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Background: Hepatocellular carcinoma (HCC) refers to the malignant tumor

associated with a high mortality rate. This work focused on identifying a robust

tumor glycolysis-immune-related gene signature to facilitate the prognosis

prediction of HCC cases.

Methods: This work adopted t-SNE algorithms for predicting glycolysis status in

accordance with The Cancer Genome Atlas (TCGA)-derived cohort

transcriptome profiles. In addition, the Cox regression model was utilized

together with LASSO to identify prognosis-related genes (PRGs). In addition,

the results were externally validated with the International Cancer Genome

Consortium (ICGC) cohort.

Results: Accordingly, the glycolysis-immune-related gene signature, which

consisted of seven genes, PSRC1, CHORDC1, KPNA2, CDCA8, G6PD, NEIL3,

and EZH2, was constructed based on TCGA-HCC patients. Under a range of

circumstances, low-risk patients had extended overall survival (OS) compared

with high-risk patients. Additionally, the developed gene signature acted as the

independent factor, which was significantly associated with clinical stage,

grade, portal vein invasion, and intrahepatic vein invasion among HCC cases.

In addition, as revealed by the receiver operating characteristic (ROC) curve, the

model showed high efficiency. Moreover, the different glycolysis and immune

statuses between the two groups were further revealed by functional analysis.

Conclusion: Our as-constructed prognosis prediction model contributes to

HCC risk stratification.

KEYWORDS

hepatocellular carcinoma, glycolysis, immune system, prognosis, metabolic
reprogramming

OPEN ACCESS

EDITED BY

Wentao Wang,
West China Hospital, Sichuan University,
China

REVIEWED BY

Gang Xu,
West China Hospital, Sichuan University,
China
Haotian Liao,
West China Hospital, Sichuan University,
China

*CORRESPONDENCE

Dian-Rong Xiu,
Xiudianrong@foxmail.com

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 29 May 2022
ACCEPTED 05 September 2022
PUBLISHED 04 October 2022

CITATION

HuB,QuC,QiW-J, Liu C-H and Xiu D-R
(2022), Development and verification of
the glycolysis-associated and immune-
related prognosis signature for
hepatocellular carcinoma.
Front. Genet. 13:955673.
doi: 10.3389/fgene.2022.955673

COPYRIGHT

©2022 Hu, Qu, Qi, Liu and Xiu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 04 October 2022
DOI 10.3389/fgene.2022.955673

https://www.frontiersin.org/articles/10.3389/fgene.2022.955673/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.955673/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.955673/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.955673/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.955673/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.955673&domain=pdf&date_stamp=2022-10-04
mailto:Xiudianrong@foxmail.com
https://doi.org/10.3389/fgene.2022.955673
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.955673


Introduction

Liver cancer (LC), dominated by hepatocellular carcinoma

(HCC), ranks fourth among death-related causes (McGlynn et

al., 2021). At present, some effective treatments are available

to treat early HCC, which include surgery, liver

transplantation, and radiofrequency ablation (RFA) (Yang

et al., 2019). Nonetheless, considering the non-specific

HCC physical features and symptoms, 80% of patients are

deprived of the chance of radical treatment when they are

diagnosed (Zongyi and Xiaowu, 2020). Recently, some

immune checkpoint inhibitors (ICIs), such as anti-cytotoxic

T-lymphocyte-associated protein 4 (anti-CTLA-4), anti-PD1

ligand (anti-PD-L1), and anti-programmed death-1 (anti-

PD1) monoclonal antibodies (mAbs) (Hu et al., 2019), have

demonstrated good prognosis among some advanced HCC

patients. In conclusion, it is urgently needed for exploring the

HCC characteristics for developing new therapeutic

approaches.

The tumor microenvironment (TME) shows the

characteristics of acidity, hypoxia, and nutrient deficiency,

leading to abnormal metabolism of tumor cells and those

adjacent to the stromal cells, finally promoting cancer

migration, growth, and survival (Beloribi-Djefaflia et al., 2016;

Ruocco et al., 2019). The Warburg effect is one of the most

notable types of metabolic reprogramming, in which

glycolysis increases among tumor cells and serves as the

metabolic marker for almost every cancer cell, and it is

featured by the excess transformation of glucose into

lactate (Liberti and Locasale, 2016). Glycolysis has been

proven to promote tumor progression in HCC and is an

early attractive target for cancer treatment (Vander Heiden,

2011). Hamaguchi et al. demonstrated that the HIF-1α-
activated glycolysis module was associated with the

aggressiveness of HCC (Hamaguchi et al., 2008). A study

conducted by Xu et al. also suggested that tumor glycolysis

was inhibited by chrysin, which then induced apoptosis of

HCC by targeting hexokinase-2 (Xu et al., 2017). Moreover,

previous studies also highlight that glycolysis affects

immunity. T-cell cytotoxicity and trafficking have been

illustrated to be damaged in glycolytic cancers, and

glycolysis suppression will enhance the anticancer effect of

tumor-active T cells (Cascone et al., 2018). Lim et al. also

pointed out that EGFR signaling enhances aerobic glycolysis

to promote tumor growth and immune escape (Lim et al.,

2016). However, the relation of glycolysis with immunity and

their impact on the prognosis of HCC remains largely unclear.

In this work, it was hypothesized that the association of

glycolysis with immune status had a certain prognostic value of

HCC. By systematically analyzing glycolysis and immune status

as the existing clinicopathological features and staging systems,

new prognostic features were constructed to improve the

prognosis of HCC.

Materials and methods

Data extraction and mRNA profile mining

This work acquired expression patterns of class 3 messenger

RNA (mRNA), along with associated clinical data in 374 HCC as

well as 50 normal subjects in The Cancer Genome Atlas (TCGA)

database (https://cancergenome.nih.gov). Patients whose

survival was ≤ 30 days or those who had no survival data

were excluded from the present work because they might have

died from lethal complications (including intracranial infection,

hemorrhage, or heart failure (HF)) but not HCC. To validate our

results, transcriptional patterns and clinical information were

obtained from HCC cases in the International Cancer Genome

Consortium (ICGC) database (https://icgc.org/). Finally, this

work screened 203 HCC specimens that had sufficient mRNA

expression profiles as well as matching clinical profiles to carry

out further analysis.

Glycolytic status and glycolysis-related
differentially expressed gene identification

This work utilized the t-distributed Stochastic Neighbor

Embedding (t-SNE) algorithm to identify the different

glycolytic states (Cieslak et al., 2019). The t-SNE is an

unsupervised non-parametric method, which allows the

division or condensation of patients into several different

clusters based on the provided markers or features. In this

study, the glycolytic marker gene set (n = 200) was obtained

from the molecular signature database (MSigDB version 6.0).

Moreover, overall survival (OS) between the different clusters

derived from the t-SNE algorithm was analyzed. Subsequently,

two clusters with discrete OS were selected to assess the glycolysis

status. Also, differentially expressed genes (DEGs) between the

two groups were identified using the R3.6.1 “limma” algorithm

(Phipson et al., 2016) (https://www.r-project.org/). In addition,

after adjusting for false discovery rate (FDR), this work selected

genes of p < 0.01 and absolute fold change (FC) > 2 as the

glycolytic DEGs.

Development and validation of the
glycolysis-related prognosis model

Afterward, this work built the glycolysis-associated

prognostic model by univariate, multivariate regression, and

the least absolute shrinkage and selection operator (LASSO)

for predicting the OS of HCC. To avoid overfitting and also

to remove the closely related genes, this work adopted LASSO

analysis and extracted significant genes based on univariate

regression. Thereafter, related gene contributions to the

prediction of prognosis were assessed by multivariate Cox
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regression. Additionally, gene level was multiplied by linear

combination regression coefficients obtained from multivariate

analysis to determine the risk score. In line with the median risk

score value, the patients were later categorized into low- and

high-risk groups.

Afterward, this work drew the Kaplan–Meier (K-M) curves

using “survminer” and “survival” of the R package. Later, the

time-dependent receiver operating characteristic (t-ROC) curves

were drawn for evaluating the efficiency of our signature in

predicting prognosis based on TCGA and ICGC databases by

identifying the area under the curve (AUC) values (Blanche et al.,

2013). Thereafter, this study carried out univariate and

multivariate Cox proportional hazards regression analyses for

confirming our model efficiency in independently predicting

liver fibrosis prognosis by using traditional clinical factors like

age, sex, clinical stage, the status of hepatitis virus infection, liver

fibrosis, bile duct invasion, portal vein invasion, and intrahepatic

vein invasion in the HCC cohort derived from ICGC database.

To be specific, liver fibrosis, bile duct invasion, portal vein

invasion, and intrahepatic vein invasion were selected from

the HCC cohort of the ICGC database, whereas age, sex,

T-stage, clinical stage, tumor grade, vascular invasion, albumin

level, platelet level, and alpha-fetoprotein (AFP) level were

selected from HCC cohort of the TCGA database.

Furthermore, this work conducted principal component

analysis (PCA) to reduce dimensions, so as to identify

different synthetic factors to explore our model’s stratification

performance (Raychaudhuri et al., 2000). The present work

utilized limma (Matthew et al., 2015) and scatterplot3d

(Koutecký, 2015) packages for PCA. To better examine

glycolytic status in low- and high-risk patients obtained based

on those constructed signatures, this work conducted gene set

enrichment analysis (GESA) using JAVA (https://www.

broadinstitute.org/gsea). p < 0.05 and FDR q < 0.25 were

selected to be the significance levels.

Relationships between the glycolysis-
related prognosis prediction model and
immunocyte infiltration

Previous studies have shown that glycolysis has a certain

impact on immune cells and tumor progression (Cascone et al.,

2018; Chen et al., 2019), and they contribute to the exploration of

the link of our constructed prognosis model within tumor-

infiltrating immune cells (TIICs) in HCC. TIMER database is

also the online platform used for the systemic assessment of

diverse TIICs’ influence on a variety of different cancers, and for

the analysis and visualization of TIIC abundances (Robin et al.,

2011). There are 10,009 TCCA samples of 23 cancers in TIMER

for predicting the abundances of six TIIC subtypes, namely,

CD4 T cells, CD8 T cells, B cells, neutrophils, macrophages, and

dendritic cells (DCs). Therefore, this study utilized TIMER for

identifying the relation of TIICs with additional factors. This

work obtained TIICs infiltration degrees in HCC cases derived

from TCGA and determined the relation of our established

prognosis model with TIICs infiltration degrees. Moreover,

this work also examined the association between the levels of

signature genes and TIICs abundances in HCC via the online

gene modules. Furthermore, ESTIMATE (Yoshihara et al., 2013)

was adopted to measure the tumor purity, TIICs infiltration

degree (immune score), and stromal content (stromal score) in

low- and high-risk HCC patients.

Immunohistochemistry

According to the results of bioinformatics analysis, the

protein expression of genes that are included in the glycolysis-

associated and immune-related prognosis signature were

validated by immunohistochemistry (IHC) using fifteen pairs

of matched HCC and para-carcinoma tissue obtained from our

center. Anti-model gene antibodies were purchased from Abcam

(Cambridge, MA, United States). The specimens were paraffin-

embedded and sliced into 4-μm sections. The sections were

dewaxed and treated with 3% hydrogen peroxide for 10 min

to block the endogenous peroxidase. The sections were washed

twice with distilled water and boiled in 0.01 M citrate buffer

(pH 6.0) for heat-induced antigen retrieval. Sections were then

washed thrice with PBS and blocked with 5% goat serum

(Zhongshan Golden Bridge Biotech, Beijing, China) at room

temperature for 30 min. Subsequently, sections were incubated

with the appropriate primary antibody for 1 h at 37°C, washed

thrice (5 min) with TBS-Tween® 20 (TBST), incubated with

HPR-conjugated anti-human secondary antibody for 30 min

at room temperature, washed thrice (5 min) with PBS, and

developed with freshly prepared DAB for 10 min. Sections

were washed with tap water, counterstained with hematoxylin,

and mounted using neutral gum (Zhongshan Golden Bridge

Biotech.) onto the slides. The stained sections were scanned using

an automated IHC high-definition scanner (Jiangfeng

Electronics, Zhejiang, China). The positive expression was

detected as brown in the cytoplasm/nuclei/membrane. The

data were analyzed using ImageJ and the graph was generated

using GraphPad prism 5.0.

Statistical analysis

R4.2.0 was adopted for statistical analysis. Qualitative

variables were investigated by Fisher’s exact test and Pearson’s

chi-square test. Meanwhile, this work also utilized the “Rtsne”

package in R for performing the t-SNE algorithm by a nonlinear

down-scale. In addition, the present study also utilized the

“estimation” package for inputting immune scores, whereas

the “glmnet” package for developing the Lasso Cox regression
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model. Unless otherwise stated, p < 0.05 indicated that a

difference was statistically significant.

Results

Glycolysis-related differentially expressed
gene identification within hepatocellular
carcinoma

Using an expression matrix containing 200 glycolytic marker

genes based on MSigDB version 6.0, this work calculated the

Euclidean distance (ED) of two discovery cohort cases and

clustered them into 2D points by t-SNE, the nonlinear

dimensionality reduction algorithm. A total of four clusters

were then identified in this study, thereafter, patients were

assigned to the closest ED (Figure 1A). In total, 174, 94, 63,

and 43 TCGA-HCC cases were collected into those four

clusters (cluster 1–4), separately. Upon comparison of survival

rates, there existed a significant difference between the four clusters

(p < 0.05). Typically, cases in cluster 4 showed the best 5-year

survival, while those in cluster 2 exhibited the worst prognosis

(Figure 1B), indicating the highest and lowest glycolytic statuses of

cluster 2 and cluster 4, respectively. In the meantime, Figure 1C

displays a heatmap showing marker genes among the four clusters.

Clearly, for cluster 2, its marker genes were mostly associated with

certain glycolysis-associated Gene Oncology (GO) terms

belonging to the biological process (BP) category, including

“glycolytic process” and “canonical glycolysis,” together with

“glycolytic process via glucose−6−phosphate” (Figure 1D;

Supplementary Table S1). Additionally, according to Kyoto

Encyclopedia of Genes and Genomes (KEGG) results, marker

genes were also enriched in “glycolysis/gluconeogenesis”, “central

carbon metabolism in cancer” and “AMPK pathway” (Figure 1E;

Supplementary Table S2). GO and KEGG results concerning the

marker genes of cluster 4 were obtained as well (Figures 1F,G;

Supplementary Tables S3, S4). Afterward, the edgeR algorithmwas

employed for identifying altogether 2,777 DEGs in cluster 2 versus

cluster 4, including 2372 with upregulation whereas 405 showed

downregulation (Figures 1H,I).

FIGURE 1
Glycolysis status and glycolysis associated DEG determination. (A) Dot plot showing the four different clusters distinguished using t-SNE
algorithm based on 200 glycolysis-associated marker genes. (B) Heatmap showing the marker genes of the four clusters. (C) K-M plot showing
patient OS in four clusters. (D,E) GO-BP terms enriched by marker genes of Cluster2 and Cluster4, respectively. (F,G) KEGG pathways enriched by
marker genes of Cluster2 and Cluster4, respectively. Heatmap (H) as well as volcano plot (I) displaying the glycolysis associated DEGs in HCC
compared with healthy samples. Red and green dots stand for DEGs with up-regulation and down-regulation, separately, whereas black dots
indicate genes with no differential expression. T, tumor; N, normal tissue.
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FIGURE 2
(A) Coefficient profiles obtained by LASSO analysis. (B) Screening for tuning parameter (lambda) based on the LASSO model through 10-fold
cross-validation according to the minimal standards of OS, where log (lambda) is presented in the lower X-axis, while the mean OS gene quantity is
shown in the upper X-axis, and deviance error of partial likelihood is presented in Y-axis. Red dots stand for mean deviance of partial likelihood of the
model with specific lambda, whereas the vertical bars stand for upper/lower limits of deviance errors of partial likelihood. Vertical dotted lines in
black define the optimal lambda value with the optimal fit. Patient survival curves for two HCC groups from TCGA (C) together with those from ICGC
(D). High-risk group had shortened OS. (E), (F) The survival-dependent ROC curves validated by 1-, 3-, and 5-year prognostic values for the
prognostic index of TCGA and ICGC, separately. Risk score, OS, and gene expression distributions of (G) TCGA and (H) ICGC databases. Risk score,
OS together with heatmap for seven gene levels in two groups are displayed in the figure upside down. The correlations of seven genes in the (I)
TCGA database and (J) ICGC database are shown.
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Development of a glycolysis-associated
signature and assessment of the
prediction performance

Upon univariate, multivariate, and LASSO analysis, seven

glycolysis-associated genes, namely, enhancer of zeste

2 polycomb repressive complex 2 subunit (EZH2); glucose-6-

phosphate dehydrogenase (G6PD), cysteine and histidine-rich

domain (CHORD) containing 1 (CHORDC1), nei endonuclease

VIII-like 3 (NEIL3); proline/serine-rich coiled-coil 1 (PSCR1),

karyopherin alpha 2 (KPNA2), and cell division cycle-associated

8 (CDCA8) were subsequently selected as DEGs for establishing

the prognosis prediction signature. Later, the signature was used

to categorize HCC cases into low- and high-risk groups (Figures

2A,B). Thereafter, the risk score was determined by this formula:

risk score = [PSRC1 level* (0.03075)] + [CHORDC1 level *

(0.26886)] + [KPNA2 level* (0.00044)] + [CDCA8 level*

(0.04583)] + [G6PD level* (0.00854)] + [EZH2 level*

(0.01083)] + [NEIL3 level* (0.09789)]. As revealed by the K-M

curve (Figures 2C,D), the high-risk group had markedly reduced

OS compared with the low-risk group from ICGC and TCGA

databases. Apart from that, the AUC values of 1-, 3- and 5-years

OS were calculated to be 0.810, 0.729, and 0.820 for the TCGA-

HCC cohort, whereas 0.715, 0.773, and 0.684 for ICGC-HCC

cohort, separately (Figures 2E,F). Additionally, gene expression,

survival status, and risk score distributions were analyzed by our

constructed glycolysis-associated signature from ICGC- and

TCGA-HCC cohorts (Figures 2G,H). The correlations of the

seven genes in ICHC- and TCGA-HCC cohorts are shown in

Figures 2I,J. In the TCGA database, the Pearson correlation

coefficients of CDCA8 and KPNA2, CDCA8, and PSRC1

reached 0.77, while in the ICGC database, the coefficients of

CDCA8 and KPNA2 were 0.8. Moreover, the low-risk group was

associated with a significantly superior prognostic outcome

relative to the high-risk group with regard to subgroups

classified by sex (female and male; Figures 3A,B), tumor grade

(G1+G2 and G3+G4; Figures 3C,D), AFP content (< 20 and ≥
20 ng/ml; Figures 3E,F), clinical stage (I + II; Figure 3G), T stage

(T1+T2; Figure 3H), and age (> 60; Figure 3I) (p < 0.05). To

better investigate whether our genetic signature was significant in

independently predicting prognostic outcomes, univariate and

themultivariate analysis was conducted. As a result, the risk score

was the candidate factor independently predicting the prognosis

of the TCGA-HCC cohort (hazard ratio HR: 3.401, 95%

FIGURE 3
Difference in OS between two TCGA-HCC cohorts are presented after stratification by gender (A,B), tumor grade (C,D), AFP level (E,F), clinical
stage (G), T stage (H), and age (I).
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confidence intervals CIs: 2.078–5.566, p < 0.001) and ICGC-HCC

cohort (HR: 7.768, 95% CIs: 2.302–26.204, p < 0.001) (Tables 1, 2,

respectively).

Principal component analysis for verifying
the signature stratification performance

PCA was carried out to examine heterogeneity between the

two groups according to our constructed glycolysis-associated

signature (Figure 4A for TCGA patients and Figure 4B for ICGC

patients), differently expressed glycolysis-associated genes in

TCGA (Figure 4C), and all the gene expression patterns in

TCGA (Figure 4D). Therefore, according to our model

analysis, the two groups showed different distribution

directions. Nonetheless, as shown in Figures 4C,D, an

overlapping distribution between the two groups was

observed, confirming the validity of our prognostic features

for distinguishing the two groups.

Association between our prognosis
prediction model and the
clinicopathological characteristics

This work included altogether 216 patients with complete

data, such as age, sex, tumor grade, T-stage, clinical stage,

albumin level, platelet level, AFP level, and vascular invasion

from the TCGA-HCC cohort. All the tested signature genes were

correlated with tumor grade (Figures 5A–G), among which,

TABLE 1 Univariate and multivariate regression on OS-related clinicopathological features for TCGA-HCC cases.

Variable Univariate regression Multivariate regression sis

HR (95% CI) P value HR (95% CI) P value

Age (>60/≤60) 1.018 (0.995–1.041) 0.125 — —

Gender (male/female) 0.601 (0.345–1.048) 0.073 — —

Grade (G4/G3/G2/G1) 1.458 (0.997–2.133) 0.878 — —

Stage (IV/III/II/I) 1.595 (1.184–2.148) 0.002a 1.801 (0.682–4.751) 0.235

T stage (T4/T3/T2/T1) 1.524 (1.134–2.047) 0.005a 0.878 (0.339–2.271) 0.789

Albumin (>3.5/≤3.5 g/dl) 0.964 (0.740–1.255) 0.784 — —

Platelet (>250/≤250 × 109/L) 0.999 (0.998–1.000) 0.288 — —

AFP (>20/≤ 20 ng/ml) 1.000 (0.999–1.001) 0.435 — —

Vascular invasion (macro/micro/none) 1.920 (1.263–2.920) 0.002a 1.554 (0.961–2.511) 0.072

Risk score 3.762(2.413–5.867) <0.001a 3.401 (2.078–5.566) <0.001a

aStatistical significance. AFP, alpha-fetoprotein; HR, hazard ratio; CI, confidence interval.

TABLE 2 Univariate and multivariate regression on OS-related clinicopathological features for ICGC-derived HCC cases.

Variable Univariate regression Multivariate regression

HR (95% CI) P value HR (95% CI) P value

Age (>60/≤60) 1.021 (0.985–1.057) 0.255 — —

Gender (male/female) 1.186 (0.538–2.617) 0.673 — —

Hepatitis virus (none/infection) 0.929 (0.360–2.394) 0.878 — —

Stage (IV/III/II/I) 1.373 (0.927–2.035) 0.114 — —

Portal vein invasion (none/invasion) 1.076 (0.694–1.671) 0.741 — —

Intrahepatic vein invasion (none/invasion) 2.243 (1.296–3.882) 0.004a 2.058 (0.896–4.733) 0.089

Bile duct invasion (none/invasion) 0.481 (0.066–3.516) 0.471 — —

Fibrosis (none/fibrosis) 1.428 (0.195–10.439) 0.726 — —

Risk score 7.048 (2.606–19.062) <0.001a 7.767(2.302–26.204) <0.001a

aStatistical significance. HR, hazard ratio; CI, confidence interval.
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FIGURE 4
PCA of both groups according to the glycolysis-immune-associated prediction model in (A) TCGA and (B) ICGC databases, (C) glycolysis-
associated DEGs in TCGA, and (D) all gene expression patterns in TCGA.

FIGURE 5
Relations between the prediction model and clinicopathological features based on TCGA database. Expression of (A) EZH2, (B) G6PD, (C)
CHORDC1, (D) NEIL3, (E) PSRC1, (F) CDCA8 and (G) KPNA2 was associated with tumor grade. (H) G6PD expression was associated with T stage and
(I) CHORDC1 expression was related to age. Moreover, (J) riskscore was linked with tumor grade. EZH2, enhancer of zeste 2 polycomb repressive
complex 2 subunit; G6PD, glucose-6-phosphate dehydrogenase; CHORDC1, cysteine and histidine-rich domain (CHORD) containing 1;
CDCA8, cell division cycle associated 8; NEIL3, nei endonuclease VIII-like 3; KPNA2, karyopherin alpha 2; PSRC1, proline/serine-rich coiled-coil 1.
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G6PD was associated with T-stage (Figure 5H). In addition,

CHORDC1 expression (Figure 5I) apparently increased among

patients younger than 60 years old. Furthermore, the risk score

value was significantly related to the patient histological grade

(Figure 5J). From the ICGC database, all the seven model genes

were correlated with clinical stage and intrahepatic vein invasion,

whereas CACD8, EZH2, G6PD, KPNA2, and PSRC1 were

significantly related to portal vein invasion (Supplementary

Figure S1). In addition, risk score was associated with clinical

stage, portal vein invasion, and intrahepatic vein invasion

(Supplementary Figure S1).

Glycolysis status in low- and high-risk The
Cancer Genome Atlas groups

For validating diverse glycolysis statuses of two TCGA

groups, the expression of key enzymes encoding genes in

glycolysis between the two groups were analyzed, including

hexokinase 1 (HK1), HK2, HK2P1, HK3, phosphofructokinase

liver (PFKL), phosphofructokinase platelet (PFKP),

phosphofructokinase muscle (PFKM), phosphoglycerate kinase

1 (PGK1), PGK2, 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 1 (PFKFB1), PFKFB2, PFKFB3, and PFKFB4.

FIGURE 6
Scatter plots visualizing the significant differential expression of (A) phosphofructokinase liver (PFKL), (B) phosphofructokinase muscle (PFKM),
(C) phosphofructokinase platelet (PFKP), (D) 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), (E) PFKFB3, (F) PFKFB4, (G)
hexokinase 1 (HK1), (H) HK2, (I) HK2P1, (J) HK3, (K) phosphoglycerate kinase 1 (PGK1), and (L) PGK2 between two TCGA-HCC cohorts. (M–O) GSEA
suggested that glycolysis-associated BPs were enriched by our constructed signature.
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Noteworthily, except for PFKFB1, the remaining genes showed

high expression levels in the high-risk group (p < 0.01) (Figures

6A–L), indicating a higher glycolysis level. Furthermore, GSEA

was conducted, which suggested that DEGs of two groups were

markedly enriched to three glycolysis-associated gene sets

(including REACTOME_glycolysis M5113,

REACTOME_regulation of glycolysis by fructose 2,

6 bisphosphate metabolism M27950 and

HALLMARK_glycolysis M5937) (Figures 6M–O).

Comparison of different tumor-infiltrating
immune cell degrees between low- and
high-risk The Cancer Genome Atlas-
hepatocellular carcinoma cohorts

Relations of prognostic features with TIIC degrees among

TCGA-HCC patients were analyzed to investigate whether risk

score could be adopted for reflecting tumor microenvironment

(TME) status. As a result, several immune-related gene sets, such

FIGURE 7
Enrichment plots showing GSEA-derived immune-related gene sets. Gene sets in (A) GO_αβ T-cell activation negative regulation, (B)
GO_T-cell differentiation negative regulation, (C) GO_T-cell apoptotic process, (D) GO_macrophage differentiation, (E) COATES_macrophage
M1 vs. M2 down, (F) GSE5099_classical M1 vs. alternative M2 macrophage down, (G) GSE15659_nonsuppressive T cell vs. activated Treg down, (H)
GSE 15659_Treg vs. Tconv up, and (I) GSE25087_Treg vs. Tconv adult up were markedly associated with high-risk phenotype. (J)
Summarization of those nine gene sets.
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as GO_T-cell differentiation negative regulation, GO_αβ T-cell

activation negative regulation, GO_macrophage differentiation,

GO_T-cell apoptotic process, COATES_macrophage M1 vs.

M2 down, GSE5099_classical M1 vs. alternative

M2 macrophage down, GSE15659_nonsuppressive T cell vs.

activated Treg down, GSE25087_Treg vs. Tconv adult up, and

GSE 15659_Treg vs. Tconv up, were also enriched, as revealed by

GSEA (Figures 7A–I). A comprehensive diagram presenting the

aforementioned items is shown in Figure 7J.

Afterward, the abundances of macrophages (Cor = 0.501; p =

3.738e−23), DCs (Cor = 0.376; p = 6.238e−13), and neutrophils

(Cor = 0.427; p = 1.274e−16) markedly elevated within the TME

of high-risk group (Figures 8A–C), indicating the diverse

immune statuses between both groups. Additionally, CD4+

T cells (Cor = 0.235; p = 1.106e−05), CD8+ T cells (Cor =

0.254; p = 1.932e−06) (Figures 8D, E), and B cells (Cor =

0.255; p = 1.726e−06) (Figure 8F) showed low correlation in

high-risk patients. In addition, the correlations between the seven

model genes and the earlier mentioned six kinds of TIICs were

analyzed based on the TIMER database (Figure 9).

Subsequently, ESTIMATE was conducted; as a result, the

stromal scores of high-risk patients significantly decreased

relative to low-risk patients, while tumor purity scores

increased relative to the latter (Figures 10A,B). However, the

difference in immune scores was not significant between the two

groups (Figure 10C). Notably, the microsatellite instability (MSI)

was elevated in the high-risk group compared to the low-risk

group (Figure 10D). The relations of the seven model genes with

immune score, stromal score, tumor purity, and MSI are shown

in Figure 10E. Notably, some genes of human leukocyte antigen

(HLA) were markedly upregulated among high-risk patients

compared with low-risk patients (p < 0.001), including HLA-

DQB2, HLA-DQA1, and HLA-DQA2 (Figure 10F).

Immunotherapy is becoming a well-recognized tumor

treatment, which has improved the prognosis of diverse

cancer cases. Therefore, this study analyzed the expression

of common immune checkpoints in TCGA-derived HCC

cases. The results suggested that, compared with low-risk

patients, PD-1, PD-L1, lymphocyte activation gene-3

(LAG3), CTLA-4, T cell immunoreceptor with Ig and ITIM

domains (TIGIT), and T-cell immunoglobulin and mucin-

domain containing-3 (TIM-3) levels markedly increased in

high-risk patients (Figure 10G). According to the earlier

mentioned outcomes, the immunosuppressive environment

among high-risk patients might predict a dismal prognostic

outcome.

Immunohistochemistry results regarding
the expression of model genes in
hepatocellular carcinoma tissues

IHC was carried out to examine the protein expression of

seven signature genes, PSRC1, CHORDC1, KPNA2, CDCA8,

G6PD, EZH2, and NEIL3, in 15 pairs of HCC tissues and

their counterparts. It was discovered that the protein

expression of all the signature genes was upregulated in HCC

tissues relative to that in normal hepatic tissues (p < 0.001)

FIGURE 8
Associations of glycolysis with immune-associated prognosis prediction model and TIIC abundances. The associations were analyzed through
PCA. (A) Macrophage; (B) neutrophil; (C) DC; (D) CD8+T cell; (E) CD4+T cell; and (F) B cell abundances.
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(Figures 11A–G, respectively). This is consistent with the trend in

risk coefficients for the model genes in our analysis.

Discussion

Previous studies have demonstrated that the elevated

glycolysis level, which is the tumor biomarker in cells,

facilitates cancer cell survival under different conditions

(Hamaguchi et al., 2008). Peng et al. reported that the

abnormally expressed glycolytic enzymes, in particular the

type-II hexokinase (HKII) and aldolase B (ALDOB), were

associated with advanced HCC, dismal prognostic outcome,

and early tumor recurrence (ETR). In addition, the

downregulated expression of ALDOB in stage II HCC

predicted ETR and the dismal outcome (Peng et al., 2008).

Recent research also points out that, for HCC patients, the

peritumoral monocytes will likely enhance the aerobic

glycolytic level, while the aerobic glycolysis can thereby elicit

the PD-L1 level via the PFKFB3-NF-κB pathway (Chen et al.,

2019). Targeting aerobic glycolysis by dichloroacetate (DCA, an

inhibitor of the pyruvate dehydrogenase kinase (PDK)) has been

reported to improve the Newcastle disease virus (NDV)-

regulated viro-immunotherapy for HCC, which is achieved

through enhancing viral replication and alleviating the

negative feedback of immunity (Meng et al., 2020). Therefore,

research on immunity and glycolysis of HCC has been a research

hot spot at present.

In the present work, complex bioinformatics analysis was

conducted, and as a result, seven glycolysis-associated genes

FIGURE 9
Relations of (A) EZH2, (B) G6PD, (C) CHORDC1, (D) KPNA2, (E) CDCA8, (F) NEIL3, and (G) PSRC1 with the six kinds of TIICs, including
macrophages, neutrophils, DCs, CD8 T cells, CD4 T cells, and B cells. EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; G6PD,
glucose-6-phosphate dehydrogenase; CHORDC1, cysteine and histidine-rich domain (CHORD) containing 1; NEIL3, nei endonuclease VIII-like 3;
PSRC1, proline/serine-rich coiled-coil 1; CDCA8, cell division cycle-associated 8; KPNA2, karyopherin alpha 2.

Frontiers in Genetics frontiersin.org12

Hu et al. 10.3389/fgene.2022.955673

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.955673


associated with HCC prognosis, including PSRC1, CHORDC1,

KPNA2, CDCA8, G6PD, NEIL3, and EZH2, were identified. First,

t-SNE, the machine-learning algorithm, offers a fine-grained and

efficient way to reduce dimension, thus helping to explore

potential prostate cancer (PC) (Ahmed et al., 2018) and breast

cancer (BC) subtypes (Guo et al., 2019). In this study, t-SNE was

adopted for identifying differential glycolytic patterns based on

200 glycolytic marker genes. Afterward, two clusters with

different glycolysis statuses and prognostic outcomes were

identified, and DEGs between the two groups were also

analyzed. In addition, a glycolysis-associated risk score profile

was constructed using those seven genes identified. Notably, our

constructed model accurately distinguished high-from low-risk

groups. In addition, low-risk HCC cases were proved to have

prolonged OS compared with high-risk cases from the ICGC-

HCC cohort. With regard to clinical utility, our constructed

prognosis model showed significant relation to tumor grade

among TCGA-HCC cases, as well as clinical stage,

intrahepatic vein invasion, and portal vein invasion among

ICGC-HCC cases. This indicated that the as-constructed

model predicted a significantly higher risk among patients of

advanced stage and grade. In addition, enhanced glycolytic

activity is tightly related to aggressive clinicopathological

characteristics of HCC, such as vascular invasion or portal

vein tumor thrombosis (PVTT) (Liu et al., 2016). Moreover,

PCA further validated the robust stratification ability of our

model. In addition, the prognostic characteristics constructed in

this study might predict the different prognostic outcomes of two

TCGA groups stratified by tumor grade (G1+G2 or G3+G4), sex

(male or female), AFP content (< 20 or ≥ 20 ng/ml), age (> 60), T

stage (T1+T2) and clinical stage (I + II). Thus, the identified

glycolysis-associated features might be related to HCC

occurrence and development, making it a potentially valuable

clinical biomarker. In addition, IHC validated the differential

protein expression of model genes between HCC tissues and

normal liver tissues adjacent to the carcinoma.

As a glycolysis-associated prognosis prediction signature,

the high-risk patients showed a significantly enhanced

glycolysis level compared with low-risk cases, as obtained

from critical gene levels related to the glycolytic process.

FIGURE 10
Distinct immune statuses between two TCGA-HCC cohorts. Comparisons on (A) stromal score, (B) tumor purity, (C) immune score, and (D)MSI
of two groups. (E) Relations of the seven model genes with stromal score, immune score, tumor purity, and MSI are also exhibited. (F) Comparisons
on HLA gene expression between two groups. (G) Differentially expressed immune checkpoints between two groups. CTLA-4: cytotoxic
T-lymphocyte-associated protein 4; PD-1 (PDCD1): programmed cell death-1; TIM-3 (HAVCR2): T-cell immunoglobulinmucin receptor 3; PD-
L1 (CD274): programmed death ligand 1; LAG3: lymphocyte activation gene-3; TIGIT: T cell immunoreceptor with Ig and ITIM domains.
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FIGURE 11
Immunohistochemistry pictures (200x, scale bar indicated 100 μm) show the protein expression of (A–G) PSRC1, CHORDC1, KPNA2, CDCA8,
G6PD, NEIL3, and EZH2 were remarkably enhanced in hepatocellular carcinoma (HCC) tissues relative to that in normal hepatic tissues.
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Aerobic glycolysis has been extensively reported as a potential

predictive biomarker of HCC (Leung et al., 2015; Lu et al.,

2017). Inhibiting aerobic glycolysis through blocking lactic

dehydrogenase (LDH) can be adopted to treat HCC (Fiume

et al., 2010). Also, our signature showed a positive relation to

the abundance of six TIIC types, especially macrophages,

neutrophils, and DCs. In addition, the results of GSEA

suggested that T-cell differentiation and function in high-

risk patients were impaired, while the proportion of Treg

increased, and more macrophages seemed to transform into

the M2 subtype, which might induce the immunosuppressive

microenvironment. It is now well accepted that Tregs exist

and are important in the control of immunological disorders

(Baecher-Allan and Hafler, 2004; Sakaguchi, 2004). In

particular, the TGF-β-miR-34a-CCL22 pathway-mediated

Tregs are shown to enhance the venous transfer of HBV-

positive HCC, associated with HCC metastasis and

development (Yang et al., 2012). As revealed by Shen and

colleagues, Tregs prevalence and extensive activities within

the TME of HCC were related to the cancer stage, contributing

to tumor flourishing and growth (Shen et al., 2010). Notably,

in the setting of HCC, hypoxia-induced chemokine (C-C

pattern) ligand 28 (CCL28) promotes Treg recruitment,

leading to enhanced angiogenesis and VEGF expression

(Facciabene et al., 2011; Ren et al., 2016). Moreover, Tregs

exhibit promoted glycolysis, and glycolysis is required for the

migration of Tregs, which is regulated by enzyme glucokinase

via the PI3K-mTORC2 pathway (Kishore et al., 2017; Cluxton

et al., 2019). As discovered by Rosa et al., Tregs induction and

suppression were mostly determined by glycolysis, while the

latter regulated the Foxp3 splicing variants that contained

exon 2 (Foxp3-E2) via the glycolytic enzyme enolase-1 (De

Rosa et al., 2015). In terms of macrophages, the alternatively

activated (M2) macrophages have been reported to exert an

immunomodulatory effect, participate in the responses of

polarized Th2 cells, and contribute to cancer progression

(Shirabe et al., 2012). It is also elaborated that

M2 macrophages are associated with the dismal prognostic

outcome of HCC, which enhances cancer invasion via the C-C

motif chemokine 22 (CCL22)-induced

epithelial–mesenchymal transition (EMT) (Yeung et al.,

2015). Glycolysis is also suggested to be engaged in the

production of cytokines (like IL-6) by M2 macrophages

(Chiba et al., 2017).

In addition, this work also explored the expression of

immune checkpoints in two groups. According to our results,

the levels of PD-1, PD-L1, LAG3, TIM-3, and CTLA-4 were

remarkably elevated in the high-risk HCC group relative to

the low-risk HCC group (p < 0.05). Based on the previously

mentioned findings, the anti-immune checkpoint antibody

treatment, which includes ipilimumab (the antibody against

CTLA-4) and nivolumab (the antibody against anti-PD1)

(Yang et al., 2019), can facilitate the treatment of high-risk

patients compared with low-risk patients. Interestingly, our

analysis confirmed the greater MSI among high-risk patients

compared with low-risk ones. Previous studies have

speculated that there may be a link between MSI itself and

glycolytic activity (Chung et al., 2013). Furthermore, it is

recently been suggested that MSI-high (MSI-H) cancers,

despite the primary sites, can favorably respond to ICIs

(Eso et al., 2020). According to the aforementioned results,

high-risk cases identified using our model were more suitable

for ICIs therapy.

However, certain limitations should be mentioned in the

current study. First, the influence of pretreatments among

HCC cases, such as transarterial chemoembolization and

hepatic resection, on glycolysis status and immune

components remained unknown, because of the lack of

clinical data. Moreover, large prospective studies and

additional in vivo and in vitro experimental studies are still

needed to confirm our findings.

Conclusion

In summary, this work establishes the prognosis prediction

model and verifies it using six glycolysis-associated genes, which

can be adopted for predicting the OS of HCC. The constructed

prognosis model facilitates the selection of personalized

treatment strategies in the clinic. In addition, the prognosis

signature is associated with glycolysis and immune status,

which helps to comprehensively clarify the mechanism related

to HCC prognosis.
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