

CASE REPORT | ESOPHAGUS

Downhill Varices and Apical Lung Cancer Without Superior Vena Cava Syndrome

Nicharee Kitkarncharoensin¹, Sarin Catithammanit¹, Niravit Chavanachinda¹, Bantita Phruttinarakorn, MD², Piya Cherntanomwong, MD³, and Taya Kitiyakara, MD⁴

¹Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

²Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand ³Cardiothoracic Surgical Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

⁴Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

ABSTRACT

A 75-year-old woman with hypertension, dyslipidemia, thalassemia trait, osteoarthritis of the knees, and hyperthyroidism presented with bloating, abdominal discomfort, and change in stool caliber underwent an esophagogastroduodenoscopy. The esophagogastroduodenoscopy revealed varices at the middle of esophagus, which were diagnosed to be downhill esophageal varices (DEVs). DEVs occur mainly from the superior vena cava (SVC) obstruction; however, in the absence of obstruction, angiogenesis and thrombosis could be the etiology. In our patient, computed tomography showed a pulmonary nodule located at periphery of the right upper lung without SVC contact nor obstruction. The nodule was later proven to be an adenocarcinoma. Thus, our patient showed the possibility that adenocarcinoma of the lung might associated with the DEV through a mechanism other than SVC obstruction. Recognition and differentiation of DEV from other benign venous blebs of the esophagus are important, and once detected, further investigation with computed tomography of the chest is recommended.

KEYWORDS: downhill varices; esophageal varices; varix; SVC obstruction; SVC syndrome; lung cancer

INTRODUCTION

The downhill esophageal varices (DEVs) are vertical longitudinal dilatation of the veins in the esophagus, which were different from the more rounded venous dilatations of blebs in the esophagus. The DEVs were similar in appearance to the more common uphill varices seen in cirrhosis, except for the fact that they appeared at the midesophagus and did not extend to the distal esophagus/esophagogastric junction, where uphill esophageal varices arise from. DEVs were first reported by Simchowitz et al in 1932.¹ Subsequent reports² revealed that the most common etiology for downhill varices is the obstruction of the superior vena cava (SVC). An increase in SVC pressure or obstruction of the SVC results in the retrograde blood flowing to the azygos vein, where the pressure transmits to the esophageal venous plexus, respectively. There are several etiologies of DEVs reported in the literature (Table 1), and most of them are caused by the SVC obstruction either from the direct compression of mass or secondary to various conditions. The downhill varices can be treated conservatively while treating the primary cause of the varices or treating the SVC obstruction with dilation of the SVC stricture by SVC stenting or angioplasty. In case of bleeding, which is rare, the treatment includes endoscopic variceal band ligation or systemic embolization through the brachiocephalic vein, injection of sclerosing agents, or balloon tamponade.^{3,4}

CASE REPORT

A 75-year-old woman with the underlying hypertension, dyslipidemia, thalassemia trait, knee osteoarthritis, and hyperthyroidism presented with bloating, abdominal discomfort, and change in stool caliber for a couple days in the previous few weeks. For her bloating, she denied eating a fatty diet, alcohol consumption, nor frequent intake of the dairy products. She had no respiratory symptoms and no

ACG Case Rep J 2024;11:e01236. doi:10.14309/crj.000000000001236. Published online: December 28, 2023 Correspondence: Niravit Chavanachinda (Niravit.cha@student.mahidol.edu).

Study	Age	Sex	Comorbidities	Endoscopic findings	Cause	Management
Lung cancer						
Tanaka et al ⁵	68	Male	Unknown	Four striated DEVs (F1, CB, and RC)	Small-cell lung cancer at upper right lung filed completely obstructed SVC	Concurrent chemoradiotherapy
Tanaka et al ⁵	55	Male	Unknown	Three striated downhill varices (F1, CW, and RC)	Squamous cell lung cancer narrowing SVC with good collateral pathways	Concurrent chemoradiotherapy
Subramaniam et al ⁶	27	Male	No underlying disease	Marked varicosity of the esophageal veins over almost the entire length (necropsy finding)	Anaplastic bronchogenic carcinoma $2'' \times 1\frac{1}{2}''$ at the entire upper lobe, arised from the right upper lobe bronchus with SVC obstruction	Antimitotic drugs
Kokubo et al ⁷	66	Male	Unknown	DEVs at the upper esophagus	Recurrence lung cancer	Upper lobectomy
Chauvin et al ⁸	55	Male	Stage IIIb non–small-cell carcinoma status post chemotherapy and radiation therapy	Grade III varices 25–30 cm from the incisors with a visible fibrin clot	Stage IIIb non–small-cell carcinoma in the anterior mediastinum encasing brachiocephalic trunk and SVC occlusion	Band ligation
Nonlung cancer cause						
Berkowitz et al ⁹	32	Female	ESRD MCTD	Esophageal varices in the upper and middle esophagus	SVC syndrome secondary to central venous dialysis catheters	Endoscopic band ligation of a proximal varix
Chakinala et al ¹⁰	55	Male	ESRD Rheumatoid arthritis PAD Esophageal varices	Upper and middle esophageal varices	Chronic SVC and right brachiocephalic vein occlusion secondary to venous catheters	Esophageal band ligation Failed SVC stenting
Loudin et al ³	22	Female	ESRD Henoch-Schönlein purpura	Large varices in the proximal esophagus with positive red wale sign	SVC syndrome secondary to central venous dialysis catheters	Balloon dilation of the stenotic SVC
Bédard and Deslauriers ¹¹	68	Female	Retrosternal goiter	Upper esophageal varices	Extrinsic compression of the right innominate vein secondary to retrosternal goiter	Thyroidectomy
Yaşar B, Kılıçoğlu G. ¹²	31	Male	Behçet disease	Prominent esophageal varices in the upper half of the esophagus with an overlying clot	SVC syndrome secondary to Behçet disease	Conservative management DMARDs Steroids
Gholam et al ¹³	87	Female	Cameron ulcers Aortic stenosis Pulmonary hypertension	Large varices in the upper third of the esophagus and Cameron lesions	Severe pulmonary hypertension secondary to aortic stenosis	Conservative management
Harwani et al ¹⁴	55	Female	Liver cirrhosis Chronic rheumatic heart disease; severe mitral and tricuspid regurgitation Pulmonary hypertension	Upper and lower esophageal varices	Dilated SVC because of pulmonary hypertension	Variceal banding
Maton et al ¹⁵	34	Female	Idiopathic vasculitis	Upper esophageal varices	Vasculitis	Conservative management
Serin et al ¹⁶	60	Female	None	Upper esophageal varices	Increase blood drainage from the tumor into the esophageal veins	Tumor removal

Table 1. The etiologies of DEVs reported in previous cases

Table 1. (*continued*)

Study	Age	Sex	Comorbidities	Endoscopic findings	Cause	Management			
Shirakusa et al ¹⁷	26	Male	Hepatitis	Upper esophageal varices	Excessive blood flow into the esophageal wall from a giant lymphoma	Thoracotomy			
Yasar and Abut ¹⁸	45	Male	Seminoma Pelvic radiotherapy	Varices in the upper third of the esophagus	Bilateral brachiocephalic truncus stenosis because of mediastinal fibrosis	Conservative management			
Basar et al ¹⁹	54	Male	AV block Epicardiac pacemaker	Upper esophageal varices	Bilateral subclavian veins DVTs secondary to pacemaker	Patient refused treatment			
lbis et al ²⁰	35	Female	History of subtotal thyroidectomy and multinodular goiter	Upper esophageal varices	Downhill varices secondary to recurrent multinodular goiter	Esophageal band ligation Inferior thyroid artery embolization Repeat subtotal thyroidectomy			
Van der Veldt et al ²¹	77	Female	COPD Multinodular goiter	Grade II–III upper esophageal varices	Right internal jugular vein compression secondary to multinodular goiter	Subtotal thyroidectomy			
AV atrioventricular: CB, blue varices: COPD, chronic obstructive nulmonary disease: CW, white varices: DEVs, downhill esonhageal varices: DMARDs, disease-modifying									

AV, atrioventricular; CB, blue varices; COPD, chronic obstructive pulmonary disease; CW, white varices; DEVs, downhill esophageal varices; DMARDs, disease-modifying antirheumatic drugs; DVT, deep vein thrombosis; ESRD, end stage renal disease; MCTD, mixed connective tissue disease; PAD, peripheral arterial disease; RC, red color sign; SVC, superior vena cava.

appetite loss nor cachexia. She was a life-long nonsmoker. Physical examination was unremarkable; she was breathing comfortably with normal breath sounds on auscultation; the abdomen was soft without tenderness nor guarding; and no lymphadenopathy, no hepatosplenomegaly, no abdominal mass, and no stigmata of chronic liver disease were found. Her medications were calcium carbonate, calciferol, and atenolol.

In view of her age, her medical attendance despite her usual habit of medical stoicism, and the previous change in stool

Figure 1. Downhill esophageal varices seen in the patient. Two F2 varices and 1 F1 varix were seen between 30 and 35 cm from the incisors.

caliber, she was investigated with the colonoscopy and esophagogastroduodenoscopy (EGD). Colonoscopy found multiple polyps, which were removed by biopsy forceps and cold snare.

Figure 2. Chest x-ray posteroanterior upright showing a reticularground glass at right upper lung zone, which was barely detectable.

Figure 3. CT of the chest and mediastinum axial plane showing a 2.7-cm nodule at periphery of the right upper lung. CT, computed tomography.

These were found to be hyperplastic polyps on pathological examination. EGD found 2 F2 varices and 1 F1 varix between 30 and 35 cm from the incisors, both of which were in the midesophagus and did not extend to the esophagogastric junction (Figure 1). Below the varices, there were a few benign squamous papillomata, and a venous bleb at 39 cm from the incisors just proximal to the esophagogastric junction, but otherwise, the mucosa distal to the varices was normal. No gastric varices were seen. The varices were recognized to be DEVs from their appearance as vertical longitudinal dilatation of the veins in the esophagus, which were different from the more rounded venous dilatations of esophageal blebs, and the fact that they did not extend distally to the esophagogastric junction like the more common uphill varices seen in cirrhosis; thus, chest x-ray and computed tomography (CT) of the chest and neck were performed to evaluate the cause of varices. Although the chest x-ray (Figure 2) showed a barely detectable reticular-ground glass opacity in the right upper zone, the CT results (Figures 3 and 4) revealed a 2.7-cm pulmonary nodule located at periphery of the right upper lung, adjacent to the pleura and far superolateral to the SVC without SVC contact and obstruction, no neck mass, subcentimeter lymph nodes with internal microcalcification at left cervical IIb level, posterior to spinal accessory nerve and internal jugular vein. No thyroid nodules and no liver cirrhosis were found.

The patient underwent a lung biopsy, which revealed the lesion to be an adenocarcinoma.

After the pathology results, the patient underwent a videoassisted thoracoscopic surgery with right upper lobe lobectomy and lymph node biopsy. The pathological examination from the surgical specimen (Figure 5) showed a lepidic-predominant invasive adenocarcinoma, the total size of 2.7 cm, with an invasive tumor size of 1.1 cm in the greatest dimension, with acinar pattern at the periphery of the lung and close to pleura (as shown in Figure 5). Visceral pleural invasion was not identified in the additional elastic stain. Lymphovascular invasion and vascular thrombosis were not seen (as shown in Figure 6). The dissection of the lymph nodes of hilar, interlobar, right paratracheal, and subcarinal area showed no evidence of metastatic carcinoma. The vascular abnormalities associated with pulmonary hypertension were not detected. The epidermal growth factor receptor (EGFR) gene mutational analysis in the paraffin block revealed EGFR c.2573T>G (L858R) mutation. Clear resection margins were seen. In conclusion, the tumor staging was T1bN0M0.

The patient recovered postoperatively and remains well at 12 months. No further endoscopy was performed because there has been no clinical indication for a repeat endoscopy.

DISCUSSION

DEVs develop when the esophageal plexus has increased blood flow, and they are usually associated with venous obstruction from the SVC. The level of obstruction affects the formation of varices. Lesions proximal to azygous vein push the drainage through mediastinal collaterals and drain back to the azygous system below the obstruction. Varices that occur from lesions in this location are limited to the upper third of the esophagus. On

Figure 4. CT of the chest and mediastinum coronal plane showing a 2.7-cm nodule at periphery of the right upper lung. CT, computed tomography.

Figure 5. The histopathological specimen showing adenocarcinoma with acinar pattern.

the other hand, varices that are from obstruction distal to the azygos vein mostly expand along the entire length of the esophagus.

The etiology of downhill varices has been widely reported among case studies, most of which were from SVC syndrome and other vascular occlusions. The literatures describe other causes including mediastinal fibrosis,¹⁸ Behçet disease,²² catheter manipulation,^{3,9,11} retrosternal goiter and other thyroid masses,^{10,20,21} thymomas,²³ bronchial carcinomas,⁶ metastatic mediastinal tumors,⁷ pulmonary hypertension,^{13,14} lymphomas,¹⁷ or were idiopathic. The causal pathway for most of these etiologies is through venous obstruction in the paraesophageal/ mediastinal area.

Our patient presented with asymptomatic downhill varices diagnosed incidentally on EGD. However, in this case, from the CT, there was no evidence of SVC obstruction. This is unlike most other cases of downhill varices with upper mediastinal/ thoracic tumor, which often reported SVC compression from

Figure 6. The histopathological specimen showing a lepidic adenocarcinoma, with pulmonary vein but no thrombosis.

an extrinsic mass such as from small-cell lung carcinoma, lymphoma, or bronchial carcinoma. Downhill varices without SVC obstruction have also been mentioned in the literature and can occur from an increase in blood flow in the esophageal plexuses, eg, from Castleman disease, also known as angio-follicular lymph node hyperplasia, which is known to be hypervascular and cause downhill varices by increasing blood drainage to the esophageal veins.¹⁶ Moreover, obstruction in some venous drainage other than SVC has also been reported as a cause of downhill varices. In thyroid disease, obstruction of the inferior thyroid vein can lead to the development of proximal esophageal varices.²¹

From previous case studies, ^{5–8,24} all lung cancer patients with DEVs were associated with SVC syndrome, by the mechanism of venous obstruction. However, in our case, SVC obstruction was absent on CT, and no vascular invasion nor thrombosis was seen on the histopathological specimen; the varices might be hypothesized to have formed because of increased blood flow in the area as a result of tumor angiogenesis, given that tumor progression depends primarily on vascular supply. Non-small-cell lung cancer, particularly adenocarcinoma, is a highly vascularized tumor,²⁵ suggesting that a consequent increase in the blood flow to the tumor and surrounding vessels is likely.²⁶ In addition, the pathological specimen revealed EGFR gene mutation of the tumor, which have a critical role in tumor angiogenesis through upregulation of vascular endothelial growth factor and other angiogenic factors.^{27,28} Alternatively, it is possible that thrombosis could have formed in the small vessels in the area because of the hypercoagulable state of cancer, causing a retrograde blood flow into the esophageal plexus and subsequent formation of new varices.

Downhill varices occur mainly from SVC obstruction, which could be caused by malignant or benign processes. The presence of DEVs should lead to a suspicion of lesions compressing venous drainage, including lung cancer, especially non-small-cell lung cancer at apex or the upper lung. However, without obstruction, aberrant blood flow, angiogenesis, or thrombosis may also be the etiology for DEVs. Recognition of downhill varices at endoscopy and its differentiation from other benign venous blebs of the esophagus is important, and once detected, further investigation with CT of the chest is recommended.

DISCLOSURES

Author contributions: N. Kitkarncharoensin, S. Catithammanit, and N. Chavanachinda: draft, edited the article, and reviewed the literature. B. Phruttinarakorn supplied, interpreted the pathology images, and edited the article. P. Cherntanomwong edited the article. T. Kitiyakara edited the article and is the article guarantor. All authors approved the final version of the manuscript.

Financial disclosure: None to report.

Informed consent was obtained for this case report.

Received June 18, 2023; Accepted November 14, 2023

REFERENCES

- 1. Israelski M, Simchowitz H. 1. Roentgendiagnostic der esophagus varizen. Laryngol Rhinol Otol. 1932;22:208–18.
- Ali H, Pamarthy R, Bolick NL, Ali E, Paleti S, Kapuria D. Downhill esophageal varices: A systematic review of the case reports. *Explor Med.* 2022;3(4):317–30.
- 3. Loudin M, Anderson S, Schlansky B. Bleeding 'downhill' esophageal varices associated with benign superior vena cava obstruction: Case report and literature review. *BMC Gastroenterol.* 2016;16(1):134.
- Savoy AD, Wolfsen HC, Paz-Fumagalli R, Raimondo M. Endoscopic therapy for bleeding proximal esophageal varices: A case report. *Gastrointest Endosc*. 2004;59(2):310–3.
- Tanaka H, Nakahara K, Goto K. Two cases of downhill esophageal varices associated with superior vena cava syndrome due to lung cancer [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi. 1991;29(11):1484–8.
- Subramaniam R, Madanagopalan N, Krishnan KT, Padmanabhan C. A case of anaplastic bronchogenic carcinoma with "downhill varices" of the esophagus. *Dis Chest.* 1967;51(5):545–9.
- Kokubo M, Sasaki H, Sakai S, Murakawa S, Mori Y, Hirose H. Downhill esophageal varices due to superior vena cava syndrome [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi. 1991;29(7):854–7.
- Chauvin RN, Arbour GT, Hagood L, Borhan F. Downhill varices due to chemotherapy and radiation therapy in non-small cell carcinoma of the lung: 74. Am J Coll Gastroenterol. 2006;101:S67.
- 9. Berkowitz JC, Bhusal S, Desai D, Cerulli MA, Inamdar S. Downhill esophageal varices associated with central venous catheter-related thrombosis managed with endoscopic and surgical therapy. *ACG Case Rep J.* 2016;3(4):e102.
- Chakinala RC, Kumar A, Barsa JE, et al. Downhill esophageal varices: A therapeutic dilemma. Ann Transl Med. 2018;6(23):463.
- 11. Bédard EL, Deslauriers J. Bleeding "downhill" varices: A rare complication of intrathoracic goiter. *Ann Thorac Surg.* 2006;81(1):358–60.
- Yaşar B, Kılıçoğlu G. Behçet's disease-related superior vena cava syndrome and bleeding downhill varices: A rare complication. Ulus Travma Acil Cerrahi Derg. 2017;23(2):170–2.
- 13. Gholam S, Ghazala S, Pokhrel B, Desai AP. A rare case of downhill esophageal varices in the absence of superior vena cava obstruction. *Am J Gastroenterol.* 2017;112(3):413.
- 14. Harwani YP, Kumar A, Chaudhary A, et al. Combined uphill and downhill varices as a consequence of rheumatic heart disease: A unique presentation. *J Clin Exp Hepatol*. 2014;4(1):63–5.
- Maton PN, Allison DJ, Chadwick VS. "Downhill" esophageal varices and occlusion of superior and inferior vena cavas due to a systemic venulitis. *J Clin Gastroenterol.* 1985;7(4):331–7.

- Serin E, Ozer B, Gümürdülü Y, Yildirim T, Barutçu O, Boyacioglu S. A case of Castleman's disease with "downhill" varices in the absence of superior vena cava obstruction. *Endoscopy*. 2002;34(2):160–2.
- 17. Shirakusa T, Iwasaki A, Okazaki M. Downhill esophageal varices caused by benign giant lymphoma. Case report and review of downhill varices cases in Japan. *Scand J Thorac Cardiovasc Surg.* 1988;22(2): 135–8.
- Yasar B, Abut E. A case of mediastinal fibrosis due to radiotherapy and 'downhill' esophageal varices: A rare cause of upper gastrointestinal bleeding. *Clin J Gastroenterol.* 2015;8(2):73–6.
- Basar N, Cagli K, Basar O, et al. Upper-extremity deep vein thrombosis and downhill esophageal varices caused by long-term pacemaker implantation. *Tex Heart Inst J.* 2010;37(6):714–6.
- Ibis M, Ucar E, Ertugrul I, et al. Inferior thyroid artery embolization for downhill varices caused by a goiter. *Gastrointest Endosc*. 2007;65(3): 543–5.
- van der Veldt AA, Hadithi M, Paul MA, van den Berg FG, Mulder CJ, Craanen ME. An unusual cause of hematemesis: Goiter. World J Gastroenterol. 2006;12(33):5412–5.
- Orikasa H, Ejiri Y, Suzuki S, et al. A case of Behçet's disease with occlusion of both caval veins and "downhill" esophageal varices. J Gastroenterol. 1994; 29(4):506–10.
- Inoue Y, Sakai S, Aoki T. Downhill oesophageal varices resulting from superior vena cava graft occlusion after resection of a thymoma. *Interact Cardiovasc Thorac Surg.* 2013;17(3):598–600.
- 24. Mikkelsen WJ. Varices of the upper esophagus in superior vena caval obstruction. *Radiology*. 1963;81:945–8.
- Yuan A, Yang PC, Yu CJ, et al. Tumor angiogenesis correlates with histologic type and metastasis in non-small-cell lung cancer. *Am J Respir Crit Care Med.* 1995;152(6 Pt 1):2157–62.
- 26. Daum S, Hagen H, Naismith E, Wolf D, Pircher A. The role of antiangiogenesis in the treatment landscape of non-small cell lung cancer: New combinational approaches and strategies of neovessel inhibition. *Front Cell Dev Biol*. 2020;8:610903.
- Hung MS, Chen IC, Lin PY, et al. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer. Oncol Lett. 2016;12(6):4598–604.
- Imoto H, Osaki T, Taga S, Ohgami A, Ichiyoshi Y, Yasumoto K. Vascular endothelial growth factor expression in non-small-cell lung cancer: Prognostic significance in squamous cell carcinoma. J Thorac Cardiovasc Surg. 1998;115(5):1007–14.

Copyright: © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.