were found in the intersection of replicates for both the B6 (A) and CAST
(B) alleles. (C) Peak priority classifications for different sets of interacting fragments. Priority categories for replicated interacting fragments are
shown as a proportion of the total intersection (top). Proportion of interactions assigned a classification in each replicate are averaged for B6 and
CAST alleles for fragments found in the replicate intersection (middle) and fragments unique to a replicate (bottom).
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In comparison with the fourSig analysis, few interactions
were determined in each individual replicate, leading to
near 40- and 30-fold reductions in replicated interacting
fragments for B6 and CAST, respectively (Supplementary
Figure S9A and B). Of the fragments from inter-
actions found in all replicates, none were detected by
r3Cseq that were not also found in the fourSig analysis
(Supplementary Figure S9C and D). Additionally,
although the small sample size skews the exact relative pro-
portions, we did find approximately similar proportions of
overlaps between allelic interactions as determined by
r3Cseq (i.e. 50 and 75% common interactions for B6
and CAST, respectively) (Supplementary Figure S9E).

An inspection of the positioning of consistent inter-
actions from each allele found that, similar to what was
observed in the Nanog analysis, r3Cseq detected consistent

interactions only proximal to the viewpoint for both
alleles (Supplementary Figure S10). Although no inter-
actions were detected further than 1.1Mb from the view-
point, the trend of greater dissimilarity in allelic
interactions further from the viewpoint seen earlier was
preserved (Supplementary Figure S10A). Notably, all
of the interactions detected by fourSig and validated by
FISH were beyond the range of the most distal inter-
actions found by r3Cseq. Finally, the r3Cseq method
failed to consistently detect contact with putative enhancer
described in Figure 7 in either allele (Supplementary
Figure S10B). Therefore, this comparison demonstrates
that despite a substantially simpler method of detecting
significant interactions, fourSig is more sensitive to the
detection of validated interactions occurring at further dis-
tances from the viewpoint and highly probable allelic

Figure 5. Replicated cis-interactions for the Ibtk TSS. A Distributions of detected reads (black=B6 and red=CAST) for replicated, Broad
interacting fragments were plotted along Chromosome 9 (upper panel). The region surrounding the Ibtk locus (blue box) is expanded (lower
panel). (B) Intersection of Broad cis-interactions for the entire chromosome between the B6 and CAST alleles. (C) A proportional breakdown of
the allelically unique and common interaction sets by distance from the Ibtk TSS.
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Figure 6. Validation of selected interactions by FISH. (A and B) Representative FISH images of a common interaction (A) and a B6-specific
interaction (B) are displayed. Active allele (arrowhead) is determined by colocalization of RNA signal (red) with the Ibtk TSS (green). Distance is
measured from the centers of the Ibtk signal and the signal from the interacting probe (white). Nucleus is counterstained with 4’,6-diamidino-2-
phenylindole (blue). (C–E) The percentage of scored nuclei is plotted against the distance between the probed locus and the Ibtk TSS as measured by
DNA-FISH. The measured loci represent interactions identified by 4C to be specific to the B6 allele (C, n=56), specific to the CAST allele (D,
n=51) or common to both alleles (E, n=51). The expression state of Ibtk was assessed by colocalization of a RNA signal with the Ibtk TSS.
Measurements of active alleles are traced in red, while repressed alleles are traced in black. All distances are in micrometers. Significance of trends
was determined using an exact binomial test.
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interactions with regulatory elements that have published
precedent for functional activity.

DISCUSSION

In this study, we introduced a new method, fourSig, for
analyzing 4C-Seq data. fourSig uses the full range of quan-
titative information derived from read depth, produces
consistent results and can inform as to the reproducibility
of interactions among replicate experiments.

Similar to the recently published methods r3Cseq (16)
and 4Cseqpipe (15), fourSig uses the full range of quanti-
tative information derived from read depth to determine
significance thresholds for 4C-Seq data. Previous 4C-Seq
analyses have typically discarded this information due to
concerns over possible PCR amplification bias during
library preparation (13,14). Instead, these studies use a
transformation of the read counts to Boolean values,
leading to 3C fragments being ruled simply as detected
or not detected. This binarization of the data necessitates
the use of window sizes of at least 100 fragments, which
generates a lower-resolution analysis of the data. As a
result, these methods would likely not be able to detect
the specific LCR interactions within the beta-globin locus
(26) or the putative regulatory element described here for
Ibtk. The incorporation of read counts into threshold cal-
culation allows the use of much smaller windows and
improves the resolution available for 4C-Seq experiments.
Therefore, higher-resolution analysis methods such as
fourSig, r3Cseq and 4Cseqpipe represent a substantial
improvement over previous limitations.

There are two ways to determine the threshold for sig-
nificance when using permuted data. fourSig calculates a
cutoff for the FDR after each permutation and then picks
an ultimate threshold from the distribution of cutoffs.
Alternatively, as is used in the study by Splinter et al.
(2011), it is possible to perform all of the permutations
first and use the average of the cumulative data set to
identify a single cutoff for the FDR. Initially, we used
both methods, but found that the former method
provides less variation among repeated analysis of data
sets and is likely to be more robust to extreme values
that occurred in rare permutations. Additionally, while
the use of a single threshold for an entire chromosome
may result in overly conservative significance calls, espe-
cially for interactions with loci at large distances, the use
of the masking feature, as demonstrated for the Nanog
to Ezh2 interaction, is very effective for making refined
assessments at any particular region of interest. This is a
powerful feature in fourSig, which can allow the user to
fine tune the sensitivity of interaction detection by tailor-
suiting a background model to any location or locus size
desired. Taken together, fourSig provides an easy-to-use
method for high-resolution detection of genomic inter-
actions while offering the user the flexibility to find
optimal conditions for gaining informative results.
The interaction prioritization feature represents a novel

addition to 4C-Seq analysis and a useful improvement over
existing methods. In addition to the consistent application
of a Broad designation to many well-described interactions
from published data sets, the trends of increased reprodu-
cibility for Broad interactions demonstrated in replicate

Figure 7. Allele-specific interaction at a putative enhancer for Ibtk. A UCSC Genome Browser screenshot of 4C interaction data and selected
chromatin data at the Ibtk locus are shown. Exons 24 and 25 of Ibtk are highlighted with arrows. The 3C fragment containing the Ibtk TSS is
indicated by a dashed brown rectangle. A putative intragenic enhancer aligning with a previously reported regulatory element is enclosed by a solid
black rectangle. For chromatin immunoprecipitation sequencing tracks, green boxes indicate biallelic enrichment, blue boxes indicate CAST-specific
enrichment and gray boxes indicate insufficient SNP detection to make an allele-specific call.
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analysis of the Ibtk data lend strength to this feature’s role
in flagging potentially interesting interactions.
However, while the interaction prioritization feature in

fourSig offers predictive value in terms of the likelihood
that detected interactions may be reproduced, it should be
noted that interactions classified in all three categories are
capable of being consistently reproduced. Our analysis of
the intersection of replicates showed that >5% of the con-
sistently detected 3C fragments were found within inter-
actions designated as Narrow or Intermediate. This could
occur, for example, in the event that the dominant 3C
fragment in a window is large, leaving little linear
distance to either side of the primary point of contact to
capture neighboring fragments. However, this is likely to
be an infrequent event when using a 6- or 4-cutter for
generating the initial 3C library. Additionally, it is not
our intention to suggest that the use of this feature may
serve as a replacement for performing experimental repli-
cates. As is evidenced by the analysis of the Ibtk data, a
sizable portion of the Broad interactions are not identified
in all of the replicates. Instead, a more appropriate use of
this feature would be to serve as a guide for emphasizing
interactions in the event that few replicates are possible or
as a support to avoid seeking diminishing returns yielded
from excessive replicate experiments.
One biological context in which the functional role

of higher-order chromatin organization may have particu-
lar importance is in allelic expression bias. Differential
expression patterns between alleles are traditionally
associated with genomic imprinting (40,41); however,
allelic biases unrelated to parent-of-origin effects have
been reported to affect as much as 12% of transcripts
in laboratory mouse strains (19). Allele-specific expression
bias implies the existence of differential regulatory
schemes between alleles of the same gene; schemes that
may be potentially related to spatial organization.
Although our results for Ibtk do not prove that functional
regulatory elements lie within the described interactions,
the consistency at which we detected allele-specific inter-
actions supports the notion that functional association of
conformation with differential expression state is a
possible source of regulatory control.
Our results at the Ibtk locus indicate that the majority

of interactions detected within 1Mb of the viewpoint are
shared between alleles. This is consistent with numerous
4C studies that report substantially increased contacts
with loci at shorter linear distances from the viewpoint
(2,14,42,43). Furthermore, our data are consistent with
the existence of topologically associated domains, where
cis-interactions tend to occur with highest probability
in discrete windows of up to 1Mb of linear distance
(12,24,25). The association of a putative enhancer with
an interaction containing more reads on the CAST allele
demonstrates that keeping read counts, rather than
reducing them to Boolean values, is useful for identifying
allelic differences in conformation. In fact, the observation
of a bias in relative detection and the proximity of
this site to the Ibtk TSS underscore the importance of
incorporating read counts into the analysis method.
In this study, we introduced a new method, fourSig, for

analyzing 4C-Seq data. We showed that this method is

capable of reproducing well-studied interactions identified
by other methods and can be more sensitive in
determining significant interactions between large lin-
ear distances than some existing methods. The combin-
ation of accessibility to high-resolution windowing, not
possible with binarization of data, and sensitivity to de-
tection of distal interactions, not demonstrated by r3Cseq,
allows fourSig to deliver a sort of ‘best of both worlds’
result compared with currently available methods.
Furthermore, it is of noteworthy significance that we
were able to validate allele-specific interactions detected
for Ibtk. Measurements between FISH signals are typic-
ally limited in resolution to �0.2mm. Because the DNA in
the nuclei exists as compacted chromatin, 1–3Mb does not
always lead to large physical distances in separation.
Therefore, the limitation of resolution for FISH can
make differential measurements between copies difficult
owing to the natural proximity of loci within this range.
That we were able to consistently verify proximity trends
of detected interactions at this range by FISH speaks to
the precision with which interactions can be called by
fourSig. The validation of fourSig against existing and
novel data and the comparative performance to existing
algorithms demonstrate that the methods described here
will be useful in assisting investigators with analysis of
4C-Seq data and detection of relative differences in
contact probabilities.

AVAILABILITY

All Perl and R scripts are available at SourceForge: http://
sourceforge.net/projects/foursig/. A tutorial for their use
may be found at: http://starmer.med.unc.edu/�jstarmer/
fourSig/TUTORIAL.html. 4C-Seq data for the beta-
globin locus were downloaded at: http://r3cseq.genereg.
net/.

ACCESSION NUMBERS

The NCBI accession number for the Nanog 4C-Seq data
(30) is GSE37275. The NCBI accession number for the TS
cell data used to determine allelically biased candidates
(18) is GSE39406. The NCBI accession number for the
raw 4C-Seq data for Ibtk is GSE50907.
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