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a b s t r a c t

mRNA translation is the process which consumes most of the cellular energy. Thus, this process is under
strong evolutionary selection for its optimization and rational optimization or reduction of the transla-
tion efficiency can impact the cell growth rate. Algorithms for modulating cell growth rate can have var-
ious applications in biotechnology, medicine, and agriculture. In this study, we demonstrate that the
analysis of these algorithms can also be used for understanding translation.
We specifically describe and analyze various generic algorithms, based on comprehensive computa-

tional models and whole cell simulations of translation, for introducing silent mutations that can either
reduce or increase ribosomal traffic jams along the mRNA. As a result, more or less resources are avail-
able, for the cell, promoting improved or reduced cells growth-rate, respectively. We then explore the
cost of these algorithms’ performance, in terms of their computational time, the number of mutations
they introduce, the modified genomic region, the effect on local translation rates, and the properties of
the modified genes.
Among others, we show that mRNA levels of a gene are much stronger predictors for the effect of its

engineering on the ribosomal pool than the ribosomal density of the gene. We also demonstrate that
the mutations at the ends of the coding regions have a stronger effect on the ribosomal pool.
Furthermore, we report two optimization algorithms that exhibit a tread-off between the number of
mutations they introduce and their executing time.
The reported results here are fundamental both for understanding the biophysics and evolution of

translation, as well as for developing efficient approaches for its engineering.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

mRNA translation accounts for up to 75% of the cell’s total
energy [1–5] and occurs in all living organisms [6]. Thus, decipher-
ing, modelling, and engineering this process have important impli-
cations to every biomedical discipline, such as molecular evolution
and comparative genomics [7], medicine and human health [8],
biotechnology [9], agriculture [9], and more. Therefore, translation
is under extensive evolutionary selection for minimizing the
resources it consumes [4–5,10].

In the case of biotechnological procedures such as heterologous
protein production, mRNA translation efficiency can have a very
significant impact on the host [3]. Specifically, it can affect the cel-
lular growth rate and thus its ability to generate heterologous
proteins.
The number of ribosomes in a cell is limited (for example, in a
yeast cell there are about 240,000 ribosomes[11]); this can cause
a competition between the mRNA molecules, with possibly many
ribosomes scanning the same transcript concurrently. For example,
if more ribosomes bind to a certain mRNA molecule then the pool
of free ribosomes in the cell is depleted, and this may lead to lower
initiation rates in the other mRNAs [7,12–14].

It was shown in previous works [15] that one can modulate the
free ribosomal pool (FRP) by reducing traffic jams via the introduc-
tion of silent engineered mutations within the first 50 codons of
the endogenous genes, while restricting the change in translation
efficiency of the mutated genes. It was shown that the FRP modu-
lation led to a significant increase in both the growing rate and cell
titer.

Here, we aimed at further understanding the performances and
characteristics of algorithms for ribosomal pool modulation via the
introduction of silent mutations.

Specifically, we study the possibility to minimize the number of
mutations and the changes in the level of local translation
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Nomenclature

Abbreviation/symbolDescription
ASEP Asymmetric exclusion processes
CAI Codon adaptation index
FRP Free ribosome pool
GG Global Greedy Version
LG Local Greedy version
mRNA Messenger RNA
MRS Modified Region Size
ORF Open reading frame
Pval p-Value
R Translation rate
RC Read count

RD Ribosome density
Ribo-Seq Ribosome sequencing
RFM Ribosome Flow Model
RFMIO Ribosome flow models with input and outputs
RNA Ribonucleic acid
tAI tRNA adaptation index
TASEP Totally asymmetric simple exclusion process
tRNA Transfer RNA
TRT Translation rate thresholds
UTR Untranslated region
WCS Whole cell simulation
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efficiency as they may have unforeseeable impact to the intracellu-
lar balance and the organism fitness. In addition, we study the con-
finement of the mutations to a restricted region in order to reduce
the challenge related to genome editing and to decrease the com-
putational time of the algorithm. Furthermore, we tried to better
understand how relevant variables such the expression levels of
the gene and the efficiency of the modified codons tend to affect
the algorithms. To this end, we study the performances of two rel-
evant algorithms in terms of all the aspects mentioned above and
their computational time.

Finally, we study the usage of our algorithms for decreasing and
increasing the FRP by increasing and decreasing ribosomal traffic
jams, respectively [16].

The approaches reported here can be used both for the reduc-
tion and for the enlargement of the cells growth rate, and thus
can be employed in various biotechnical targets such as heterolo-
gous gene expression and attenuated vaccine development. Fur-
thermore, we believe that the reported results can help us to
better understand the biophysics and evolution of translation in
endogenous genes. While there are quite a few previous studies
the present translation models, to the best of our knowledge, this
Fig. 1. A. An illustration of the target mRNA before the algorithm introduces silent muta
mRNA-specific features and the size of the FRP (the bigger the pool, the higher is the ribo
rate at which the elongating ribosomes are released back to the FRP. Red and green b
calculation of codon translation rates), where presence of ‘‘slow” codons create ribosom
simulation after algorithm optimization when decreasing the mRNA ribosomal density:
(represented by green blocks), as a result the number of ribosomes on the target mRNA i
the overall protein production level rises. C. The complementary case of increasing riboso
the target mRNA, consequently reducing the FRP and the overall protein levels as a resu
referred to the web version of this article.)
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is the first study that demonstrated how optimization algorithms
that are based on such models can be helpful for understanding
translation evolution and biophysics.
2. Results

We considered and compared the performances of two strate-
gies for modulating the ribosomal density. Both are ‘‘hill climbing”
algorithms, but with different methods for obtaining the local
optima (see Fig. 1):

1. ‘‘Global greedy” Version (GG) – where at each iteration a silent
mutation that yields the largest increase/decrease of the ribo-
some density in the target mRNA is chosen out of all possible
silent mutations.

2. ‘‘Local Greedy” Version (LG) – where at each iteration a silent
mutation is introduced only if the randomly chosen silent
codon increases/decrease (as required) ribosome density. This
approach partially mimics evolution where an advantageous
mutation is fixed.
tions. ai – is the mRNA’s initiation rate of gene i, that is dependent on both the local
some diffusion rate). Ri – The protein translation rate of mRNA i, which is the same
locks represent ‘‘slow” and ‘‘fast” synonyms codon, respectively (see Methods for
al traffic jams, ‘‘waiting” for the ‘‘slow” codon to be translated. B. The translation

ribosomal traffic jams are removed by the introduction of ‘‘fast” synonymous codon
s reduced, the FRP increases, more ribosomes defuse to other mRNA in the cell, and
me density, where mutation to ‘‘slow” synonymous codon introduced traffic jams on
lt. (For interpretation of the references to color in this figure legend, the reader is
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In the case of many local maxima the LG may miss the right
solution while the GG can find it.

In addition, we studied various constraints related to these
algorithms (see Fig. 2).

First, minimizing the number of mutations in gene editing is a
desirable challenge: the larger the number of mutations and the
more spread they are along the gene, the more challenging and
expensive it is to perform the relevant genomic editing.

Second, a large change of the relative translation rate of genes
can bring an unforeseeable impact to the intracellular balance
and the organism fitness.

Thus, we estimate the effect of minimizing the number of muta-
tions in terms of running time and the number iteration steps on
the algorithm performance, as well as other various constrains
(e.g., translation rate threshold (TRT) and the modified region size
(MRS), see Methods for extended details).

3. Performances of the algorithms vs. the number of steps,
running time, and the number of mutations introduced

3.1. Performances vs. the number of steps and mutations

At the first step, we aimed at understanding the marginal effect
of the number of steps and the number of mutations of our
Fig. 2. A. An illustration of the modified region size, where we evaluated five region size
mutations are allowed (omitting the very beginning and end). B. An illustration of the tra
FRP while maintaining the target mRNA’s protein translation level under a certain thres
evaluated five translation rate thresholds, for both increasing and decreasing the FRP (1
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algorithms on the performances. Thus, we computed the mean
effect of a step on the FRP over the analyzed genes.

In each graph in Fig. 3 the FRP is calculated by averaging the FRP
over all the analyzed genes at each mutation/iteration.

Fig. 3 describes the average FRP change as a function of the
number of silent mutations (Fig. 3A and B) and iterations
(Fig. 3C and D) performed by the algorithms (GG and LG). As
can be seen, the LG algorithm requires substantially more muta-
tions to reach the same change in the FRP compared to the GG
algorithm (Fig. 3A and B): 20 mutations in the GG algorithm
reach the same number of ribosomes as 65/150 mutations of
the LG version for increasing/decreasing cases, respectively. As
for the number of iterations performed by the algorithms
(Fig. 3C and D), we see an even larger gap. 20 iterations are
required by the GG algorithm, as opposed to 160 iterations for
increasing the density and 220 iterations for decreasing the den-
sity that are required by the LG algorithm. Thus, if we aim at
minimizing the number of mutations an algorithm such as GG
is superior. It is important to emphasize that minimizing the
number of mutations is important due to the fact that more
mutations increase the probability that we will introduce an
unintended deleterious modification to the cell. In addition,
introducing more mutations is usually a more challenging tech-
nical endeavor.
s (20, 35, 50, 75, 100 codons) from the beginning and to the end of the ORF, where
nslation efficiency, where a silent mutation is made only if it brings a change to the
hold rate, thus the top mutation is discarded and the lower mutation is chosen. We
, 5, 10, 25, 50%).



Fig. 3. Average FRP changes as oppose to the number of mutations introduced by the algorithm (A., B.) and the number of iterations of the algorithm (C., D.) for both GG and
LG versions. In the GG algorithm, each iteration results in a mutation, unlike in the LG case where only iterations that increase/decrease the density on the target mRNA result
in a mutation. The analysis here corresponds to the 250 most highly expressed genes, with a TRT of 10%.

S. Vinokour and T. Tuller Computational and Structural Biotechnology Journal 19 (2021) 6064–6079
3.2. Performances vs. running time

Computational simulation of a whole cell translation model
result in large running time. Thus, reducing the simulation running
Fig. 4. The average running time, measured in an average number of WCS, to reach a cert
example, to reach an average enlargement of 100.1% of the size of the FRP the LG version
that will take only 50 WCS but will generate 10 mutations on average. The result prese
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time is a desirable goal. In Fig. 4, we estimate the cost of reducing
the running time in terms of algorithm performance: comparing
the average performance of the GG and LG algorithms, as a func-
tion of the average running time. The average performance is
ain change in the FRP (in %), for both increasing (A.) and decreasing (B.) versions. For
will run an average of 4000 WCS and generate four mutations, compared to the LG,
nted here are for 250 most highly expressed genes, with a TRT of 10%.



Fig. 5. The impact of MRS on algorithms performance. The mean effect on the FRP size per gene when additional mutations are introduced (A., B. for increasing and decreasing
FRP versions for GG and E., F. for LG, respectively), and the effect when additional genes are mutated (C., D. For both versions for GG and G., H. for LG). Each color is the MRS in
the beginning and end of the ORF that allows mutations. Note that while adding mutations to increase/decreases the FRP, the algorithm can also saturate and converge to a
local optimal point; in such case additional mutations don’t further affect the FRP this is represented by a constant line in the figure (in E. and F.). In this analysis the TRT was
set to be 10% for both increasing and decreasing the FRP.
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calculated by averaging the FRP over all the analyzed genes at each
mutation. The average running time is estimated based on the
number of times each algorithm performs a whole cell simulation
(WCS) (see details in the Methods section).

Fig. 4 describes the average running time measured in WCS. As
can be seen, it takes exponentially more time to improve the FRP
with GG in comparison to LG. For example, to get 0.25% improve-
ment in the FRP we will need around 5000 WCS in the case of
GG and 120 in the case of LG. Thus, the results reported here and
in the previous sub-section suggest a trade-off between the num-
ber of mutations and the running time for both GG and LG
algorithms.
4. The effect of the algorithm constraints, modified region size,
and change in translation rate threshold on its performance

In an effort to minimize the impact of the algorithms’ modifica-
tion on various additional intracellular processes, while modulat-
ing the FRP, we impose several constrains in our algorithms.

In this section we aimed at learning the impact of these con-
strains on the algorithm performance. We believe that the analyses
reported here will allow us understanding the optimal constraints
(e.g., size of the modifies region and the allowed translation rate
change) that still allow a substantial change in FRP.

4.1. Mutations in a modified region size vs. performance

In an effort to confine the mutations to a specific region of the
mRNA molecule for both computational and gene editing reasons
we impose an MRS constraint in the beginning and the end of
the target mRNA. Both algorithms, that ran with an MRS s, allow
mutations to be made only in the first and last s codons, not
Table 1
The table summarizes the increase/decrease of FRP one modifying only the top 10
genes with the largest effect, each gene with 20 mutations made by the GG algorithm.

MRS (codons) GG FRP Increase version (%) GG FRP Decrease version (%)

20 18.46% 14.15%
35 25.95% 15.59%
50 27.15% 16.09%
75 28.65% 17.09%
100 30.50% 18.69%

Fig. 6. Distribution of mRNAs as a function of the effect on FRP as a result of the GG vers
performed based on MRS of 50 codons and TRT of 10%.

6069
including the very first 15 and last 10 codons due to initiation
and termination signals [17]. To assess the impact MRS has on
the performance of the algorithm, we are evaluating five sizes of
MRS (20, 35, 50, 75, 100 codons). The MRSs are tested by both algo-
rithms, both for decreasing and increasing the FRP, and the results
are reported in Fig. 5.

The figure includes both the mean effect on the FRP size per
gene when additional mutations are introduced (Fig. 5A, B, E and
F) and the effect when additional genes are mutated (Fig. 5C, D,
G and H).

As can be seen (see Fig. 5C and D) in both cases large fraction of
the effect (50% when increasing the FRP and 27% when decreasing
the FRP), relatively to the initial non-mutated FRP and after editing
100 mutated genes, appears when working with MRS which is <75.
Increasing the MRS to 100 gives a 55%/32% rise/drop in the FRP rel-
atively the initial non-mutated FRP for the increasing/decreasing
version respectively.

These results suggest that practically we can modify only the
first and last 50 codons to find a good computationally efficient
and biotechnologically cheap solution.

It is important to emphasize that Fig. 5 (A and B (GG), E and F
(LG)) report the average impact obtained on the FRP when of
mutating only one mRNA; this means that mutating even one
mRNA can increase the FRP by up to 0.25% or decrease it by 1%
in average, for both algorithms. Thus, as can be seen in Table 1,
mutating a small set of specific genes (e.g., two most relevant
genes) can have a large FRP change by more than 10% (see also
Fig. 6).

Table 1 summarizes the effect of mutating the 10 top genes,
each with 20 mutations optimized by GG with different MRS.
4.2. Translation rate threshold (TRT) vs. performance

In order to modify traffic jams in the cell without affecting other
phenotypes, the algorithms are constrained so the change in trans-
lation rate of the mutated mRNA is limited. To maintain the local
translation rate, we choose at each iteration the codon that gives
the highest change in the ribosome density, while maintaining pro-
tein translation level under a certain threshold rate. In order to eval-
uate the effect that the translation rate threshold (TRT) has on the
algorithm performance, we evaluate several TRTs: 1, 5, 10, 50 per-
centage for both algorithm versions.
ion algorithm for both increase (A.) and decrease (B.) pool version. The analysis was



Fig. 7. Impact of TRT level on algorithms performance. The mean effect on the FRP size per gene when additional mutations are introduced (A., B. for increasing and
decreasing FRP versions for GG and E., F. for LG) and the effect when additional genes are mutated (C., D. For both versions for GG and G., H. for LG). Each color corresponds to a
TRT from the set of 1,10, 25, and 50.
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The results here suggest that restricting the translation rate can
have a dramatic effect on the performances of the algorithm.
Specifically, the increase in the free pool (in comparison to its size
when there are no editing) is 60% higher when allowing 50% in the
TRT change and mutating 100 genes, in comparison to same num-
ber of mutated genes and allowing 1% change in the TRT (Fig. 7C).
Thus, a mutation that is introduced during the evolutionary pro-
cess, or is based on a design which have dramatic effect on the traf-
fic jam will probably have also dramatic effect on the translation
rate.

5. The effect of genes expression level on the algorithm’s
performances

Highly expressed genes tend to consume more ribosome [18].
This may suggest that mutations in such genes will have higher
effect on the global ribosomal allocation. On the other hand, these
genes tend to undergo stronger evolutionary selection, and this
may decrease our ability to optimize them. Thus, in this sub-
section we aimed at quantifying the typical effect of the expression
levels on the algorithms’ performances.

Fig. 8 suggests that mRNA expression levels of a gene have dra-
matic effect on the performances of the algorithm in both cases of
an increase or a decrease in the FRP. Specifically, when using the
top third of the mRNA in terms of their expression the GG algo-
Fig. 8. Impact of mRNA expression levels on algorithms performance. The target mRNAs
mRNA to last third mRNA levels, the figure shows the relative average FRP change of eac
both versions (GG version – A., B., LG version – C., D.). In all the cases, both the GG and
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rithm yields after 20 steps a 210/400 times higher effect on the
pool for the increase/decrease version of the algorithm respectively
in comparison to the lowest third of the genes in terms of their
expression.

The average density is calculated by averaging the mean riboso-
mal density of each mRNA over all the analyzed genes at each
mutation/iteration. We see that although increasing the FRP the
RD is reduced by up to 20% more on the lowest third of the genes
compared to the top two thirds (Fig. 9), the impact on the FRP is
stronger when mutating mRNAs with higher mRNA expression
levels (Fig. 8). This result demonstrates that optimizing mRNAs
with higher mRNA expression levels has a greater impact even
though such genes tend to already have more efficient elongation
profile. This can also explain the natural evolutionary tendency
to optimize highly expressed genes over lowly expressed (see, for
example, [19]).
6. The chosen optimized codon

The GG algorithm optimizes ribosome allocation based on both
the codon translation rate and codon location along the mRNA.
In this section we aimed at better understanding the type of
codons that are chosen by the algorithms and their location within
the ORF.
were divided by their mRNA expression levels: from top 10, top 250 and top third
h group. The graphs include the relative (in %) average FRP at each iteration step for
the LG algorithms were performed with an MRS of 50 codons and TRT of 10%.



Fig. 9. The average ribosome density (RD) on the target mRNA at each iteration step for both increasing and decreasing FRP versions (GG version – A., B., LG version – C., D.).
The target mRNAs were divided by their mRNA expression levels: from top third mRNA levels (blue) to last third mRNA levels (yellow). GG algorithm was performed with an
MRS of 50 codons and TRT of 10% on whole set of mRNAs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Special attention is given to the first few codons that are chosen
by the algorithm, which are expected to yield the largest impact.
We believe that these results may also enrich our understanding
of translation evolution.

Fig. 10(A and D) demonstrates that when the GG algorithm runs
without any MRS (i.e. at each iteration any codon within the ORF
can be chosen to be optimized) the vast majority of codons chosen
(above 80% percent) are located withing the maximum MRS of 100
codon (both for increasing FRP (Fig. 10A and B) and decreasing FRP
(Fig. 10C and D)), and �50% of codons mutated by the GG algo-
rithm are located with MRS equals to 50 (i.e. the very first and last
50 codons). We note that the average length of the highly
expressed genes ORFs is 272 codons, while the average % of muta-
tions that appear in the 50 codons (27%) and the first 100 codons
(42%) which are larger than expected (Fig. 10A and C).

When decreasing the FRP, by increasing ribosome density on a
target mRNA with the introduction of traffic jams, there is a pref-
erence of placing very slow codons at the end of the ORF, however
Fig. 10 (bottom right) suggests that as the number of mutations
grow, there is also a preference for ‘‘fast” codons. As the portion
of ‘‘fast” codons grows, they tend to be placed at the beginning
of the ORF. For increasing the FRP, Fig. 10E suggests that the very
6072
first mutations made by the algorithm are placed at the beginning
of the ORF, with abundance of ‘‘placing” very ‘‘slow” codons, sug-
gesting a creation of a ‘‘ramp” in the beginning of the ORF in agree-
ment with the ramp theory [7,17].
7. The distinct effect of gene determinants on the algorithm’s
performances

In order to map the type of mRNAs that would be the most
effective to optimize we correlate gene features with the FRP
impact of the gene based on our GG algorithm.We consider the fol-
lowing features: 1) the codon adaptation index (CAI) which is a
measure of codon usage bias [20] (see details in the Methods sec-
tion); 2) mRNA level, 3) RD) Ribo-seq read count normalized by the
length and mRNA levels of the gene; see details in the Methods
section), 4) mRNA length, 5) Ribo-Seq RC (the ribosome sequencing
read count, the number of ribosome-reads mapped to coding
sequence after normalization by the mRNA length; Methods sec-
tion)). Fig. 11 depicts both the correlation with each feature and
the partial correlation when controlling for all other features.

As can be seen, the mRNA levels have a strong correlation with
the impact on the FRP, and as also can be seen in Fig. 8, RD,
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Ribo-seq RC, and CAI also have significant district correlation with
the impact on the FRP, albeit a much lower partial correlation.
Specifically, the partial correlation of the mRNA length is not sig-
nificant, suggesting that any trend shown by the Spearman corre-
lation is heavily dependent on the other features (mRNA
expression, RD features, CAI, Ribo-Seq RC) that this mRNA length
correlates to.
8. Discussion

We analyze algorithms to increase or decrease the cell growth
rate that strives to modulate the change in protein levels, with
an introduction of silent mutations in a confined region of the
mRNA molecule.

We study the effect of various features and algorithmic param-
eters on the performances of these algorithms. Among others we
studied variables such as restricted region size, translation rate
threshold range, expression levels, codons used, and running time.

We derive the following conclusions from our analysis. First, we
demonstrate that there is a tradeoff between the two analyzed
algorithms, GG and LG , in terms of the number of mutations and
the algorithm running time: the LG algorithm tend to improve
the FRP with significantly lower running time (which is an impor-
tant resource when running whole cell simulations) but its solu-
tions tend to include significantly more modifications (which
many be more expensive to introduce with genome editing tools
and may have an unintended effect).

Second, we show that most of the contribution to the FRP
decrease or increase can be attributed to the modifications of the
first and last 50 codons. Specifically, when we modify only the first
and last 50 codons, we can get a solution which is very close to the
solution obtained with no MRS. This result supports the ramp the-
ory which suggests that the codons at the beginning of the coding
regions are under stronger selection for ribosomal traffic jam con-
trol [7,17,21]. It also specifically suggests that the effect of a typical
silent mutation during evolution on traffic jams will be much
higher when the mutation occurs at the ends of the coding
sequence.

Third, our analysis suggests that there are small number of
genes where mutations in them can have a dramatic effect on
the FRP. They can specifically increase or decrease it by up to
100% and 35%, respectively. These genes are thus expected to be
under stronger evolutionary selection pressure.

Forth, our analyses suggest that there is relatively strong cou-
pling between the number of ribosomes and traffic jams on a
mRNA and its translation rate. It is challenging to find solutions
with strong effect on FRP that have weak effect on translation rate.
This may suggest that during evolution genes that undergo evolu-
tion to decrease their ribosomal consumption (and thus increase
growth rate) may undergo as a side effect a selection for improving
their translation rate and thus their protein levels. Thus, this sug-
gests a novel non-direct mechanism of gene expression evolution.

Furthermore, our analyses suggest that mRNA levels of a gene
are by far the most relevant predictor regarding the expected effect
3

Fig. 10. Mutation locations along the ORF. Result of the GG version algorithm based on 5
(A., B.) and decreasing (C., D.) FRP versions. A.-D. Each bar is an algorithm step from first to
of the ORF, for both first half (A., C.) and second half (B., D.) of the ORF. For example, wh
algorithm to be located at codon range 21–35 at the first half of the ORF (i.e., first 21–35 c
end of the ORF (i.e., last codons 21–35 of the ORF). Only around 10–15% of codons ‘‘cho
located inside the first and last 100 codons). E.-F. Each bar is the average codon locatio
standard deviation of the location represented by the black bar. Red is the portion of tim
codon, and yellow indicates that medium rate codons are placed. (For interpretation of th
this article.)
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of its design by our algorithms on FRP. In addition, the RD in the
mRNAs and the CAI of the coding sequence also have a minor dis-
tinctive effect. Thus, these results demonstrate that while highly
expressed genes are already optimized for traffic jam minimiza-
tion, [7,21–23] additional mutations in them are expected to still
have large impact on the organismal fitness. Thus, in this context
our results suggest that even the most optimized genes should
be under further evolutionary selection for additional translational
optimization. Our results may also suggest that highly expressed
genes are not in their most optimal state.

Finally, our analysis demonstrates that decreasing traffic jams
and increasing the FRP in many cases (up to 22% of the cases)
the best solution includes the introduction of the slowest codon;
similarly, for increasing traffic jams and decreasing the FRP in
many cases (up to 24% of the cases) the best solution includes
the introduction of the fastest codon. This also demonstrates the
gap between the actual complex solutions for optimal translation
elongation profile and (usually too) simplistic indices (see, for
example[24]) that assume that all the positions in the coding
sequence have the same effect on translation efficiency.

Our study demonstrates for the first time how biological sys-
tems can be studied based on the analysis of algorithms intended
to optimize them. We demonstrated here that the analyses of the
performances of these algorithms not only teach us about how to
develop novel tools in synthetic biology; they also provide impor-
tant insight related to the evolution of genomes and the intracellu-
lar biophysical state.

Since our approach can be implemented for any organism, it
would be interesting in future research to analyze additional
organisms and evaluate if the variability and robustness found
here impacts the algorithm based on S. cerevisiae. It will be also
interesting to perform similar research related to other cellular
aspects in addition to translation; this can include other gene
expression steps, and in addition other intracellular processes that
can undergo optimization.

The greedy algorithms that is described in this study share
some properties with the way evolution converge to ‘‘solutions”:
e.g. the search is ‘‘greedy” (at each generation the best solution is
‘‘kept”), the search is relatively local (i.e. the modification are
‘‘small”), and translation efficiency is related to the fitness objec-
tive; thus, some of the reported conclusions related to the algo-
rithms themselves may be related directly to the evolutionary
processes. However, it is important to also emphasize the fact that
there are many differences between our algorithms and evolution:
e.g. there are type of mutations (such as indels, and larger aberra-
tions) that are not represented in our algorithms, the objective
function is not solely related to translation and can be very com-
plex and non-constant, and the process is stochastic.

The reported analysis is based on the fundamental biophysical
aspects of translation which are in general common to all organ-
isms. Thus, we expect that the generally the conclusions reported
in our study will be valid for large amount of organisms and cell
types; however, there are clearly organismal characteristics that
are expected to affect the strength of some of the conclusions.
For example, in organisms with low levels of selection for codon
00 highly expressed mRNAs with no MRS and a TRT of 10%. Both for the increasing
20th, and each color represents the percent of codons that belong to a codon range

en increasing FRP (A.) at the first step �22% of codons mutated are ‘‘chosen” by the
odons of the ORF) and (B.) about 8.5% are located at codons 21–35 (top orange) at the
sen” by algorithm are located outside any MRS (i.e., 85–90% of mutated codons are
n that was ‘‘chosen” by the algorithm to mutate, at each algorithm step, with the
es the algorithm ‘‘chose” to place slowest synonymous codon, green is for fastest

e references to color in this figure legend, the reader is referred to the web version of



Fig. 11. Correlation between the effect of the gene on the FRP as a function of mRNA features: mRNA levels (A., B.), RD level (C., D.), CAI (E., F.), mRNA length (G., H.) and
Ribo-Seq (I., J.). All the analyses here were performed with the increase pool version of the GG version algorithm with an MRS of 50 codons and TRT of 10%.
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usage bias (e.g. mammals) we expect it to have lower correlation
with the performances of the models. Similarly, in organisms or
conditions where the number of ribosomes is very low (in compar-
ison to the number and the lengths of the mRNAs) we expect that
the initiation rate will be relatively very low and thus the amount
of traffic jams and the ability to generate them will be much lower.
In such cases effect of our algorithms on the FRP will be lower.
Another relevant factor is the relative abundances of tRNAs in
the cell: if the levels of tRNA are similar (or non rate-limiting) it
will be harder to engineer traffic jams as the codon decoding rates
are expected to be more uniform; in such cases our algorithms will
also be less efficient.

Recent studies have demonstrated that codon bias can affect
not only translation elongation but also other aspects such as
mRNA stability and transcription efficiency. In this study we mod-
eled and focused only on the effect of codons on translation. The
advantage of our analysis is in the fact that it can evaluate and
study this specific aspect (it cannot be done experimentally). The
disadvantage is in the fact that (as in the case of any other model)
in practice the effect of introducing mutations can be different than
predicted here; however, it is important to mention that a previous
study has demonstrated a correlation between the model predic-
tions and experimental results [15].

It is also important to mention that since it is known that mRNA
molecules with more ribosomes are also expected to be more
stable [25–27] we expect such mRNAs to have more effect on the
performances of our algorithms; thus, we expect, for example, a
larger correlation between the RD and the algorithm performances.

Finally, as in the case of other computational studies in the field,
it will be interesting to repeat the analysis via experiments. How-
ever, this study is based on the statistical analysis of millions of
mutations in thousands of genes that allowed as to infer the vari-
ous statistical relations which are reported in the paper. Thus, rel-
evant experimental follow up should also be based on at least
thousands of cases; with the current technologies for genome edit-
ing this will be a very ambitious project. This emphasize the advan-
tage of analyzing whole cell simulations for better understanding
the effect of mutations on complex intracellular processes and
the why they can be used in synthetic biology.
9. Methods

9.1. Ribosomal profiling data

S. cerevisiae ribosomal profiling raw reads (2 replicates) and
mRNA levels (2 replicates) were taken from [28].

9.2. Genome assembly

S. cerevisiae genomic data (R64-1-1) was downloaded from Bio-
Mart. 50UTR and 30UTR annotations (spliced) were obtained from
[29]. Genome contains 6664 genes, the number of S. cerevisiae ribo-
somes used in the simulation is 200,000 [11], with 60,000 mRNAs
[30], scaled according to the mRNA levels from [28]. According to
[30] the number of free ribosomes in the pool is about 15%, i.e.
30,000.

9.3. Whole-cell computational model overview

We used the RFMNP (RFM (Ribosome Flow Model) network
with a pool) [12] to model translation, which is a general dynam-
ical model for large-scale simultaneous mRNA translation and
competition for ribosomes based on combining several ribosome
flow models with input and outputs (RFMIOs) [31], interconnected
via a pool of free ribosomes. Each gene is represented by a single
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copy of a RFMIO. The ribosome flow model (RFM) [31] is a deter-
ministic mathematical model for mRNA translation that can be
derived by a mean-field approximation of an important model
from statistical physics called the totally asymmetric simple exclu-
sion process (TASEP[32–34]).

The dynamics of the system is expressed by a set of ordinary
differential equations that describes the time evolution of the ribo-
somal densities in the different RFMIOs and the free pool. In the
RFM, mRNA molecules are divided into n consecutive sites con-
sisted of codons. The state variable pi tð Þ describes the normalized
ribosomal occupancy level at site i at time t, where
pi tð Þ ¼ 1 pi tð Þ ¼ 0½ � indicates that site i is completely full [empty]
at time t. The movement of the ribosome that occupies the i -th site
to the consecutive site is with rate ki. Given the state pi tð Þ, it fol-
lows that the rate of ribosome flow into/out of the system is given
by: k 1� p1 tð Þ½ � and knpn tð Þ respectively. Hence, the rate of ribo-
some flow from site i to site iþ 1 is given by: kipi tð Þ 1� piþ1 tð Þ� �

.
Thus, we get the following set of n nonlinear first-order ordinary
differential equations that describe the process of translation
elongation:

dp1 tð Þ
dt ¼ k½1� p1 tð Þ� � k1ðtÞ½1� p2 tð Þ�

dpi tð Þ
dt ¼ ki�1pi�1 tð Þ 1� pi tð Þ½ � � kipi tð Þ 1� piþ1 tð Þ� �

1 < i < n
dpn tð Þ
dt ¼ kn�1pn�1 tð Þ 1� pn tð Þ½ � � knpn tð Þ

8>><
>>: ð1Þ

A network of m RFMIOs interconnected via a pool of free ribo-
somes models translation while competing for the available, lim-
ited ribosomal resource. Competition for the available ribosomal
resource leads to indirect coupling between the different mRNAs.
For example, if more ribosomes bind to a certain mRNA molecule,
then the pool of free ribosomes in the cell is depleted, and this may
lead to lower initiation rates in the other mRNA. This is modeled
as: Gj ¼ k0j tanh Z

c

� �
, where k0j denotes the initiation rate of gene j,

Z denotes the size of the FRP, and c is a parameter of the model fit-
ting local and global aspects of the FRP. The use of tanh is appropri-
ate for modelling a saturating function and is a standard function
in ASEP (asymmetric exclusion processes) models with a pool,
because it is 0 when Z is 0, and for all Z > 0 sufficiently small
Gj Zð Þ is linearly proportional to Z.

Briefly (for a detailed description see [31]), the steady state
translation rate R is calculated as follows: in steady state the occu-
pation probabilities are constant in time and equal to p1; � � � ;pnf g,
thus

R ¼ knpn ð2Þ
This rate is also equal to the steady state rate at which ribo-

somes leave the mRNA strand (after translating the entire
sequence). At steady state, the left-hand side of equation (1) is a
zero, yielding:

k 1� p1½ � ¼ k1p1 1� p2½ � ¼ R
ki�1pi�1 1� pi½ � ¼ kipi 1� piþ1½ � ¼ R1 < i < n

kn�1pn�1 1� pn½ � ¼ knpn ¼ R

8><
>: ð3Þ

Solving equation 3 for R can be done numerically. Due to the
intense time and memory requirements of solving the entire ODE
system, we imply a linear-algebraic iterative implementation of
RFMNP: A function of the initiation and elongation rates are made
to construct a symmetric, non-negative tridiagonal matrix. The
square root of the maximal eigenvalue of set matrix is the protein
translation rate [35], which is what we use as a proxy of translation
rate threshold (TRT). Solving the equations with the linear-
algebraic approach rather than the entire ODE system provides a
substantial speedup. We performed an iterative implementation
of RFMNP to ensure steady state:
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Let H denote the number of ribosomes in the system, Z the
number of free ribosomes, (H and Z are determined according to
the literature, see above), Mj the number of mRNA copies of gene

j, and xji the number of ribosomes on site i in gene j. In steady state

H ¼ Z þ
X
j

X
i

xji �Mj

 !

The RFMNP iterations are performed as followed.
In the first iteration we set Z0 to be equal to the literature free

pool. The size of the free pool Z0 is a factor of the initiation rate: for
each gene j, the initiation rate G0j ¼ k0j tanh Z0

c

� �
; where k0j is the

estimated local initiation rate, and tanh Z0
c

� �
is the global initiation

rate of gene j: The RFM model is calculated for every gene sepa-
rately until convergence. The sum of all ribosomes occupying all

of the genes, removed from H gives us: Z1 ¼ H � P
j

P
ix

j
i 0ð Þ �Mj

� �
.

At the k0 th iteration: Zk ¼ H � P
j

P
ix

j
i k� 1ð Þ �Mj

� �
, with k� 1

being the density of the previous iteration as input to the current. A
binary search is performed on the range [ Zk; Zk�1 ], updating
Zk ¼ Zk � Zk � Zk�1ð Þ � per , where per is in [ 0:75;0:95 ], depending
on the convergence rate of the iterations: starting off with
per ¼ 0:75, in case of divergence, we reduce the step size while
increasing per. We then update the initiation rates with the found

Zk: Gkj ¼ k0j tanh
Zk
c

� �
.

The iterations are terminated if abs Zk�1 � Zkð Þ < e, with e being
10�2.

9.4. Whole-cell model parameters

The RFMNP has three parameters which need to be estimated:
initiation rates, codon elongation rates, and c. These parameters
were estimated using ribosome profile data and an iterative algo-
rithm. For a detailed description see [15].

Briefly, the initial initiation rates were estimated based on the
measured ribosomal read count divided by the mRNA levels and
then normalized so that the median codon initiation rate of all S.
cerevisiae mRNAs becomes 0.8 per second [36].

Codon elongation rates were calculated based on the tRNA
Adaptation Index (tAI[23]), where at the base of the index is the
observation that elongation rate associated with a codon is propor-
tional to the abundance of the tRNA species that recognize it, with
regards to all anti-codons that can recognize the same codon, with
different efficiency weights. Let ni denote the number of tRNA
isoacceptors recognizing codon i. Let tCGNij denote the copy num-
ber of the j th tRNA that recognizes the i th codon and let Sij be a
parameter corresponding to the efficiency of the codon-
anticodon coupling between codon i and tRNA j.

The absolute adaptiveness, Wi, for each codon i is defined by

Wi ¼
Xni
j¼1

1� Sij
� �

tCGNij

From Wi we obtain pi, which is the probability that a tRNA will
be coupled to the codon, i.e.

pi ¼ WiP61

j¼1
tCGNj

. The expected time on codon i is ti ¼ 1
pi
.

As for the RFM, the input rate is per site. The RFM is divided into
sites consisting of 10 consecutive codons (the approximate size of
the S. cerevisiae ribosome[37]). If the remainder after the last site is
five codons or less, it is incorporated in the previous site, thus
avoiding extremely fast site due to short length sites. The rate of
each site is the inverse of the summation of the times of each of
the codons on set site, i.e., kn ¼ 1P10

i¼0
ti
.
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10. The hill climbing algorithm

This is an iterative algorithm that starts with an arbitrary solu-
tion to a target function, then attempts to find a better solution by
making an incremental change to the previous solution. If the
change produces a better solution, another incremental change is
made to the new solution, and so on until no further improvements
can be made.

In our case the target function is the RFM, the solution we strive
to optimize is the ribosome density on the target mRNA (either
increase or decrease). An iteration step is defined as follows.

Choosing the current codon location, i.e., the location of the
codon in the gene, is defined by the first nucleotide (nt) of a codon,
for example, if the second codon is mutated, its location within a
gene would be the fourth nt. Then we mutate a codon at its loca-
tion, to each of its synonymous codons in the target mRNA. A
WCS is then calculated (by RFM) with each of the synonymous
codons. In case of an improved solution (increase/decrease in ribo-
some density on the target mRNA) we update the target sequence
to the new codon. We run the algorithm in two similar version, LG
version, and GG version, defined by the chosen codons to mutate.

The input to the target function (RFM) are the k s of the target
sequence, each synonymous codon will yield a different k in its
RFM site (see codon rate). The output of the function is the ribo-
some density profile.
10.1. Local greedy version (LG)

In this version a step is defined by randomly choosing a codon
location, and for each of the synonymous codons we calculate the
RFM function. If the synonymous codon produces a better result,
we update the sequence to the synonym. We run enough iterations
to choose each possible location, and the algorithm stops when no
further increase/decrease in ribosome density can be found.
10.2. Global greedy version (GG)

This is similar to the LG version, but with a key difference: at
each iteration at every codon location, all the synonymous codons
are introduced to the RFM, and the codon that produces the largest
change in the ribosome density is chosen. The algorithm stops
when no change at any location yields an improvement.
10.3. Algorithm constrains

We strive to control the cell ribosome resources with a minimal
impact on other cells translation processes. We divide and test
these restrictions into a few categories:

One such aspect is the encoded amino acid sequence of the pro-
teins, meaning all the mutations must be silent.
10.4. Translation rate threshold (TRT)

One reason to minimize the impact on whole cell is due to cases
where extreme changes in the protein levels of some proteins can
be destructive to the cell. We impose a protein translation change
threshold, i.e., we choose at each iteration the codon that gives us
the largest change in the ribosome density, while maintaining the
target mRNA’s protein translation level under a certain threshold
rate s. Increasing s is expected to improve the performances of
the algorithm in terms of the increase in the FRP. We evaluated a
number of translation rate thresholds (1,10, 25, 50%) for both
increasing and decreasing the FRP. Our aim of using a threshold
s is to change only the ribosomal traffic jams without affecting
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other aspects that we do not know how to model and/or that are
not included in our model.

10.5. Modified region size

Initiation & termination regions
Any mutations in translation initiation and termination signals

regions can yield a large and unforeseeable impact to the transla-
tion process, which we want to avoid. It is known that the first
and last codons of the ORF (15 and 10 codons long, respectively)
hold important regulatory signals [17]. Thus, the algorithm will
not allow any mutations in these regions.

10.6. Expected MRS

Considering both the computational task and future genome
editing we want to confine the silent mutations the algorithm
makes to a specific region in the mRNA. One of our goals is to find
the location of this optimal region and its size.

Since the biggest impact of the RFM translation rate is in the
beginning and end of the mRNA in endogenous genes [38–39],
we will impose areas in the beginning and end of the mRNA that
allow modifications only in these regions. We evaluated five region
sizes (20, 35, 50, 75, 100 codons) from the beginning and end of the
ORF where mutations are allowed (omitting the very beginning
and end as set above).

This is done as long as it does not reduce or increase the gene’s
translation rate (TR) beyond a threshold s.

11. Algorithm execution time

Computational simulation of the whole cell translation model
with an order of magnitude of 2 � 105 ribosomes and 6 � 104 mRNA
molecules is a challenging time-consuming effort. Therefore,
reducing the number of WCS it takes to evaluate a mutation will
considerably reduce the running time to optimize target genes.
We estimate the cost of reducing running time and iteration steps
has on the algorithm performance by comparing the average per-
formance of the GG version and LG version algorithms, as a func-
tion of running time. The running time is calculated based on the
number of times each algorithm performs a WCS, and the perfor-
mance is measured in average FRP:

1. GG version: at every iteration one mutation is introduced,
meaning to make one mutation the algorithm runs over the codons
of the whole sequence (under given restrictions), and for every
codon WCS is calculated for each of its synonymous codons:

number of WCS for 1 mutation ¼ number of codons in sequence

� number of synonyms of each codon

The number of codons in sequence varies: if we run MRS of 50
we will consider 100 codons per iterations (an average of 300
WCS per iteration), however without an MRS we will consider all
the codons in the mRNA and this can result order of magnitude
103 WCS for one mutation.

2. LG version: at each iteration only one codon is chosen ran-
domly and WCS are ran for each of its synonymous codons, mean-
ing: average number of WCS for 1 iteration ¼ 3. Since in the LG
version not all iterations result in a mutation, it may take several
iterations for one mutation to be made.

12. Gene determinants

The Codon Adaptation Index (CAI) [20] is a technique for ana-
lyzing codon usage bias. The CAI measures the deviation of a given
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protein coding gene sequence with respect to a reference set of
genes. We used as a reference set the top 5% expressed mRNAs.
The CAI is defined as the geometric mean of the weight associated
to each codon over the length of the gene sequence (measured in
codons):

CAI ¼ exp
1
L

XL
l¼1

ln wi lð Þð Þ
 !

ð1Þ

For each amino acid, the weight of each of its codons, in CAI, is
computed as the ratio between the observed frequency of the
codon (fi) and the frequency of the synonymous codon (fj), derived
from the reference set, for that amino acid, i.e.

wi ¼ f i
max f jð Þ ; ij 2 synonymous codons for amino acid½ �

The Ribo-Seq RC are the measured number of ribosome read
counts devided by the mRNA length (Ribo-Seq measurements
described above), while the RD is the ribo-seq read count normal-
ized by the length and mRNA levels of the gene.
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