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Abstract: Periodontitis is a prevalent yet frequently overlooked oral disease that is linked to a range of systemic conditions. Although 
basic treatment and periodontal surgery can alleviate the symptoms of periodontitis to a certain extent, the treatment of severe tissue 
defects or refractory cases is not effective. Extracellular vesicles (EVs) are subcellular lipid bilayer particles that come from a variety 
of sources and are prevalent in the biological fluids of vertebrates. They play a key role in intercellular communication by transporting 
multiple signaling molecules. Recent research has indicated that EVs derived from periodontal pathogens can trigger periodontitis, 
exacerbate the periodontal damage, and potentially disseminate to other parts of the body, leading to systemic conditions. Conversely, 
extracellular vesicles derived from dental stem cells (DSCs) have demonstrated the ability to regulate the local periodontal immune 
environment and foster the regeneration and repair of periodontal tissues, positioning them as a promising candidate for cell-free 
therapeutic approaches to periodontitis. This review aims to summarize the latest research on the involvement of EVs from different 
sources in the pathogenesis and treatment of periodontitis, especially to systematically elucidate the mechanism of EVs secreted by 
periodontal pathogens in periodontitis-related systemic diseases for the first time. By uncovering these complex regulatory processes, 
new and more effective therapeutic approaches can be explored in the battle against periodontitis and its associated systemic diseases. 
Keywords: extracellular vesicles, outer membrane vesicles, dental stem cells, periodontitis, pathogenesis, therapy

Introduction
Periodontitis, the primary cause of tooth loss among adults, affects nearly 61.6% of the global population, with severe 
cases impacting roughly 23.6%.1 This condition is not only confined to oral health but also has been linked to systemic 
illnesses such as diabetes mellitus, Alzheimer’s disease, cardiovascular disease, and certain types of cancer.2–4 

Nonsurgical periodontal treatment (NSPT) is the basis of periodontitis treatment, mainly including supragingival scaling, 
subgingival scaling and root planing. Surgical treatment is a supplement to nonsurgical treatment, especially when 
periodontitis has advanced to a more severe stage. However, these conventional treatments are not effective in treating 
severe tissue defects or refractory cases. Moreover, given the limitations of the current study design, the potential 
beneficial effects of nonsurgical periodontal therapy on arterial stiffness in patients with periodontitis still need to be 
validated in clinical trials.5 This strongly suggests the need to unlock new therapeutic method.

Extracellular vesicles (EVs) secreted by periodontal pathogens have been proved to be a key link in the occurrence 
and development of periodontitis and may also be a potential risk factor for related systemic diseases. Higher baseline 
levels of periodontal pathogens have been found to significantly interfere with the efficacy of one-stage full-mouth 
subgingival instrumentation for periodontitis.6 In addition, research has also highlighted the promise of EVs in combating 
inflammation-related diseases, particularly periodontitis.7 Compared with a single cell or bacteria, EVs can carry and 
deliver nucleic acids, proteins, lipids and other bioactive molecules for efficient information exchange between cells, thus 
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playing a central role in a variety of physiological and pathological processes. In addition, EVs-mediated cell-free 
therapy effectively avoids the risk of immune rejection and tumor formation that may accompany stem cell 
transplantation.

Based on the above findings, this study was conducted by searching PubMed, Web of Science, Cochrane and Embase 
databases for all publications related to this topic up to October 2024, especially those published in the last 5 years. Non- 
English, non-availability of full text, duplication of publications, abstracts of meetings and policy papers were excluded. 
This review synthesizes current understanding of EVs’ involvement in periodontitis, emphasizing their bifurcated roles. 
In particular, it is the first comprehensive summary of how EVs released by periodontal pathogens are involved in the 
pathogenesis of periodontitis-related systemic diseases. This study was aimed to fully explore the potential of EVs in 
periodontitis treatment by revealing the nuances of the dual role of EVs and refining preclinical approach to EVs 
application to compensate for the shortcomings of conventional treatments.

Overview of EVs
EVs, subcellular particles sized 30 nm to 1 μm and enclosed by a lipid bilayer, display a cup-shaped morphology under 
electron microscopy.8 The membrane structure of EVs facilitates the carriage and delivery of various cellular compo-
nents, including proteins, nucleic acids, and lipids. Surface-specific proteins or glycoproteins on EVs act as markers for 
EV type identification and parent cell tracing. Additionally, receptors or ligands on EVs engage with target cells, 
mediating binding and fusion.9 Changes in the sugar or protein composition of EV membrane affect vesicle tropism 
and physiological properties. For example, exposure to the integrin CD47 on the surface of EVs can protect EVs from 
phagocytosis, thereby increasing the circulation time of EVs in the bloodstream.10 In addition, the lipid membrane 
bilayer of EVs allows a variety of hydrophobic therapeutic ingredients to be incorporated to improve the stability and 
efficacy of these drugs.11 Therefore, taking full advantage of membrane modules for modification is an innovative way to 
design EVs. Moreover, the content of different cargos (such as proteins, transcription factors, nucleic acids, etc) in EVs 
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will vary depending on the parental cell type, physiological conditions, and biogenesis.12 As paracrine messengers, EVs 
transport signaling molecules, thereby regulating a myriad of cellular pathways either in the vicinity or at a distance.

Bacterial-Derived EVs
The majority of EVs released by bacteria, especially Gram-negative bacteria, are classified as bacterial outer membrane 
vesicles (OMVs).13 These vesicles serve as a crucial conduit for interactions within microbial communities and between 
microbes and their hosts. Unattached subgingival plaque is the key initiating factor of periodontitis, which is rich in 
gram-negative bacteria. Research has demonstrated that OMVs derived from periodontal pathogens (hereinafter referred 
to as pp-EVs) play a significant role in the establishment of bacterial biofilms.14 Upon interaction with pathogen- 
associated molecular patterns (PAMPs) present on pp-EVs, pattern recognition receptors (PRRs) on the host’s immune 
cells can trigger inflammatory responses and initiate EV-mediated adaptive immune responses.15 Kim et al suggested that 
pp-EVs accelerate bone loss through inhibiting bone formation and increasing bone resorption.16 In addition, pp-EVs can 
restrain the proliferation and growth of fibroblasts, resulting in chronic periodontitis.17

Dental Stem Cell-Derived EVs
Beyond the pathological impact of pp-EVs on periodontal tissues, EVs released by dental stem cells (hereinafter referred to 
as DSC-EVs) are instrumental in periodontitis therapy. They achieve this by modulating the immune microenvironment and 
fostering the regeneration of periodontal tissues.18,19 To date, seven distinct types of DSCs have been identified and 
isolated, encompassing tooth germ stem cells (TGSCs), dental follicle stem cells (DFSCs), stem cells from the apical papilla 
(SCAPs), dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), stem cells from exfoliated deciduous 
teeth (SHEDs), and gingival mesenchymal stem cells (GMSCs).20 Hu et al found that GMSC-derived EVs (hereinafter 
referred to as GMSC-EVs) effectively cross-regulate NF-κB and Wnt/β-catenin signaling pathways to promote osteogenic 
differentiation of PDLSCs in inflammatory environment.21 In a rat model of periodontal defect, EVs derived from DFSCs 
have been shown significant periodontal regeneration potential.22 On one side of the spectrum, DSC-EVs have been found 
to stimulate neovascularization and encourage the osteogenic differentiation of stem cells, which in turn mitigates the loss 
of alveolar bone.23,24 Conversely, DSC-EVs also bolster the reparative capacity of compromised periodontal tissues by 
augmenting the proliferation, migration, and collagen production of periodontal cells (Figure 1).25

Hence, EVs originating from various sources may exhibit distinct roles in the pathogenesis and treatment of 
periodontitis. The revelation of these related regulatory mechanisms may provide new strategies to tackle periodontitis.

Pathogenesis of pp-EVs in Periodontitis and Related Systemic Diseases
pp-EVs instigate inflammation and tissue destruction in periodontitis by breaching the oral epithelial barrier and 
perturbing the periodontal immune microenvironment. The possible pathogenesis of pp-EVs in periodontitis has been 
adequately described in Cai and Huang’s review and will not be repeated here.26,27 Emerging data from both epidemio-
logical and experimental studies have demonstrated a connection between periodontitis and multiple systemic diseases, 
including diabetes mellitus, Alzheimer’s disease, cardiovascular disease, and osteoporosis. And the presence of period-
ontitis is likely to affect the prognosis and outcome of these diseases. The bacterium Porphyromonas gingivalis 
(P. gingivalis), a key player in periodontitis, has been identified not just in the oral lesion sites but also in distant organs 
such as the brain, cardiovascular system, liver and fallopian tube-ovaries.28 Beyond its nanoscale dimensions and robust 
structural integrity, OMVs also boasts exceptional environmental adaptability and the ability to evade immune detection. 
These traits facilitate its ability to surpass the localized regions of its parent bacteria, thereby enhancing its 
invasiveness.29 Moreover, the relatively high concentration and stable composition of pathogenic agents in OMVs 
enable them to establish bacteria-host dialogue and instigate disease processes even when live bacteria are not present. 
Hence, pp-EVs are potentially a significant nexus connecting periodontitis with its associated systemic diseases. Through 
in-depth understanding of the mechanisms involved, potential therapeutic intervention targets can be found in the 
treatment of periodontitis-related systemic diseases.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S504612                                                                                                                                                                                                                                                                                                                                                                                                   1319

Zhang et al

Powered by TCPDF (www.tcpdf.org)



pp-EVs and Diabetes Mellitus
Diabetes mellitus is caused by defects in insulin secretion or activity. Periodontitis and diabetes mellitus have 
a bidirectional association, which can mutually promote their prevalence and severity.30 The mechanisms by which 
diabetes mellitus facilitates periodontitis have been comprehensively described by Zhao et al, including microbiome 
factors, host immune factors, and oxidative stress.31 Meanwhile, several studies have shown that P. gingivalis may play 
a major role in the development of type 2 diabetes mellitus by inducing insulin resistance. For example, P. gingivalis- 
induced endotoxemia can exacerbate nonalcoholic fatty liver disease by increasing insulin resistance and inhibiting 
glucose metabolism.32 Seyama et al reported that gingipains, an important virulence factor secreted by P. gingivalis- 
derived OMVs (hereinafter referred to as Pg-EVs), can inhibit glycogen synthesis in liver cells by targeting the Akt/ 
GSK-3β signaling pathway and thus maintain a high level of blood sugar in experimental mice.33 Moreover, in an 
experiment by Huang, Pg-EVs were shown to release arginine gingival proteinase (Rgp) into the aqueous humor when 
injected into diabetic mice via venules. This process increased the level of oxidative stress in retinal microvascular 
endothelial cells and lead to mitochondrial dysfunction, thereby aggravating retinopathy in diabetic mice.34

pp-EVs and Alzheimer’s Disease
Alzheimer’s disease is a prevalent neurodegenerative condition in the elderly. Evidence suggests that periodontal 
pathogens and their virulence factors can cross the blood-brain barrier (BBB), facilitate the penetration of related 
pathogenic factors and cause pathological changes similar to those observed in Alzheimer’s disease.35 Nonaka found 
that Pg-EVs delivered gingipain to cerebral microvascular endothelial cells through the blood circulation and degrades 
tight junction proteins including Zonula occludens-1 (ZO-1) and occludin. Such pathological changes destroyed the BBB 
and promoted P. gingivalis and its virulence factors to infiltrate into the brain parenchyma.36 Consistent with these 
findings, Elashiry et al demonstrated for the first time in a mouse model that Pg-EVs can metastasize and cross the BBB 
to participate in the pathogenesis of AD.37 Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) is an 

Figure 1 Duality of EVs in periodontitis. The pink area shows common periodontal pathogens and the pathways by which EVs secreted by them enter non-phagocytic host 
cells. In contrast, the blue region highlights common dental stem cells, illustrating how the EVs they produce are taken up by recipient cells. 
Abbreviations: P. gingivalis, Porphyromonas gingivalis; A. actinomycetemcomitans, Actinobacillus actinomycetemcomitans; P. intermedia, Prevotella intermedia; F. nucleatum, 
Fusobacterium nucleatum.
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equally essential periodontal pathogen, and A. actinomycetemcomitans-derived OMVs (Aa-EVs) can also penetrate the 
BBB and invade the brain.38 Choi and his collaborators indicated that Aa-EVs provoke neuroinflammation by delivering 
extracellular RNA (exRNA) to activate the proinflammatory factors IL-6 and NF-κB in brain monocyte/microglia.39

pp-EVs and Cardiovascular Disease
Disruption of intercellular junctions between endothelial cells impairs the normal function and integrity of the endothelial 
barrier, which further exacerbates vascular failure and cardiovascular disease.40 To determine whether pp-EVs can 
mediate endothelial dysfunction, Farrugia et al extracted Pg-EVs and infected human umbilical vein endothelial cells 
(HUVECs). Interestingly, the gingipains in pp-EVs suppress the expression of platelet-endothelial cell adhesion molecule 
1 (PECAM-1) on the cell surface and loosen intercellular contact, thereby increasing the permeability of endothelial 
cells.41 Moreover, Yue and cooperator reported that Rho kinase (ROCK) mediates pp-EV-induced endothelial nitric oxide 
synthase (eNOS) suppression through ERK1/2 and p38 MAPK, thereby destroying vascular integrity and homeostasis.42 

In addition, pp-EVs can also elicit cardiovascular disease by facilitating the formation of atherosclerosis. Pg-EVs 
upregulate the expression of Runt-related transcription factor-2 (RUNX2) by rapidly activating ERK1/2 in vascular 
smooth muscle cells (VSMCs), which is conducive to cell calcification and atherosclerosis.43

pp-EVs and Other Diseases
Currently, the significance of pp-EVs in other systemic diseases has been gradually emphasized. For instance, He et al 
proposed that Pg-EVs destroy the function of the lung epithelial barrier and inflict inflammatory lung diseases.44 EVs 
derived from P. gingivalis or Filifactor alocis (F. alocis) are concentrated in long bones after intraperitoneal adminis-
tration and subsequently activate osteoclast precursors to yield transcription factors, ultimately leading to 
osteoporosis.45,46 It can be seen that pp-EVs may travel throughout the body by blood circulation and trigger or 
aggravate pathological changes in the distal organs by carrying multiple bioactive molecules. This realization under-
scores that a single treatment may not be sufficient to address the complexity of systemic diseases associated with 
periodontitis. When devising treatment strategies for patients grappling with periodontitis alongside associated systemic 
conditions, it is essential to integrate a multifaceted approach that encompasses periodontal therapy. The pathogenesis of 
pp-EVs in periodontitis related systemic diseases are summarized in Figure 2 and Table 1.

Restoration Mechanisms of DSC-EVs in Periodontitis Therapy
Traditional stem cell therapy excels at facilitating tissue repair, regeneration, and addressing stubborn medical conditions. 
Nonetheless, it carries inherent risks, including unpredictable cell differentiation, procedural complexity, and safety 
concerns. In this context, EV-mediated cell-free therapy stands out for its ability to mimic parental cell functions more 
effectively. It is characterized by heightened safety, enhanced tissue penetration, accurate targeting, and a multiplicity of 
functions. These attributes render EVs a compelling option for therapeutic interventions in periodontitis.52,53 Figure 3 
shows the restoration mechanisms of DSC-EVs in periodontitis therapy.

The Role of microRNAs in DSC-EVs
MicroRNAs (miRNAs) in EVs are essential for cell communication and signal transduction, affecting physiological and 
pathological processes. In cell-free therapies, DSC-derived EVs are key vectors for miRNA delivery and precise cell 
function regulation. Liu et al first identified miRNAs in PDLSC-derived EVs that promote osteogenesis in recipient cells, 
shedding light on miRNA regulatory mechanisms in DSC-EVs during this process.54 Similarly, Shen et al suggested that 
miR-1246 enrichment in DPSC-EVs protects experimental mice from alveolar bone loss, while antiagomiR-1246 
reverses these effects.55 To dissect the regulatory effects of miRNAs in EVs on angiogenesis, Pizzicannella analyzed 
differentially expressed miRNAs in GMSC-EVs. These authors suggested that GMSC-EVs enhance the expression of 
VEGF, OPN, and RUNX2 in a rat skull defect model by delivering miR-2861 and miR-210.56 Furthermore, periodontal 
cell senescence and impaired multifunctional differentiation caused by oxidative stress are not conducive to the repair 
and regeneration of periodontal defects. Accordingly, delaying cell senescence may be an emerging alternative for 
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elucidating the intrinsic repair mechanism of periodontal tissue.57 Mas-Bargues found that high oxygen tension causes 
DPSC senescence, but EV-derived miR-302b can delay this and restore DPSC pluripotency.58

In fact, in addition to miRNAs, there are other nucleic acid components in EVs, such as mRNAs, circRNAs, and 
lncRNAs. Xie et al demonstrated that elevated circLPAR1 in DPSC-EVs, by competitive binding to hsa-miR-31, 
enhances SATB2 expression and osteogenic differentiation in recipient cell.59 Furthermore, SHED-derived EVs (SHED- 

Figure 2 Promotional roles of pp-EVs in periodontitis related systemic diseases. pp-EVs not only affect local periodontitis lesions but also delivery to distal organs via the 
bloodstream. 
Abbreviations: eNOS, endothelial nitric oxide synthase; VSMCs, vascular smooth muscle cells; PAR2, protease-activated receptor 2; NLRP3, NOD-like receptor thermal 
protein domain associated protein 3; OCD, occludin; CLD-1, claudins-1; VEGFA, vascular endothelial growth factor A; PLGF, placental growth factor; sFLT-1, soluble fms-like 
tyrosine kinase-1; MCP-1, monocyte chemoattractant protein-1; ↑, upregulation; ↓, downregulation.

Table 1 The Pathogenic Role of pp-EVs in Systemic Diseases

Disease 
Type

EVs 
Source

Recipient  
Cells

Cargo Primary Effect and Related Mechanism Ref

Diabetes 

mellitus

Pg HepG2 cells Gingipains Promote diabetes mellitus via inhibiting the Akt/GSK-3β pathway in 

hepatocytes

[33]

Pg HRMECs – Aggravate diabetic retinopathy by activating PAR-2 [34]

Alzheimer’s 

Disease

Pg HMC3 cells Gingipains Induce neuroinflammation via increasing proinflammatory cytokines [47]

Pg BV2 microglia 

cells

exRNA Induce neuroinflammation through activating NF-κB pathway [39]

Pg hCMEC/D3 Gingipains Disrupt the BBB via degradation ZO-1 and occludin [36]

Pg HBMEC Gingipains, 
LPS

Disrupt the BBB via degradation ZO-1 [37]

Aa U937 cells exRNA Induce neuroinflammation through TLR-8 and NF-κB pathway [48]

(Continued)
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EVs) enhanced glutamate metabolism and oxidative phosphorylation activity in DPSCs through delivery of the mRNA 
encoding mitochondrial transcription Factor A (TFAM), which was conducive to bone regeneration in DPSCs.60

The Role of Proteins in DSC-EVs
Besides miRNAs, proteins are also essential constituents of EVs, facilitating intercellular communication and the 
transduction of signals through these vesicular shuttles. Furthermore, cargo proteins can be used as biomarkers for 
disease diagnosis and prognosis assessment. Transcriptome sequencing has revealed that GMSCs participate in regulating 
the processes of bone homeostasis and angiogenesis by secreting TGF-β, BMPs, VEGF and so on.61 Luo et al found that 

Table 1 (Continued). 

Disease 
Type

EVs 
Source

Recipient  
Cells

Cargo Primary Effect and Related Mechanism Ref

Cardiovas- 
cular disease

Pg HUVECs – Suppress eNOS production and endothelial cell function via ERK1/2 and p38 
MAPK pathways

[42]

Pg HMEC-1 Gingipains Increase endothelial cell permeability by degradating recombinant PECAM-1 [41]

Pg VSMC – Induce RUNX2 expression and VSMC calcification through ERK pathway [43]

Pg HUVEC – Promote monocyte adhesion by elevating IL-8 and E-selectin expression [49]

Pg J774.A1 cell line LPS Promote the formation of foam cells by inducing the binding of LDL to 
macrophages

[50]

Respiratory 
disease

Pg A549 cells – Destruct the barrier system via activating caspase-3 and degradating PARP [44]

Osteoporo- 
sis

Fa BMMs – Induce osteoclast differentiation and bone resorption via activating the 
TLR2-MAPKs/NF-κB pathway

[45]

Adverse 

pregnancy

Pg HTR-8 cell line – Disrupt placental homeostasis by disrupting trophoblast for vascular 

transformation and immune homeostasis maintenance

[51]

Notes: –, unknown. 
Abbreviations: Pg, P. gingivalis; Aa, A. actinomycetemcomitans; Fa, F. alocis.

Figure 3 Inhibitory roles of DSC-EVs in periodontitis. DSC-EVs inhibit the development of periodontitis and promote periodontal tissue regeneration by promoting 
osteogenesis (upper left area), promoting angiogenesis (upper right area), regulating the immune microenvironment (lower left area), and improving soft tissue repair (lower 
right area). 
Abbreviations: LOXL2, lysyl oxidase like 2; Cdc42, cell division cycle 42; IDO, indoleamine 2,3-dioxygenase.
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SHEDs-EVs can mobilize naïve bone marrow mesenchymal stromal cells (BMSCs) through secreting multiple growth 
factors, thereby promoting bone and periodontal tissue regeneration.62 Zhang et al reported a significant increase in 
VEGFA expression in inflamed PDLSCs, resulting in enhanced angiogenesis in HUVECs when co-cultured with 
inflamed PDLSCs.63 Given the above findings, EVs play a remarkable role in the treatment of periodontitis by delivering 
proteins to recipient cells.

Key Pathways Mediated by DSC-EVs
Although the types of molecules transported by EVs are distinctive in various cell types or in diverse growth micro-
environments, key pathways in recipient cells are always mobilized by this delivery. Over the years, the pathways 
affected by DSC-EVs in the treatment of periodontitis have been extensively and intensively studied.

Mitogen-Activated Protein Kinase (MAPK) Pathway
MAPK pathway is a critical bridge connecting extracellular signals with intracellular responses. Co-culturing PDLSCs 
with DFSCs enhances PDLSC proliferation and osteogenic differentiation via the p38 MAPK pathway, and this effect is 
confirmed in periodontal tissue regeneration in SD rats.64 Jin et al confirmed that DPSC-EVs promoted the migration and 
mineralization of adipose derived stem cells (ADSCs) by activating the MAPK pathway, and significantly improved the 
regeneration of mandibular defects in rats.65 Similarly, Zhao et al extracted EVs from PDLSCs to incubate BMSCs and 
discovered that these cells could expedite cell proliferation and migration by increasing the phosphorylation of AKT and 
ERK1/2, subsequently accelerating bone tissue repair.66 Furthermore, DPSC-EVs were shown to promotes migration, 
proliferation and capillary formation of HUVECs by upregulating Cdc42/p38 MAPK signaling pathway.67

Wnt Pathway
The Wnt signaling pathway is recognized for its multifaceted role in periodontal biology. It not only stimulates the 
proliferation and differentiation of periodontal cells but also governs the cementum formation and development. 
Furthermore, it exerts a regulatory influence on the dynamics of periodontal tissue destruction and regeneration. It has 
been reported that GMSC-EVs improve the regenerative potential of PDLSCs in the inflammatory microenvironment by 
inhibiting NF-κB signaling and Wnt5a expression.68 Qian et al revealed that EVs extracted from curcumin-treated 
PDLSCs had an enhanced pro-osteogenic ability, which was due to upregulated p-GSK3β and β-catenin protein levels in 
the recipient cells.69 Consistently, after TNF-α pretreatment, miR-1260b in GMSC-EVs downregulated osteoclastogenic 
activity of periodontal ligament cells by inhibiting the Wnt5a/RANKL pathway.70 These results provide valuable new 
ideas for the treatment of periodontitis.

Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) Pathway
JAK2/STAT3 pathway is involved in the initiation and progression of inflammatory responses and immune responses in 
diverse pathological processes. For instance, DPSC-EVs effectively downregulated the expression of the IL-6, p-JAK2, 
and p-STAT3 proteins in LPS-treated PDLSCs. These findings suggested that the JAK2/STAT3 pathway may be involved 
in regulating the anti-inflammatory and osteogenic effects of DPSC-EVs on PDLSCs.71 Moreover, recent studies have 
focused on the role of STAT3 in the regulation of autophagy. Xie et al processed macrophages with SHED-EVs and 
discovered that STAT3 pathway-related proteins were activated, subsequently promoting the expression of the autop-
hagy-related protein LC3.72

Other Signaling Pathway
M1 and M2 macrophage polarization imbalance is key in periodontitis progression. LPS-stimulated PDLSCs secrete EVs 
that enhance M1 polarization via TLR2/TLR4/NF-κB,73 while GMSC-EVs promote M2 polarization through HIF-1α/ 
mTOR after TNF-α and IFN-α stimulation.74 Hypoxic preconditioning has been reported to markedly increase EV release 
in DPSCs and promote the polarization of M2 macrophages, thus ameliorating LPS-induced inflammatory osteolysis.75 

Table 2 summarizes the restoration mechanism of DSC-EVs in periodontitis therapy and tissue regeneration.
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Table 2 Restoration Mechanisms of DSC-EVs in Periodontitis Therapy and Tissue Regeneration

Cargo 
Type

EVs 
Source

Recipient Cells Cargo/Pathway Primary Effect Ref

miRNA PDLSCs PDLSCs miR-141-3p Alleviate PDLSCs senescence induced by hyperglucose [76]

SHEDs PDLSCs miR-92a-3p Promote proliferation and osteogenic differentiation, but 
inhibit apoptosis and inflammation

[77]

DPSCs BMDM miR-1246 Promote M2 macrophage polarization [55]

DPSCs DPSCs miR-302b Delay the aging of DPSCs and restore cellular pluripotency [58]

DPSCs Naïve CD4 T cells miR-1246 Restore Th17/Treg balance [78]

DPSCs PDLSCs miR-758-5p Promote osteogenic and odontogenic differentiation [79]

GMSCs GMSCs miR-2861, miR-210 Promote osteoangiogenesis [56]

PDLSCs HUVECs VEGFA Promote angiogenesis [63]

PDLSCs PDLSCs BMP2/4, VEGFA, 

VEGFR2

Promote osteogenesis and angiogenesis [80,81]

SHEDs BMSCs TGF-β 1, PDGF, IGF- 

1, FGF-2

Promote Naïve BMSCs migration [62]

SCAPs HUVECs Cdc42 Promote angiogenesis [82]

Pathway PDLSCs BMSCs AKT and ERK1/2 
pathway

Enhance BMSC migration [66]

PDLSCs CD4+ T Cells ERK pathway Inhibit T cell proliferation but promote Treg cell differentiation [83]

SHEDs THP-1 cells AKT, ERK1/2 and 

STAT3 pathway

Induce autophagy in macrophages [72]

SHEDs HUVECs TGF-β/SMAD2/3 

pathway

Promote angiogenesis [84]

DPSCs ADSCs MAPK pathway Promote osteogenic differentiation [65]

DPSCs PDLSCs IL-6/JAK2/STAT3 

pathway

Inhibit inflammation [71]

DPSCs RAW264.7 

macrophages

NF-κB1 pathway Induce M2 macrophage polarization but inhibit 

osteoclastogenesis

[75]

GMSCs PDLSCs NF-κB and Wnt5a 

pathway

Suppress inflammation [68]

GMSCs PDLCs Wnt5a/RANKL 

pathway

Inhibit osteoclastogenesis [70]

DFSCs PDLSCs p38 MAPK pathway Promote PDLSCs proliferation [64]

DFSCs PDLSCs, RAW264.7 

macrophages

ROS/MAPK pathway Enhance antioxidant effects and M2 polarization [85]

circRNA DPSCs DPSCs circLPAR1 Promote osteogenic differentiation [59]

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S504612                                                                                                                                                                                                                                                                                                                                                                                                   1325

Zhang et al

Powered by TCPDF (www.tcpdf.org)



Application Strategy of EVs in the Prevention and Treatment of 
Periodontitis
Taking Full Advantage of pp-EVs for Vaccine Development
OMVs mimic parental bacteria’s immunogenicity, elicit host adaptive responses, and are highly stable for <1 year at low 
temperatures.86 In 2016, the Food and Drug Administration (FDA) successfully approved an OMV-based vaccine, 
namely, the meningitis serotype B vaccine BEXSERO (GlaxoSmithKline, London, UK), demonstrating the viability of 
OMVs as a vaccine or drug delivery platform.87 Local combination of Pg-EVs and TLR3 agonist poly(I:C) on the nasal 
mucosa has been reported to effectively trigger a specific antibody response significantly reducing P. gingivalis levels in 
mice, with safety confirmed in a trial by Nakao.88 These findings confirm pp-EVs’ feasibility as a safe, efficient 
intranasal vaccine for periodontitis. While all Gram-negative bacteria produce OMVs with varying yields and cargos, 
even under different environmental conditions, thorough evaluation is essential before pp-EVs can be developed into 
vaccines. Maximizing the immunogenicity of pp-EVs is crucial while ensuring safety and tolerability.

Functional Modification Strategies for EVs Before Clinical Application
Preclinical studies indicate MSC-EVs’ potential in treating inflammation and promoting tissue regeneration. However, 
the successful clinical application of EVs still faces certain limitations, such as low yield, rapid clearance, unsatisfactory 
targeting ability, and uncertain loading efficiency.89 In this regard, Yang et al8 summarized the emerging technologies for 
EVs isolation, engineering, and delivery systems (eg, heterogeneous hydrogels, microneedle patches and micro- 

Figure 4 Cargo loading methods for EVs. Based on coincubation, physicochemical direct loading methods such as surfactant treatment, sonication, electroporation, 
extrusion, freeze‒thaw cycling and dialysis have been developed to improve cargo loading efficiency.
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nanoparticles). Notably, the autonomous mobility of emerging nanomotor technology is expected to be used in the future 
to enhance EVs delivery efficiency and targeting.

The most common cargo loading method involves preprocessing parental cells by optimizing culture, co-incubating with 
therapeutics, and transfecting with RNA, peptides, and proteins. For instance, hypoxia preconditioning stimulated SHED- 
EVs’ potential in angiogenesis and osteogenesis by boosting EVs secretion, VEGF signaling and thyroid hormone 
synthesis.90 Xu et al demonstrated that PDLSCs engineered with the P2X7R gene release EVs that enhance osteogenic 
differentiation in inflammation via differential miRNA expression.91 Although the abovementioned three loading methods 
are relatively simple, the loading efficiency and drug toxicity on EV secretion cannot be controlled. Researchers suggest 
either direct co-incubation of therapeutic agents with EVs or temporary membrane disruption using physicochemical 
methods for drug loading (Figure 4). After loading BMP2 into EVs via electroporation or sonication, Yerneni et al reported 
that the loading efficiency of sonication increased by more than 3-fold.92 Physicochemical methods can enhance cargo 
loading efficiency in EVs, but they must be carefully optimized to avoid damaging or contaminating the EVs.

Additionally, EVs can be equipped with targeting ligands like antibodies, peptides, or proteins to enhance their ability 
to recognize and bind specific targets. For instance, CXCR4-overexpressing EVs boost macrophage targeting and M2 
macrophage polarization by delivering miR-126.93 EV targeting can also be enhanced by their surface negative potential 
for electrostatic attraction or by conjugating them with iron oxide nanoparticles for magnetic attraction.94,95 Additionally, 
combining EVs with biomaterials improves targeted drug delivery, reduces EV clearance by the immune system, and 
enables local sustained release.96 (Figure 5).

Figure 5 Strategies for targeting EVs. Methods to increase the affinity of EVs for specific sites include genetic engineering, integration of ligands or peptides on the EVs’ 
surface or resorting to biomaterials and electrostatic and magnetic attraction.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S504612                                                                                                                                                                                                                                                                                                                                                                                                   1327

Zhang et al

Powered by TCPDF (www.tcpdf.org)



Conclusions and Future Perspective
Rising as vital mediators of intercellular communication, EVs have been identified to influence the progression of 
periodontitis from multiple perspectives and seemingly playing a Janus-faced role in regulating the fate of periodontitis. 
Therefore, giving full play to the protective effect of EVs on periodontal tissue, such as the development of pp-EV 
vaccine and engineering EVs, may play an unexpected role in periodontitis prevention and periodontal regeneration 
treatment. Reasonably combined with conventional periodontal therapy, EVs may effectively improve quality of life in 
patients with periodontitis. Although EVs have shown great potential in disease diagnosis and treatment, the negative 
outcomes that may accompany their preclinical application have been less reported. In view of the current difficulties in 
the preparation of therapeutic EVs, it is necessary to further explore the safety risks caused by methodological bottle-
necks. In addition, with the further study of EV-mediated systemic interactions and the continuous overcoming of 
methodological bottleneck, the clinical application prospect of treating periodontitis and related systemic diseases by EVs 
will be brighter.
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