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Abstract

Cardiovascular disease is a leading cause of death in cancer survivors. It is critical to apply 

new predictive and early diagnostic methods in this population, as this can potentially inform 

cardiovascular treatment and surveillance decision-making. We discuss the application of artificial 

intelligence (AI) technologies to cardiovascular imaging in cardio-oncology, with a particular 

emphasis on prevention and targeted treatment of a variety of cardiovascular conditions in 

cancer patients. Recently, the use of AI-augmented cardiac imaging in cardio-oncology is gaining 
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traction. A large proportion of cardio-oncology patients are screened and followed using left 

ventricular ejection fraction (LVEF) and global longitudinal strain (GLS), currently obtained using 

echocardiography. This use will continue to increase with new cardiotoxic cancer treatments. 

AI is being tested to increase precision, throughput, and accuracy of LVEF and GLS, guide 

point-of-care image acquisition, and integrate imaging and clinical data to optimize the prediction 

and detection of cardiac dysfunction. The application of AI to cardiovascular magnetic resonance 

imaging (CMR), computed tomography (CT; especially coronary artery calcium or CAC scans), 

single proton emission computed tomography (SPECT) and positron emission tomography (PET) 

imaging acquisition is also in early stages of analysis for prediction and assessment of cardiac 

tumors and cardiovascular adverse events in patients treated for childhood or adult cancer. The 

opportunities for application of AI in cardio-oncology imaging are promising, and if availed, will 

improve clinical practice and benefit patient care.
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1. Introduction

Among the ~17 million cancer survivors in the United States, cardiovascular disease is a 

leading cause of death [1–5]. Cancer patients and survivors are at risk of cardiovascular 

toxicity, and many already have underlying cardiovascular issues that can complicate 

cancer therapy and impair outcomes. Prediction and early recognition of cardiovascular 

diseases in this population are crucial and can potentially inform treatment and surveillance 

decision-making. Furthermore, as survival and the number of potentially cardiotoxic cancer 

therapies expand, so does the demand for high-throughput, yet high-quality, focused imaging 

modalities to serially monitor cardiovascular function and structure in these patients [2,6,7]. 

Additionally, cancer patients are often excluded from clinical trials and in general tend 

to be treated in a more conservative manner versus non-cancer patients [8]. Novel, more 

efficient methods of obtaining these data, such as with the use of AI, are desirable to 

aid in the assessment of cardiac function in the cardio-oncology patient population. By 

extracting hidden patterns and evidence from large amounts of healthcare data, artificial 

intelligence has the potential to generate novel predictors and indices in cardio-oncology 

patients. The field of AI-assisted precision cardio-oncology is therefore evolving toward 

greater personalization and precision, with a strong emphasis on early prevention and 

tailored treatment prior to, during, and after cancer treatment.

Artificial intelligence (AI) refers to computer programs that are capable of performing tasks 

associated with human intelligence, such as pattern recognition and problem-solving. AI 

has emerged as a rapidly advancing field that is beginning to have an impact on clinical 

practice, particularly regarding identification of established data patterns, which can then 

be used to predict new outcomes. Within the field of cardiovascular medicine, researchers 

are discovering that AI has a potential role in cardiac imaging, with applications ranging 

from image classification and reconstruction to segmentation and quantification automation, 
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all of which have the potential to impact workflow, diagnostic accuracy, measurement 

reproducibility, and ultimately patient prognosis.

Here we focus on such AI technologies applied to cardiovascular imaging in cardio-

oncology with a strong emphasis on prevention and tailored treatment of a variety of 

cardiovascular conditions for cancer patients (Table 1). We discuss AI in echocardiography 

as the most common form of imaging in cardio-oncology, and much work is also being done 

applying AI to echocardiography in cardiology. We then propose the use of AI-augmented 

cardiovascular magnetic resonance (CMR), computed tomography (CT) (with a focus on 

coronary artery calcium (CAC) scans), single positron emission computed tomography 

(SPECT), and positron emission tomography (PET) imaging. We also suggest AI-augmented 

multimodality imaging to assess intracardiac tumors. This article is one of a series of 

publications on AI in cardio-oncology, complementing our manuscript on the application 

of AI to electrocardiography and biologically relevant models in precision cardio-oncology 

for the prediction and modeling of cardiovascular adverse events in cancer survivors. In 

our companion manuscript, titled “Artificial Intelligence Opportunities in Cardio-Oncology: 

Overview with Spotlight on Electrocardiography,” we delve deeper into this relatively new 

field of cardio-oncology especially describing therapies of special interest and the types of 

cancers for which they are used [9].

1.1. Cardiovascular imaging

The rapid growth of advanced multimodality cardiovascular imaging has generated massive 

amounts of data that have transformed cardiovascular care. The steps that slow down the 

process include timing and the accuracy with which these images are interpreted [10]. 

Artificial intelligence applications in cardiovascular imaging have demonstrated enormous 

promise in terms of diagnostic support and image interpretation [11]. Acquiring high-quality 

imaging to feed into AI algorithms for image interpretation presents a unique set of 

challenges. This requires image registration and segmentation. Registration is used to align 

multiple images, correct artifacts, rotate the image, and ensure that all images have the 

same orientation in order to create a consistent and complete source of information [34]. 

Segmentation is the process of extracting content from images by identifying landmarks, 

segmenting them into meaningful segments, and identifying regions of interest. In the 

literature, advanced AI-driven segmentation techniques have been described for a variety 

of imaging modalities and clinical applications [12,13]. After registering and segmenting 

the appropriate structures, automated measurements can be taken [14–16]. Numerous 

large national and international multicenter imaging databases have been established, and 

images have been pre-registered and segmented, making them suitable for machine learning 

applications [17,18]. Other smaller studies have been conducted manually at individual 

centers or using retrospective imaging data from observational studies or randomized trials 

[19,20].

2. Echocardiography

Transthoracic echocardiography (TTE) is an essential tool in cardio-oncology to assess 

ventricular, atrial, valvular, and pericardial structure and function in patients with current or 
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past cancer. Currently, the echocardiographic assessment of left ventricular ejection fraction 

(LVEF) and global longitudinal strain (GLS) plays a central role in the diagnosis and 

monitoring of cardiotoxicity from cancer therapy [21]. However, there are limitations of the 

current workflow, such as length of analysis, inter-operator and inter-observer variability 

that can result in man-made variation and limited reproducibility. Furthermore, conventional 

assessment of LVEF and GLS can only reflect cardiotoxicity in the myocardium based on 

traditional definitions and may miss more subtle signs of dysfunction.

Numerous studies have thus evaluated the interpretation of echocardiograms using AI 

[22–24]. Within cardio-oncology, artificial intelligence algorithms may play an important 

role in echocardiography, with uses ranging from image classification and reconstruction, 

automation in segmentation and quantification, to risk prediction with integration of 

demographic and medical data, all of which can potentially impact efficiency, accuracy in 

diagnosis, reproducibility in measurements, and ultimately patient prognosis (Fig. 1, Table 

2). AI methods such as machine learning could improve the efficiency of obtaining cardiac 

function measurements and early diagnoses without compromising reliability.

Machine learning uses computer algorithms that are capable of learning and adapting 

without explicit instructions, by analyzing and inferring patterns in data using advanced 

statistical models to determine output. For example, automated LVEF measurements 

utilizing AI-assisted point-of-care echocardiography at the time of oncology or infusion 

center appointments have the potential to significantly streamline care for patients who 

require serial LVEF assessments. In the FAST-EFs, a multicenter study of 255 patients, 

automated left ventricular (LV) measurements were feasible, rapid, and reproducible 

compared to visual and manual Simpson’s biplane method. The average analysis time for 

automatic LV measurements was 8 ± 1 s/patient, and there was no inter- or intra-observer 

variability [25]. Automated strain measurements have been less well studied. In a study of 

152 patients with human epidermal growth factor receptor-2 (HER2)-positive breast cancer 

treated with anti-HER2 therapy and anthracyclines, automated ejection fraction and GLS 

were obtained via AI assistance; these measurements were in close agreement (median 

standard deviation of strain values 1.2%) with standard software-derived values on serial 

echocardiographic monitoring [26]. Some vendors have also developed point-of-care tools 

that integrate strain through fully automated or offline strain measurements.

In current clinical practice, echocardiograms are obtained by trained sonographers and 

overread by echocardiographers. Recent work has evaluated nurses without training in 

echocardiography or sonography guided by AI-algorithms to obtain echocardiograms [28]. 

If the guiding and measurement algorithms proved to be robust, the ability to obtain LVEF 

and GLS at the bedside before chemotherapy infusions by oncology nurses with some 

cardiology oversight may be the future of a fully integrated and collaborative approach to 

cardio-oncology care. An essential component of the success of this workflow, however, is 

the necessity to maintain engagement between cardiologists and the oncology team to best 

care for the cardio-oncology patients. Other AI guided echocardiographic findings such as 

detecting intracardiac masses, pericardial effusions, and utilizing inferior vena cava imaging 

for right atrial pressure estimation may prove helpful in the cardio-oncology population and 

are topics of ongoing investigations.
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Abundant imaging markers embedded in echocardiograms or other medical data can be 

identified by AI to define new functional indices and improve diagnostic and prognostic 

accuracy. This information may be currently overlooked or not fully utilized due to the 

limitation of computational power and our understanding of imaging markers. A deep 

learning model (EchoNet) trained on a data set of more than 2.6 million echocardiogram 

images from 2850 patients was used to identify local cardiac structures, estimate cardiac 

function, and predict systemic risk factors such as age and weight [22]. Machine learning 

algorithms incorporating speckle-tracking echocardiographic data have also been applied for 

automated discrimination of pathological remodeling in hypertrophic cardiomyopathy from 

physiological hypertrophy seen in athletes [29]. This suggests that AI can be utilized to 

identify and distinguish echocardiographic changes in patients with cancer therapy-related 

cardiac dysfunction compared to healthy hearts that may not be seen by visual inspection of 

the interpreting cardiologist. This theory was investigated using machine learning algorithms 

to discover patterns of strain features most strongly associated with cardiotoxicity in a 

longitudinal prospective cohort study of 248 breast cancer patients receiving doxorubicin 

chemotherapy. Machine learning algorithms were able to identify cardiac mechanics 

abnormalities related to a decline in LVEF in this population [27]. Finally, there is hope 

in the future capability of AI (using machine learning and natural language processing, 

techniques used to mine clinical documentation) to integrate all medical data including 

imaging to predict prognosis.

Finally, applying AI to picture archiving and communication systems [30] allows for 

further cost-reduction and improvements in process efficiency via personalized workstation 

image arrangement, automated electronic medical record data entry, and report preparation. 

Advances in AI image interpretation have now made it possible for automated reanalysis of 

stored Picture Archiving and Communication System (PACS) images, which may translate 

into more accurate reporting and a reduction in inter- and intra-observer variability [30].

3. Cardiac magnetic resonance imaging

Cardiovascular magnetic resonance imaging offers gold standard assessment of ejection 

fraction and non-invasive tissue characterization which can yield some of the most 

practically important information to address treatment decisions in particular with regard 

to the use of ongoing potentially cardiotoxic cancer therapy [31]. Studies have suggested 

that left ventricular function and global longitudinal strain are better assessed using CMR 

than 2D echocardiography. CMR also gives better views of the right ventricle, which can 

be injured during cancer therapy [32,33]. In addition, cardiovascular magnetic resonance 

imaging can yield important information to address etiological concerns [31]. For patients 

with cancer who receive a diagnosis of cardiovascular disease during or after cancer therapy, 

the importance of teasing out the underlying etiology of the cardiovascular diagnosis is 

of vital significance and crucial to decision-making regarding cessation or continuance of 

cancer therapy.

Multiple roles for AI in CMR are currently being explored [34–36] (Table 2). Fully 

automated cardiac localization and image plane planning/acquisition is now a commercial 

reality and can substantially decrease scan and analysis time while also correctly identifying 
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image artifacts, applying fixes, or triggering repeat image acquisitions. AI applications in 

parallel and real-time imaging and compressed sensing have allowed for more rapid image 

acquisition without compromising diagnostic accuracy. The successful application of AI to 

CMR tissue characterization using radiomics and texture analysis has improved diagnostic 

accuracy of scar imaging, wall thickening differentiation, and inflammation [35].

It is certain that many applications of AI to CMR will apply to cardio-oncology. CMR is 

increasingly utilized for the evaluation of cardiotoxicity and cardiac pathology in oncology 

patients. Deep learning algorithms have been applied to CMR to enable accurate and 

fully automated analysis of LV volumes and function [36]. Feature tracking, tagging and 

fast-strain-encoded CMR techniques are emerging means to assess myocardial strain using 

CMR [34]. CMR is also preferred for detailed tissue characterization and/or scar detection, 

the non-invasive interrogation of cardiac masses, and perfusion imaging. Machine learning 

has been applied to improve efficiency in magnetic resonance fingerprinting, an emerging 

tool that allows for quantification of several tissue specific parameters such as T1, T2, and 

T2* relaxation times in a simultaneous, unified and streamlined, single multi-parametric 

scan [37].

4. Cardiac computed tomography

Cardiac CT provides a platform for promising AI application, including CAC scoring on 

ECG-gated non-contrast chest CT (Table 2). CAC has a well-defined role in screening 

patients for coronary artery disease [49] and for assessing the risk of major adverse 

cardiovascular events (MACE). Dedicated CAC scoring utilizes an ECG-gated chest CT 

exam which may incur extra cost and resource. Fortunately, CAC scoring can be reliably 

assessed from non-gated chest CT scans and has high reproducibility and excellent 

concordance with ECG-gated cardiac CT. Detection of CAC on non-contrast CT scans 

used in cancer surveillance may be used in cardiovascular risk assessment and potentially 

improve adherence and uptake of cardiovascular prevention strategies. Currently, there is 

a reliance on staff trained to perform CAC scoring and interpret CAC qualitatively by 

a categorical method (none, mild, moderate, or severe coronary artery disease). Artificial 

intelligence is a promising tool for not only for opportunistic detection of atherosclerotic 

disease in this population, but also implementation of more qualitative methods which may 

be more accurate and reproducible.

Multiple methods of automated CAC scoring using have been validated as highly accurate 

[50]. AI- based detection (using convolutional neural networks) and measurement of 

CAC scoring was studied in one group of breast cancer patients [51]. A standard CAC 

scoring algorithm was applied to the data originally used to train the algorithm. Each 

patient was assigned to one of the five standard CAC risk categories (0, 1–10, 11–100, 

101–400, and >400). The performance of the automated calcium scoring was evaluated 

against manual CAC score measurement. Automated CAC scoring using AI showed high 

reproducibility (linearly weighted kappa 0.85; 95% CI: 0.77–0.93), high agreement for CAC 

score categories against the test set (proportional agreement of 0.87; 95% CI: 0.79–0.92) 

and an even higher intraclass correlation coefficient (ICC) for continuous CAC (ICC 0.95; 

95% CI: 0.93–0.97). In another observational study of 315 consecutive, non-contrast CT 
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scans, AI-based semiautomatic and automatic software were obtained for three CAC scores 

(Agatston score, volume score, mass score) and number of calcified lesions which had 

excellent correlation and agreement [52].

Using AI, a highly reliable and actionable cardiovascular disease risk profile can be achieved 

in subjects undergoing treatment planning or follow-up of cancer from their existing non-

contrast chest CT. A deep learning cardiovascular risk prediction model trained on 30,286 

low dose CT scans from the National Lung Cancer Trial was able to identify patients with 

high cardiovascular mortality (AUC of 0.768), thereby converting the low dose CT scan for 

lung cancer screening to a tool for cardiovascular risk assessment [53]. The implementation 

of AI CAC tools on low dose CT scans for lung cancer, will potentially allow for more 

accurate evaluation of CAC and determination of cardiovascular risk, a comprehensive 

preventative approach [54]. Another known risk for premature coronary artery disease in 

oncology patients is exposure to high dose chest radiation. Coronary artery dose-volume 

parameters have been evaluated to predict risk of calcification in patients who have received 

radiation therapy [55]. Larger studies addressing the accuracy of AI-based CAC and 

atherosclerotic disease assessment from planning chest CT in breast cancer patients are 

also forthcoming. These results could be extrapolated to patients with other malignancies 

who undergo non-gated CT chest for treatment planning or surveillance.

5. Nuclear cardiac imaging

AI has recently been used to assess prognostic markers in nuclear cardiology (Table 1). Risk 

prediction using machine learning applied to PET scans was more effective at identifying 

patients at high risk of myocardial ischemia and/or MACE than logistic regression, using the 

SCORE risk model based on European Society for Cardiology guidelines [56]. As patients 

who have received certain cancer treatments (i.e. chest radiotherapy) are at a higher risk 

of MACE and cardiac ischemia, this combined technique could be useful for monitoring 

ischemic heart disease in cancer patients. Additionally, cardiac PET in another study was 

used to illustrate that coronary flow reserve (CFR) inversely correlates with radiation dose 

to particular coronary regions such as the left anterior descending artery (R = −0.5, p = 

0.002) [57]. These results suggest that cardiac PET may identify damage to coronary arteries 

following radiation therapy. Application of AI to cardiac PET scans to evaluated myocardial 

perfusion in cardio-oncology patients is therefore an emerging avenue.

Immune checkpoint inhibitors (ICIs) are monoclonal antibodies to a variety of immune 

checkpoint regulators. ICIs induce cytotoxic T-cells that were previously dormant to 

recognize and target cancer cells. Fluorodeoxyglucose F 18 (18F-FDG)-PET scans of 

twenty patients treated with programmed cell death protein 1 (PD-1) inhibitors, cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) inhibitors or combination therapy were analyzed 

before and after therapy with ICIs [58]. These patients showed marked increases in 18F-FDG 

PET uptake in the ascending, descending, and abdominal aortas, aortic arch, and iliac 

arteries, suggesting increased inflammatory activity in large arteries likely secondary to 

activated local T cells, which can contribute to destabilization of atherosclerotic plaques [58] 

and contribute to MACE. AI could be used to track changes in the distribution of tagged 18F-

FDG over time. If these changes could be characterized and correlated with chemotherapy 
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treatments and cardiovascular outcomes, preventative measures could be taken to reduce 

these changes in future patients.

Machine learning adds objectivity to the reading of myocardial perfusion SPECT imaging 

[17] (Table 2). In 2619 consecutive patients referred for exercise or pharmacological stress 

testing, physician diagnosis was compared with machine learning predictions and automated 

perfusion quantification indexes (stress and ischemic total perfusion deficit) [17]. Visual 

analysis of SPECT by physicians was scaled between 0 and 4, while coronary artery disease 

likelihood was also reported 0–2 (low to high) [17]. Automated perfusion quantification 

indices were generated by traditional imaging software to correspond with the shape of 

the myocardium [17]. Ejection fraction, systolic and diastolic volumes at stress and rest 

were assessed by the software [17]. The studied population had a 9.1% 3-year MACE rate 

with a total annual MACE rate of 3% [17]. Prediction of MACE using machine learning 

combined with both clinical and imaging data variables was superior to the existing visual 

or automated perfusion quantification assessments [17]. The enhanced predictive valve and 

objective assessment powered by AI are particularly important for longitudinal monitoring 

of cancer patients undergoing cardiotoxic therapies.

The ability of deep learning to predict obstructive cardiac disease from myocardial perfusion 

imaging (MPI) against prediction by computer-calculated total perfusion deficit (TPD) alone 

was assessed in 1638 patients with known coronary artery disease who underwent stress 

testing and coronary artery angiography [59]. The obstructive disease was defined as greater 

than or equal to 70% blockage in any artery or left main artery stenosis greater than or 

equal to 50%. Overall, deep learning was more sensitive in predicting obstructive coronary 

artery disease than TPD alone. With deep learning set to the same specificity as TPD, 

sensitivity using deep learning was higher at 82.3%, compared to 79.8% for TPD without 

deep learning. Per vessel, sensitivity increased 5.4% using deep learning instead of TPD. 

TPD is considered as an equivalent standardized surrogate for expert reading in the detection 

of coronary artery disease [59].

6. Special cases for multimodality imaging

6.1. Cardiac masses

Cardiac primary tumors are extremely rare (0.001–0.3% in autopsy series, most commonly 

myxomas), however, the prevalence of metastasis is much higher, and has been detected in 

up to 9.1% of patients with known malignancies [60]. Of importance, in cardio-oncology in 

particular, is the differentiation of cardiac tumors and thrombi. Artificial intelligence has not 

been applied to cardiac masses but a significant body of literature exists in the application of 

AI to other tumors (see review [61]) (Table 2).

Artificial intelligence can optimize the use of cardiac imaging for masses at multiple levels, 

including detection, characterization, and monitoring. The imaging assessment of cardiac 

masses includes the analysis of the size, shape and textural patterns of the tumor. Artificial 

intelligence is especially robust in recognizing complex patterns in an image, including 

some not detected by the human eye. Based on deep learning in particular, leading to 

differentiation of healthy and cancerous tissue, AI is able to precisely measure the size and 
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shape of the mass, and delineate its margins [49]. Artificial intelligence is able to identify 

regions with suspicious patterns on CT alone or with additional information from FDG-PET 

and present them to the readers [62]. AI can furthermore help to characterize the mass: 

by incorporating the knowledge of large image databases and including clinical, genetic, 

pathology data, AI can refine the diagnosis of the mass [63–66]. Additionally, algorithms 

can be incorporated, helping to determine the prognosis of the mass and to optimize its 

treatment. Once the diagnosis has been made, imaging patterns such as the variability of the 

imaging signal, reflecting the heterogeneity of the mass may play a role in the prognosis 

[66]. Finally, AI can help monitor the response to treatment, tracking the size, the texture, 

and the presence of additional tumors [67].

6.2. Cardiac amyloidosis

Cardiac amyloidosis is caused by the buildup of misfolded proteins in the myocardium, 

resulting in restrictive cardiomyopathy that can lead to heart failure, conduction system 

dysfunction, and cardiac mortality [44]. The major subtypes of cardiac amyloidosis are 

transthyretin (ATTR) amyloidosis resulting from misfolded transthyretin protein and light 

chain (AL) amyloidosis resulting from deposition of misfolded immunoglobulin light chains 

[44]. Early detection is paramount for cardiac amyloidosis in order to initiate treatment prior 

to advanced progression of disease.

Machine learning and deep learning approaches have been applied to CMR and have shown 

great diagnostic performance (AUC 0.982) for diagnosing cardiac amyloidosis, simulating 

cardiovascular magnetic resonance reading by experienced operators [45]. Research is also 

ongoing for other imaging modalities. Artificial intelligence-enhanced electrocardiography 

can enhance early detection of cardiac amyloidosis [46]. AI-based myocardial texture 

analysis using echocardiography has aided in diagnostic specificity [47]. Models combining 

electrocardiographic data with echocardiographic data have also demonstrated promising 

results [44]. Additionally, the potential role for artificial intelligence to improve image 

analysis, disease diagnosis, and risk prediction in cardiac amyloidosis is also emerging for 

nuclear cardiology [48].

6.3. Myocarditis

Immune checkpoint inhibitors (ICIs) are novel therapeutics used to treat cancer by activating 

immune cells, particularly T lymphocytes, to more readily target cancer cells. At the same 

time, ICIs can also arm the immune system against healthy tissues [38]. The activity 

of some ICIs display cross-reactivity with cardiac proteins such as titin, which leads to 

inflammation of heart tissue (myocarditis) [39]. Myocardial changes associated with ICI 

treatment are often initially subclinical without overt symptoms, leading to difficulty with 

making a clear diagnosis. Additionally, it can be difficult to determine whether early 

cardiotoxic changes are a result of pre-existing cardiac damage [40]. Elucidation of an 

accurate diagnosis is important in determining whether to continue use of an ICI in cancer 

treatment. Further, myocarditis during or after treatment with ICIs can be treated effectively 

with immunosuppression to prevent further cardiac damage if an accurate diagnosis is made 

[40].
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Of note, CMR is most specific for tracking myocardial changes during or after myocarditis 

[41,42]. In some studies, AI has been used to identify early changes suggestive of 

subclinical myocarditis. In one study, early gadolinium enhancement (EGE) was evaluated 

in addition to left ventricular functional parameters using artificial intelligence algorithms 

applied to CMR images from patients with acute myocarditis [43]. In these patients, EGE 

irregularities were found involving 41 regions in different sites on the myocardium. Findings 

suggested that the application of artificial intelligence algorithms to EGE on CMR could 

play an important role in screening patients suspected to have acute myocarditis. This could 

potentially be extrapolated to the cardio-oncology population - using AI to automate the 

analysis of gadolinium enhancement on cardiac MRI to detect early changes associated 

with subclinical myocarditis that may have otherwise gone undetected. Prompt recognition 

of acute myocarditis, whether clinical or subclinical, associated with chemotherapy can be 

critical for early life-saving cardioprotective treatment.

7. Discussion

Utilization of AI in cardiovascular imaging can streamline and optimize the workflow for 

staff, providers, and the healthcare system, and increase the diagnostic power and accuracy 

of the images. AI is being used in multiple fields to streamline complex analyses from 

datasets to glean useful trends and information. Given proper datasets, AI can be a useful 

tool for clinicians to streamline the imaging process. Scans guided by AI to help personalize 

patient care would prove especially useful in the field of precision cardio-oncology, as 

cancer therapy-induced cardiotoxicity could be assessed in a timely manner with more 

careful monitoring over time (Fig. 2). In the future, an approach incorporating genetic, 

clinical, and imaging data implemented by machine learning or AI may aid in understanding 

the mechanistic underpinnings of adverse cardiotoxic effects and predict the prognosis of the 

patients.

There are some caveats to the field of AI worth noting. AI algorithms use large training 

datasets, as smaller datasets are prone to error especially when bias is present in the 

data. Therefore, validation among other datasets may be needed, requiring collaborations 

among institutions and electronic health records. Further, deep learning analyses with neural 

networks require capable and efficient supercomputing machines, both costly and time-

consuming. Deep learning with multiple layers may also increase the algorithm training time 

for data acquisition without substantial improvement in precision [68].

AI is poised to revolutionize cardio-oncology preventive care. Artificial intelligence 

algorithms are educated on current data to forecast complicated outcomes learned by the 

algorithm. Artificial intelligence has been applied in healthcare for a variety of purposes, 

including tumor diagnosis and staging. However, we must be aware of the potential that 

AI models will reflect, perpetuate, or even promote bias in medicine. To ensure that AI 

models are generalizable to a wide range of people and that their implementation does not 

reflect or perpetuate healthcare disparities, great caution must be taken. The potential for 

algorithms to limit resource allocation and attention to racial and ethnic minority patients 

in comparison to Caucasians is a major source of worry, since it reflects trends in the 

data used to train the algorithms [69,70]. This is particularly crucial in cardio-oncology, 
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given the increased incidence of cardiovascular adverse effects from cancer therapies in 

racial and ethnic minorities, particularly African Americans, compared to Caucasians [71–

81]. This concern can be potentially overcome by properly retraining the algorithms [70] 

and also addressing underlying sources of bias. This, however, raises concerns about the 

long-term applicability and impact of algorithms that are not carefully monitored and 

iterated to account for evidence of bias and the impact of social determinants of health. 

A method based on distributive justice may be able to ease these fears of spreading bias and 

unfairness [69]. With a distributive justice approach, prediction models would be trained on 

datasets that are more inclusive of minority populations, ensuring the potential for equitable 

patient outcomes (where these minority groups benefit from the model in the same way as 

their counterparts), equal performance (ensuring model accuracy across non-homogenous 

groups), and equal resource allocation (to correct racial disparities) [69]. Consequently, 

during this revolutionary period of innovation in cardio-oncology, it is critical that we 

advocate for inclusion to ensure that gaps in health outcomes are improved rather than 

worsened [82,83]. This concept applies to bias regarding racial and ethnic minorities, as well 

as regarding women. Algorithms must be trained on data substantially including women if 

they are to be applied to women.

Although most current AI models have achieved high accuracy in internal validation, 

external validation using independent cohorts is critical before implementation in patient 

care. Due to the lack of benchmarking of datasets and the complexity of regulatory science, 

there is much to do to implement AI models for cardio-oncology. Visible or explainable 

machine learning approaches may offer potential solutions to enhance the characterization 

of cardio-oncology patient heterogeneity compared to traditional “black-box” AI models. 

National and international efforts to standardize clinical and imaging data are also needed in 

the near future to optimize data for use in AI algorithms in cardio-oncology.
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Fig. 1. 
Opportunities for the application of artificial intelligence to echocardiography in Cardio-

Oncology include automation of left ventricular function assessment and strain, as well as 

real-time AI-guided image acquisition particularly with point-of-care tools at the bedside, in 

the examination room, or in low resource settings.
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Fig. 2. 
Implementing artificial intelligence in imaging in cardio-oncology clinical practice.
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Table 1

Potential utility of artificial intelligence in imaging in cardio-oncology.

Imaging in cardio-
oncology

Utility before cancer treatment Utility during cancer treatment Utility after cancer treatment

Echocardiography Establishment of baseline cardiac 
assessment using automated LVEF 
and GLS measurements. Predicting 
CV outcomes with ML algorithms 
to guide decisionmaking. AI-
guided echo acquisition can expand 
the use of echo to primary care and 
oncology settings

Follow-up cardiac assessment using 
automated LVEF and GLS measurements 
to predict CV outcomes with ML 
algorithms to guide decision-making; 
AT-guided echo acquisition can expand 
the use of echo to primary care, 
oncology, and other settings

Follow-up cardiac assessment 
using automated LVEF and GLS 
measurements to predict CV 
outcomes using ML algorithms to 
guide decisionmaking; AT-guided 
echo acquisition can expand the use 
of echo to primary care, oncology, 
and other settings

AT can facilitate the detection of 
subtle abnormalities in TTE that 
may not be visually seen by an 
interpreting cardiologist to improve 
prognostic/diagnostic accuracy

AT can facilitate the detection of subtle 
changes in TTE that may not be visually 
seen by an interpreting cardiologist to 
improve prognostic/diagnostic accuracy

AT can facilitate the detection of 
subtle changes in TTE that may not 
be visually seen by an interpreting 
cardiologist to improve prognostic/
diagnostic accuracy

Cardiovascular 
magnetic resonance 
imaging

AT approaches applied to 
CMR can facilitate efficient 
diagnostic performance for cardiac 
amyloidosis, simulating CMR 
reading by experienced operators 
Successful application of AT to 
CMR tissue characterization using 
radiomics and texture analysis can 
improve prognostic and diagnostic 
accuracy of subtle abnormalities in 
the myocardium

AT approaches applied to CMR 
can facilitate efficient diagnostic 
performance for cardiac amyloidosis, 
simulating CMR reading by experienced 
operators
Application of AT to CMR to address 
etiological concerns can be key to 
identifying cardiovascular toxicity and 
can be crucial to inform decisions to 
cease or continue cancer therapy or 
initiate immunosuppression

AT approaches applied to 
CMR can facilitate efficient 
diagnostic performance for cardiac 
amyloidosis, simulating CMR 
reading by experienced operators 
Successful application of AT to 
CMR tissue characterization using 
radiomics and texture analysis 
can improve diagnostic accuracy 
of imaging scar, wall thickening 
differentiation, and inflammation

Computed 
tomography (CAC)

Cancer surveillance chest CT can 
beautomated to assess CAC which 
is a robust target for cardiovascular 
risk reduction

Cancer surveillance chest CT can be 
automated to assess CAC which is 
a robust target for cardiovascular risk 
reduction

Cancer surveillance chest CT can be 
automated to assess CAC which is a 
robust target for cardiovascular risk 
reduction

Cancer surveillance chest CT can 
beautomated to assess CAC which 
is a robust target for cardiovascular 
risk reduction

Cancer surveillance chest CT can be 
automated to assess CAC which is 
a robust target for cardiovascular risk 
reduction

Cancer surveillance chest CT can be 
automated to assess CAC which is a 
robust target for cardiovascular risk 
reduction

Single proton 
emission computed 

tomography
a

ML algorithms can be applied 
to SPECT to provide additional 
neutrality (supplementing 
subjective assessments by reading 
clinicians) in processing data 
relating to myocardial perfusion

ML algorithms can be applied to 
SPECT to provide additional neutrality 
(supplementing subjective assessments 
by reading clinicians) in processing data 
relating to incident myocardial perfusion

ML algorithms can be applied 
to SPECT to provide additional 
neutrality (supplementing subjective 
assessments by reading clinicians) in 
processing data relating to evolving 
or incident myocardial perfusion

Combining ML algorithms with 
SPECT can improve prediction 
accuracy in the determination of 
baseline cardiac abnormalities for 
high-risk patients

Combining ML algorithms with SPECT 
can improve prediction accuracy in 
the determination of short-term adverse 
cardiac effects especially for high-risk 
patients

Combining ML algorithms with 
SPECT can improve prediction 
accuracy in the determination of 
long-term adverse cardiac effects 
especially for high-risk patients

Positron emission 

tomography
a

MACE and myocardial ischemia 
can be challenging to predict and 
might gain from ML to clarify 
baseline risk assessment

MACE and myocardial ischemia can be 
challenging to predict and might gain 
from ML to clarify evolving cardiac 
injury and ongoing prognosis

Using ML algorithms in conjunction 
with cardiac PET can augment the 
detection of damage to coronary 
arteries post-radiation

– AI can automate PET scan assessment of 
new inflammation resulting from cancer 
immunotherapy

AI can automate PET 
scan assessment of persistent 
inflammation resulting from cancer 
immunotherapy

Multimodality 
imaging

Automation of detection and 
characterization, including analysis 
of size, shape, and textural patterns, 
of tumors can define and refine the 
diagnosis through incorporation of 
data from CT, MRI, FDG-PET and 
large image databases

Monitoring response to treatment by 
tracking size and texture of tumors, and 
presence of any additional tumors, can 
be automated, with incorporation of data 
from CT, MRI, FDG-PET and large 
image databases

Post-treatment monitoring can be 
automated for surveillance of size, 
texture, and presence of recurrent 
or additional tumors, through 
incorporation of data from CT, MRI, 
FDG-PET and large image databases
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Imaging in cardio-
oncology

Utility before cancer treatment Utility during cancer treatment Utility after cancer treatment

Incorporation of AI algorithms 
can help determine prognosis and 
treatment of masses in or near the 
heart

Incorporation of AI algorithms can help 
optimize prognosis and treatment of 
masses in or near the heart

Incorporation of AI algorithms 
can help optimize prognosis and 
treatment of masses in or near the 
heart

AI = artificial intelligence; CAC = coronary artery calcification; CMR = cardiac magnetic resonance; CT = computed tomography; CV = 
cardiovascular; CVD = cardiovascular disease; FDG-PET = Fluorodeoxyglucose (FDG)-positron emission tomography; GLS = global longitudinal 
strain; LVEF = left ventricular ejection fraction; MACE = major adverse cardiovascular events; ML = machine learning; MRI = magnetic 
resonance imaging; PET = positron emission tomography; SPECT = single-photon emission computerized tomography; TTE = transthoracic 
echocardiography

a
Use of SPECT and PET in cardio-oncology is currently limited and may expand in the future.
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Table 2

Machine learning artificial intelligence techniques applied to imaging modalities in cardio-oncology.

Imaging in cardio-oncology Artificial intelligence techniques Reference

Echocardiography Machine learning (ML)-enabled software (AutoLV, TomTec-Arena 1.2, TomTec Imaging 
Systems, Unterschleissheim, Germany)

[25]

Deep learning (DL), convolutional neural network (CNN), image segmentation [26]

DL, CNN, artificial intelligence (AI)-guided image acquisition software (Caption 
Guidance)

[28]

CNN, DL model (EchoNet) [22]

Ensemble ML model with three different ML algorithms (support vector machine (SVM), 
random forest (RF), and artificial neural network (ANN))

[29]

Supervised ML algorithm (least absolute shrinkage and selection operator (LASSO) 
methods with bootstrap resampling)

[27]

Cardiovascular magnetic resonance Fast strain-encoded CMR imaging (fast-SENC) using MyoStrain analysis software, feature 
tracking (FT)

[31]

SVM with Gaussian radial basis function (RBF) kernel (RBF-SVM), texture analysis, 
segmentation

[35]

DL-based algorithm within the Circle Cardiovascular Imaging Inc. software, segmentation [36]

DenseNet-121 (CNN), FT [34]

AI - Workstation EWS Cardiac Analysis Software, Philips Achieva 3.0 T TX [43]

Video-based echocardiography model, 2D-CNN based model, 3D-CNN based model [44]

DL, ML [45]

AI enhanced electrocardiogram, deep neural network (DNN) [46]

AI-based myocardial texture analysis, SVM [47]

Cardiac computed tomography Computer-aided detection (CAD), CADstream, Merge, Hartland, WI, USA [49]

Supervised ML: k-nearest neighbor (kNN), linear classifier (LC), SVM, RF, boosting, 
ANN DL, CNN

[50]

DL algorithm, CNN [51]

AI-based, automatic coronary artery calcium (CAC) scoring software [52]

End-to-end DNN, three-dimensional (3D) CNN
model, Tri2D-Net

[53]

DL algorithm [54]

Four CAD systems:
CAD 1 (Lung VCAR version 11.3–10.11; GE Healthcare, Milwaukee, Wis): automatic 
segmentation
CAD 2 (ImageChecker CT version 8.3.12; R2 Technologies, Sunnyvale, Calif)
CAD 3 (Syngovia Via Va 20; Siemens Medical Solutions, Forchheim, Germany): 
Anatomical Intelligence CAD 4 (Cornell Via; Cornell University, Ithaca, NY)

[62]

Nuclear cardiac imaging SVM, ML DL, CNN [48]

ML, ensemble boosting with LogitBoost (using decision stumps and RF) [56]

ML, boosted ensemble algorithm, LogitBoost, Waikato Environment for Knowledge 
Analysis (WEKA) platform

[17]

DL, deep CNN [59]

Multimodality imaging of masses ML, supervised ML, RF, SVM, regression, logistic regression, DL, unsupervised DL, 
CNN, deep CNN, automated segmentation algorithm, AI-based monitoring, Computer

[61]

Aided Nodule Assessment and Risk Yield (CANARY), texture analysis

CAD, computer-aided diagnosis [63]

Unsupervised clustering [64]
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Imaging in cardio-oncology Artificial intelligence techniques Reference

Unsupervised DL, deep belief network (DBN) [65]

Supervised feature selection algorithm [66]

Automatic segmentation, brain tumor image analysis (BraTumIA) [67]

Supervised ML: ANN, SVM, decision tree, RF, Naive Bayes classifier, fuzzy logic, and 
kNN
Unsupervised ML: clustering and association rule-learning algorithms Reinforcement 
machine learning DL: recurrent neural network (RNN), CNN, and DNN
Cognitive computing

[68]

AI = artificial intelligence; ANN = artificial neural network; CAD = computer-aided detection; CMR = cardiovascular magnetic resonance, CNN = 
convolutional neural network; DL = deep learning; DNN = deep neural network; FT = feature tracking; kNN = k-nearest neighbor; ML = machine 
learning; RF = random forest; SVM = support vector machine.
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