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Abstract
1.	 Food	web	models	explain	and	predict	the	trophic	interactions	in	a	food	web,	and	
they	 can	 infer	missing	 interactions	 among	 the	 organisms.	 The	 allometric	 diet	
breadth	model	(ADBM)	is	a	food	web	model	based	on	the	foraging	theory.	In	the	
ADBM,	the	foraging	parameters	are	allometrically	scaled	to	body	sizes	of	preda-
tors	and	prey.	In	Petchey	et	al.	(Proceedings of the National Academy of Sciences,	
2008;	105:	4191),	the	parameterization	of	the	ADBM	had	two	limitations:	(a)	the	
model	parameters	were	point	estimates	and	(b)	food	web	connectance	was	not	
estimated.

2.	 The	novelty	of	our	current	approach	is:	(a)	We	consider	multiple	predictions	from	
the	ADBM	by	parameterizing	it	with	approximate	Bayesian	computation,	to	esti-
mate	parameter	distributions	and	not	point	estimates.	(b)	Connectance	emerges	
from	the	parameterization,	by	measuring	model	fit	using	the	true	skill	statistic,	
which	takes	into	account	prediction	of	both	the	presences	and	absences	of	links.

3.	 We	fit	the	ADBM	using	approximate	Bayesian	computation	to	12	observed	food	
webs	from	a	wide	variety	of	ecosystems.	Estimated	connectance	was	consist-
ently	 greater	 than	 previously	 found.	 In	 some	of	 the	 food	webs,	 considerable	
variation	in	estimated	parameter	distributions	occurred	and	resulted	in	consid-
erable	variation	(i.e.,	uncertainty)	in	predicted	food	web	structure.

4.	 These	results	lend	weight	to	the	possibility	that	the	observed	food	web	data	is	
missing	some	trophic	 links	that	do	actually	occur.	 It	also	seems	 likely	that	the	
ADBM	likely	predicts	some	links	that	do	not	exist.	The	latter	could	be	addressed	
by	accounting	in	the	ADBM	for	additional	traits	other	than	body	size.	Further	
work	could	also	address	the	significance	of	uncertainty	in	parameter	estimates	
for	predicted	food	web	responses	to	environmental	change.
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1  |  INTRODUC TION

Knowledge	about	the	trophic	 interactions	among	the	organisms	in	
a	community	is	crucial	for	understanding	the	structure	and	dynam-
ics	of	ecological	 communities	and	 for	predicting	 their	 response	 to	
environmental	change	(Bergamino	et	al.,	2011;	Dunne	et	al.,	2002;	
Krause	et	al.,	2003;	Lurgi	et	al.,	2012;	Morris	et	al.,	2015;	O'Connor	
et	al.,	2009;	Tylianakis	&	Binzer,	2014).	The	network	of	trophic	 in-
teractions	is	often	referred	to	as	a	food	web.	The	food	web	struc-
ture	can	provide	answers	to	key	ecological	questions:	which	species	
are	 more	 vulnerable	 to	 environmental	 changes	 such	 as	 tempera-
ture	(Petchey	et	al.,	1999);	how	robust	a	food	web	is	to	extinctions	
(Dunne	et	al.,	2002);	and	how	a	food	web	reacts	if	the	predators	are	
removed	(Knight	et	al.,	2005)?

Trophic	 interactions	 information	 from	multiple	 sources	 can	 be	
used	to	infer	a	food	web,	for	example,	gut	contents	(Peralta-	Maraver	
et	al.,	2016)	and	cannot	be	assigned	with	certainty	to	a	specific	prey	
item	(Baker	et	al.,	2014).	With	stable	isotope	ratios	of	tissues,	uncer-
tainty	may	be	due	to	factors	such	as	variability	in	the	isotopic	frac-
tionation	values	across	multiple	combinations	of	diets	and	tissues/
species,	unquantified	temporal,	or	spatial	variation	in	prey	isotopic	
values,	and	variation	caused	by	routing	of	particular	dietary	nutri-
ents	 into	 particular	 tissues	 (Crawford	 et	 al.,	 2008).	 Furthermore,	
complete	recording	of	all	 interactions	usually	requires	a	large	sam-
pling	effort	even	at	small	spatial	and	temporal	scales	(Hobson	et	al.,	
1994).	Food	web	structure	is	very	difficult	to	record	at	larger	spatial	
and	temporal	scales	without	losing	resolution	(spatial,	temporal,	and	
taxonomic;	Gravel	et	al.,	2013;	Jord'an	&	Osváth,	2009;	Martinez,	
1991).	 Less	 than	 complete	 sampling	 of	 interactions	 can	 result	 in	
no	interaction	being	observed	between	a	pair	of	individuals	that	in	
fact	do	interact,	which	results	in	missing	links	in	a	food	web.	Due	to	
under-	sampling,	 food	webs	 can	 be	 poorly	 understood,	which	may	
hinder	further	advances	in	the	field	(Martinez	et	al.,	1999).

When	 interactions	 are	 difficult	 to	 observe,	 and	 hence,	 well-	
documented	food	webs	are	not	available,	models	which	predict	spe-
cies	interactions	may	provide	a	solution	(Allesina	et	al.,	2008;	Cohen	
et	 al.,	 1985;	Gravel	 et	 al.,	 2013;	Petchey	et	 al.,	 2008;	Tamaddoni-	
Nezhad	et	al.,	2013).	A	food	web	model	can	be	used	to	predict	miss-
ing	 information	 about	 species	 interactions.	 For	 example,	 Petchey	
et	al.	(2008)	showed	how	a	model	of	species	interactions	(and	there-
fore	food	web	structure)	could	be	parameterized	from	data	on	the	
known	presence	and	absence	of	trophic	interactions.	The	model	and	
its	parameter	values	encode	the	rules	for	occurrence	or	absence	of	
species	 interactions	to	predict	food	web	structure.	Observed	data	
may	 be	 used	 to	 select	 and	 parameterize	 the	 model.	 Tamaddoni-	
Nezhad	et	al.	(2013)	used	large	agricultural	datasets,	logic-	based	ma-
chine	learning,	and	text	mining	to	assign	interactions	between	nodes	
to	automatically	construct	food	webs.	Gravel	et	al.	(2013),	inspired	
by	the	niche	model	of	food	web	structure,	developed	a	method	that	
used	 the	 statistical	 relationship	 between	 predator	 and	 prey	 body	
size	to	infer	the	food	web.

Food	 web	 models	 are	 also	 useful	 for	 ecological	 forecasting.	
Lindegren	et	al.	(2010)	used	a	stochastic	food	web	model	driven	by	

regional	climate	scenarios	to	produce	quantitative	forecasts	of	cod	
dynamics	in	the	twenty-	first	century.	Hattab	et	al.	(2016)	forecasted	
the	potential	impacts	of	climate	change	on	the	local	food	web	struc-
ture	of	 the	highly	 threatened	Gulf	of	Gabes	ecosystem,	 located	 in	
the	south	of	the	Mediterranean	Sea.	Hence,	food	web	models	have	
an	 important	 role	 in	 filling	gaps	 in	knowledge	about	species	 inter-
actions,	including	predicting	future	changes	in	food	web	structure.

The	allometric	diet	breadth	model	(ADBM)	was	the	first	model	
able	to	predict	food	web	connectance	(i.e.,	the	number	of	realized	
trophic	 links	 divided	 by	 the	 number	 of	 potential	 links)	 and	 struc-
ture	(i.e.,	the	arrangement	of	trophic	links;	Beckerman	et	al.,	2006;	
Petchey	 et	 al.,	 2008).	Models	 such	 as	 the	Cascade	model	 require	
connectance	as	 an	 input	parameter,	whereas	 the	ADBM	does	not	
(Cohen	et	al.,	1985).	It	uses	foraging	theory,	specifically	the	contin-
gency	model	(MacArthur	&	Pianka,	1966),	to	predict	the	diet	of	each	
potential	consumer	and	thereby	the	food	web	structure	(further	de-
tails	are	in	the	Material	and	Methods	section).	The	ADBM	had	vari-
able	success	in	explaining	the	structure	of	15	different	food	webs,	
with	the	proportion	of	links	correctly	predicted	ranging	from	7%	to	
54%	(Table	1).	The	ADBM	correctly	predicted	54%	of	the	presence	
of	 links	 in	 the	Benguela	Pelagic	 food	web.	The	poorest	prediction	
of	presence	of	links	was	for	the	Grasslands	food	web	with	only	7%	
of	the	presence	of	links	correctly	predicted.	When	trophic	interac-
tions	were	more	 strongly	 dependent	 on	 size,	 the	model	 correctly	
predicted	a	greater	proportion	of	links.	Indeed,	constructing	a	food	
web	based	only	on	body	size	(i.e.,	ignoring	taxonomy)	resulted	in	al-
most	twice	the	number	of	correctly	predicted	links,	that	is,	83%,	in	
contrast	to	taxonomy	(Woodward	et	al.,	2010).

Although	 Petchey	 et	 al.	 (2008)	 demonstrated	 that	 foraging	
theory	 could	 predict	 food	web	 structure,	 their	 implementation	 of	
the	ADBM	 included	at	 least	 two	 limitations.	The	parameterization	
method	provided	estimates	of	the	parameters	with	no	uncertainty:	
A	 single	 set	 of	 parameter	 values	 that	 maximized	 the	 explanatory	
power	was	selected.	 In	other	words,	 the	parameterization	method	
led	 to	 point	 estimates	 of	 the	 parameters	 that	 predicted	 a	 single	
food	 web	 structure	 (because	 the	 ADBM	 is	 purely	 deterministic).	
Moreover,	 the	best	predicted	 food	web	was	not	exactly	 the	same	
as	the	observed	one.	In	a	sense	then,	the	parameterization	method	
used	in	Petchey	et	al.	(2008)	was	akin	to	estimating	the	intercept	and	
slope	of	a	regression	line,	but	not	any	uncertainty	in	those	param-
eters.	Given	that	uncertainty	is	an	essential	dimension	in	ecological	
models,	and	in	predictions	about	the	future	state	of	ecological	com-
munities	(Carpenter,	2016;	Petchey	et	al.,	2015),	this	is	an	important	
limitation.

The	second	limitation	was	that	the	connectance	of	the	predicted	
food	web	was	not	estimated.	Although	the	ADBM	can	in	principle	es-
timate	connectance,	Petchey	et	al.	 (2008)	prevented	the	model	from	
doing	so.	They	set	 the	value	of	 relevant	parameters	 in	 the	model	 to	
instead	ensure	the	predicted	connectance	was	equal	to	the	observed	
connectance.	Moreover,	fixing	predicted	connectance	to	be	equal	to	
observed	connectance	does	not	account	for	the	possibility	that	the	ob-
served	connectance	was	 imperfectly	measured.	 Indeed,	 if	 low	effort	
was	used	to	observe	the	trophic	 links	 in	a	community,	 the	observed	
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connectance	 are	 likely	 to	be	 lower	 than	 if	 all	 trophic	 links	were	ob-
served.	Connectance	 is	 an	 important	driver	 for	 the	 stability	and	dy-
namics	of	a	food	web	(May,	1972)	and	most	of	the	structural	properties	
of	food	webs	co-	vary	with	connectance	(Dunne	et	al.,	2002;	Poisot	&	
Gravel,	2014);	thus,	this	limitation	must	be	addressed.

In	 this	article,	we	 report	on	how	we	address	 these	 limitations.	
We	removed	the	first	 limitation	by	applying	approximate	Bayesian	
computation	(ABC).	The	approach	originated	in	population	genetics	
and	has	been	used	in	a	wide	range	of	research	fields:	systems	biol-
ogy	(Toni	et	al.,	2009),	ecology	(Jabot	&	Chave,	2009),	epidemiology	
(Shriner	et	al.,	2006),	and	ecological	networks	(Ibanez,	2012;	Poisot	
&	Stouffer,	2016).	One	of	the	advantages	of	ABC	is	that	it	does	not	
require	a	 likelihood	function.	As	ADBM	is	a	complex	deterministic	
model	where	the	likelihood	cannot	be	explicitly	evaluated,	ABC	is	a	
good	choice	of	parameterization.

We	addressed	the	second	limitation	by	allowing	estimation	of	
number	of	links	as	well	as	arrangement	of	links.	To	accomplish	this,	
we	measured	model	fit	by	using	the	true	skill	statistic	(TSS),	which	
takes	into	account	both	the	number	of	presences	and	absences	of	
links	 correctly	 predicted	 (see	 section	Choice of distance measure 
for	definition	of	the	TSS).	High	values	of	the	TSS	occur	when	both	
the	predicted	arrangement	of	 links	and	the	predicted	number	of	
links	are	close	to	the	observed	arrangement	and	number	of	links,	
respectively.

2  |  MATERIAL S AND METHODS

In	the	upcoming	sections,	we	present	a	detailed	account	of	the	ap-
plication	of	ABC	to	parameterize	the	ADBM,	the	description	of	the	
ADBM	and	 of	 the	 food	web	 data	we	 used.	We	 explain	 the	 rejec-
tion	Monte	Carlo	ABC	method	 in	 the	main	text	and	Markov	chain	
Monte	Carlo	ABC	and	sequential	Monte	Carlo	ABC	methods	in	the	
Supplementary	 information	 (hereafter	SI)	Section	S1	 (hereafter	SI-	
S1).	We	computed	accuracy	with	the	TSS	to	assess	the	ADBM's	pre-
dictions	 and	 calculated	different	 food	web	properties	 to	 compare	
these	predictions	across	food	webs.

2.1  |  Allometric Diet Breadth Model (ADBM)

The	allometric	diet	breadth	model	(ADBM)	is	based	on	optimal	forag-
ing	theory,	specifically	the	contingency	foraging	model	(MacArthur	
&	 Pianka,	 1966).	 The	 ADBM	 predicts	 the	 set	 of	 prey	 species	 a	
consumer	 should	 feed	upon	 to	maximize	 its	 rate	of	 energy	 intake	
(Petchey	et	al.,	2008;	hereafter	referred	as	PBRW	study).	The	spe-
cies	in	this	set	are	assumed	to	have	the	trophic	link	with	the	predator.	
To	make	these	predictions,	the	model	assumes	that	a	foraging	preda-
tor	is	in	one	of	two	exclusive	states:	searching	for	prey	or	handling	a	
prey	item.	The	notation	used	below	corresponds	to	that	of	(Petchey	
et	 al.,	 2008).	The	model	 requires	 four	variables	 for	each	potential	
predator– prey interaction:

•	 The	energy	content	of	the	resources	Ei	(only	prey	i 	specific)	(energy).
•	 The	 handling	 times	Hij,	 which	 is	 the	 time	 not	 spent	 searching	
caused	by	consuming	a	prey	item	(prey	 i  and predator j	specific)	
(time).

• The space clearance rates Aij	(also	known	as	the	attack	rate;	prey	
i  and predator j	specific)	(area	or	volume	per	time).

• The prey densities Ni	(only	prey	 i 	specific)	(individuals	per	area	or	
volume).

The	term	“Allometric”	in	the	ADBM	refers	to	the	use	of	four	allo-
metric	relationships,	one	for	each	of	these	four	variables,	including	
the	body	size	of	the	predator	Mj and prey Mi	 (Table	2).	With	these	
four	allometric	relationships,	and	the	body	size	of	each	of	the	species	
in	a	community,	we	can	predict	the	four	variables	(energy,	handling	
time,	space	clearance	rate,	and	prey	density)	and	then	use	the	con-
tingency	foraging	model	to	predict	diets.

Each	of	the	four	allometric	equations	has	parameters:	a	constant	
and/or	 at	 least	 one	 exponent	 (Table	 2).	 It	 is	 the	 value	 of	 some	of	
these	parameters	that	can	be	estimated	to	have	the	predicted	food	
web	structure	match	(as	closely	as	possible)	the	structure	of	an	ob-
served	food	web.	This	is	akin	to	choosing	values	of	slope	and	inter-
cept	of	a	 linear	regression	that	maximizes	the	fit	of	the	regression	
line	to	the	observed	data.

TA B L E  2 Traits	with	their	allometric	function	and	corresponding	parameters	in	ADBM

Traits (Unit) Allometric function Parameters Comments

Energy	(Joules) Ei = eMi e Arbitrary.	No	effect	on	structurea

Abundance	
(

individual∕m2 or individual∕m3
)

Ni = nM
ni
i

n Connectance	affected	by	the	product	naha

ni Assumed	value	of	− 3

4
	based	on	empirical	data

Space	Clearance	Rate	
(

m
2∕s or m3∕s

)

Aij = aM
ai
i
M

aj

j
a Connectance	affected	by	the	product	naha

Estimated	using	ABC

ai Estimated	using	ABC

aj Estimated	using	ABC

Handling	time	(s) Hij =
h

b−
Mi

Mj

if
Mi

Mj

< b

Hij = ∞ if
Mi

Mj

≥ b

h Connectance	affected	by	the	product	naha

b Estimated	using	ABC

aSee	SI	S5	for	further	explanation	for	why	only	four	parameters	were	estimated.
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Please	 note	 that	 in	 the	 notation	 of	 the	 allometric	 exponents	
(ai,	aj),	the	 i  and j	refer	to	the	exponent	for	the	prey	mass	and	pred-
ator	mass,	respectively,	that	is,	the	 i  and j	refers	to	the	role	and	are	
not	species	specific.

Because	 some	 of	 the	 allometric	 constants	 and	 exponents	 are	
known,	 and	 because	 others	 are	 redundant	 with	 respect	 to	 each	
other	(see	Table	2	for	details),	we	estimate	only	the	following	param-
eters: a,	ai,	aj and b	in	the	model	(Table	2).

In	the	ADBM,	some	species	can	be	predicted	to	eat	others,	but	
to	not	be	eaten	by	others,	that	is,	be	predicted	to	be	a	top	predator.	
This	can	occur	for	relatively	large	species	when	the	exponent	b is less 
than	1,	which	can	cause	the	handling	time	of	this	large	species	to	be	
infinite	for	all	potential	consumer	species.

2.2  |  Observed food web data

The	observed	food	webs	that	we	fit	the	ADBM	to	belong	to	marine,	
freshwater,	and	terrestrial	ecosystems	(Table	1).	The	observed	con-
nectance	of	these	food	webs	is	from	0.03	to	0.24	and	there	are	29	to	
239	species.	The	food	webs	contain	primary	producers,	herbivores,	
carnivores,	 parasites,	 and	 parasitoids.	 They	 also	 contain	 various	
types	of	feeding	interactions,	including	predation,	herbivory,	bacte-
rivory,	parasitism,	pathogenic,	and	parasitoid.

The	 goodness	 of	 fit	 of	 the	 ADBM's	 predictions	 depends	 on	
the	 types	 of	 interactions	 in	 the	 food	 webs	 in	 the	 PBRW	 study.	
Specifically,	 predictions	 of	 interactions	 that	 are	 more	 size	 struc-
tured,	such	as	predacious	and	aquatic	herbivory	 interactions	were	
predicted	better	than	less	size	structured	ones,	for	example,	parasit-
oid	and	terrestrial	herbivory	ones.

All	 food	 webs	 with	 one	 exception	 (Broadstone	 Stream)	 were	
available	 only	 at	 the	 species	 level,	 that	 is,	with	 information	 about	
interactions	between	species	and	the	body	size	of	species.	We	use	
the	term	“species”	in	this	study	to	indicate	a	“nodeh”	in	a	food	web	
in	which	nodes	are	connected	by	trophic	interactions,	and	nodes	are	
a	collection	of	individuals	that	share	links.	These	species/nodes	are	
not	always	taxonomic	species,	but	can	be	broader	taxonomic	ranks.

In	contrast,	the	Broadstone	Stream	food	web	data	contained	in-
teractions	between	individuals	and	the	individual	body	sizes.	Thus,	
the	Broadstone	Stream	food	web	can	be	constructed	by	aggregating	
by	either	taxonomy	or	size	(Woodward	et	al.,	2010).

2.3  |  Parameter estimation: Approximate Bayesian 
Computation

We	used	approximate	Bayesian	computation	(ABC)	to	identify	sets	of	
parameter	values	that	resulted	in	predicted	food	webs	that	were	close	
in	structure	to	the	observed	food	web.	ABC	is	an	approach	that	does	
not	require	a	likelihood	function.	Instead,	there	is	a	distance	function	
that	measures	the	distance	between	a	model's	prediction	and	the	ob-
served	data.	The	approximation	of	the	likelihood	depends	on	the	ABC	
method	 used,	which	 is	 further	 discussed	 below	 and	 SI.	 The	model	

parameter	values	are	sampled	from	a	prior	distribution.	The	accepted	
parameter	values	form	an	approximate	posterior	distribution	for	the	
model	 parameter.	We	 implemented	 three	ABC	methods	 to	 param-
eterize	the	ADBM:	namely	rejection	Monte	Carlo	(Figure	1),	Markov	
chain	Monte	Carlo,	and	sequential	Monte	Carlo.	The	three	methods	
produced	very	similar	results	(Figures	S26	and	S27),	and	we	therefore	
only	include	the	simplest	(rejection)	in	this	main	text.

2.3.1  |  Prior	distribution

The	prior	distributions	for	ai and aj	were	chosen	to	be	uniform	distri-
butions.	The	range	of	distribution	was	from	−1.5	to	1.5	and	0	to	3	for	
ai and aj,	respectively,	informed	by	the	estimates	in	Rall	et	al.	(2012).	
However,	we	chose	a	prior	range	specific	to	food	webs	for	the	pa-
rameter	b	because	body	size	varies	greatly	among	the	species	in	the	
observed	food	webs.	For	example,	in	the	Benguela	Pelagic	food	web,	
the	body	sizes	of	species	range	from	the	order	of	10−8	gm	to	105	gm.	
Hence,	the	range	of	prey–	predator	ratio	was	from	the	order	of	10−14 
to 1014.	To	take	this	into	account,	we	took	the	prior	of	log10 (b)	from	a	
uniform	distribution	ranging	from	− 15 to 15.

For	the	prior	of	a,	we	chose	the	prior	of	log10 (a)	to	be	a	uniform	
distribution.	Since	the	ADBM	estimated	connectance	to	be	higher	
than	 the	 real	 connectance,	 lower	 values	 of	a	were	 favored	 in	 the	
parameterization.	Hence,	 the	upper	bound	of	 the	prior	was	set	 to	
10.	To	set	the	lower	bound,	we	investigated	how	the	TSS	varied	with	
log10 (a)	(e.g.,	Figure	S28).	We	found	that	the	TSS	increased	with	de-
creasing log10 (a)	and	then	remained	constant,	for	a	constant	value	
of	log10 (b).	We	therefore	decided	to	set	the	lower	bound	of	log10 (a) 
such	 that	 the	maximum	 variation	 of	 TSS	was	 taken	 into	 account,	
while	 attempting	 to	 keep	 the	 range	 of	 prior	 as	 small	 as	 possible.	
In	the	case	of	Benguela	Pelagic	as	shown	in	Figure	S28,	the	 lower	
bound	of	log10 (a)	was	taken	to	be	−12.

2.3.2  |  Comparison	of	observed	and	predicted

The	 difference	 between	 the	model's	 prediction	 and	 the	 observed	
data	 (e.g.,	 the	sum	of	squared	residuals	 is	such	a	distance	 in	 linear	
regression)	is	quantified	by	a	distance	measure.	The	distance	is	lower	
when	there	is	a	closer	match	between	the	model's	prediction	and	the	
observation.	A	perfect	match	would	result	in	zero	distance.

The	magnitude	of	the	distance	is	used	for	the	acceptance	or	re-
jection	of	a	set	of	parameter	values.	An	accepted	set	of	parameter	
values	contributes	to	the	posterior	distribution,	rejected	ones	do	not.	
This	makes	the	distance	measure	one	of	the	important	features	of	
ABC.	A	threshold	distance	is	chosen,	and	if	the	distance	for	a	partic-
ular	set	of	parameter	values	is	less	than	the	threshold,	then	that	set	
of	parameter	values	contributes	to	the	posterior	distribution.	When	
the	distance	is	greater	than	the	threshold,	the	parameter	values	do	
not	 contribute	 to	 the	 posterior.	Hence,	 the	magnitude	 of	 the	 dis-
tance	threshold	determines	the	proportion	of	a	model's	parameters	
that	are	accepted.	A	higher	 threshold	causes	a	high	proportion	of	
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acceptances	but	less	accuracy	with	the	acceptance	of	some	param-
eter	sets	 that	 result	 in	predictions	quite	unlike	 the	observed	data.	
Below,	we	first	describe	and	justify	our	choice	of	distance	measure	
and	then	our	choice	of	threshold.

Choice of distance measure
In	 the	 PBRW	 study,	 the	 measure	 of	 distance	 was	 equivalent	 to	
1 − TP∕ (TP + FN),	 where	TP	 is	 the	 number	 of	 observed	 links	 that	
were	predicted	(the	number	of	true	positives)	and	FN	is	the	number	
of	observed	links	that	were	not	predicted	(the	number	of	false	nega-
tives).	A	distance	of	0	indicates	that	all	observed	links	were	correctly	
predicted.	One	way	for	the	ADBM	to	achieve	this	is	to	predict	that	
every	species	has	a	trophic	 link	with	every	other	species	 including	
itself—	a	fully	connected	food	web	with	connectance	of	1.	The	PBRW	
study	prevented	this	by	constraining	the	number	of	predicted	links	
to	be	equal	to	the	number	of	observed	links,	that	is,	the	model	con-
nectance	was	 fixed	 to	be	 the	 same	as	 the	observed	connectance.	
In	this	study,	we	relaxed	this	constraint,	with	the	number	of	links	as	
well	as	the	arrangement	of	links	being	estimated.	The	first	step	was	
to	choose	an	appropriate	distance	measure.

The	distance	measure	used	in	this	study	is	1	minus	the	true	skill	
statistic	(TSS):	distance = 1 − TSS.	This	distance	ranges	from	0	to	2.

TSS	is	defined	as:

where	TP	 is	 the	number	of	observed	 links	 that	are	predicted	by	 the	
model	(true	positives),	TN	is	the	number	of	observed	absences	of	links	
that	are	correctly	predicted	(true	negatives),	FP	is	the	number	of	false	
positives,	and	FN	is	the	number	of	false	negatives.

The TSS	ranges	from	− 1 to 1,	where	+1	indicates	a	perfect	pre-
diction.	A	TSS	value	of	zero	or	less	indicates	a	performance	no	better	
than	random.

The	inclusion	of	true	and	false	negatives	in	the	distance	measure	
means	that	the	best	theoretically	possible	prediction	(smallest	dis-
tance)	is	a	unique	prediction,	and	specifically,	the	one	in	which	the	
predicted	presence	and	absence	of	 links	matches	exactly	with	the	
observed	presence	and	absence	of	links.

Choice of threshold value of distance
Food	web	 dynamics	 and	 stability	 are	 strongly	 dependent	 on	 con-
nectance	(May,	1972),	we	therefore	set	the	distance	threshold	(for	
acceptance)	such	that	the	model	had	a	reasonable	chance	of	predict-
ing	the	observed	value	of	connectance.	Note	that	 in	the	following	
section	(The Rejection ABC method),	we	use	the	term	tol to denote the 
value	of	the	distance	threshold.

TSS =
TP ⋅ TN − FP ⋅ FN

(TP + FN) (FP + TN)

F I G U R E  1 Flowchart	of	rejection	
approximate	Bayesian	computation	
method	implemented	to	parameterize	the	
ADBM
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To	 do	 this,	 we	 examined	 how	 the	 predicted	 connectance	 var-
ied	with	 the	distance	 threshold.	An	example	of	 this	 relationship	 is	
given	in	Figure	2	for	the	Benguela	Pelagic	food	web	and	in	Figure	S1	
for	other	 food	webs.	We	chose	the	minimum	threshold	value	 that	
gave	 a	 range	 of	 predicted	 connectance	 containing	 the	 observed	
connectance.

Furthermore,	 it	 is	useful	 to	note	 that	 in	Figure	2,	 there	are	no	
connectance	values	below	a	distance	 threshold	value	of	 less	 than	
0.5	because	for	this	particular	food	web,	there	were	no	sets	of	pa-
rameter	values	that	achieved	a	better	model	fit	than	is	indicated	by	
1 − TSS = 0.5.	That	is,	it	is	impossible	for	the	ADBM	to	make	better	
predictions	than	this.	One	reason	for	this	 is	that	the	ADBM,	when	
body	size	is	the	only	trait,	can	only	predict	contiguous	diets	in	trait	
space,	whereas	the	observed	data	contain	gaps	in	the	diet.

2.3.3  |  The	Rejection	ABC	method

In	the	rejection	ABC	method,	a	set	of	parameter	values	are	sampled	
from	the	prior	distributions.	This	set	of	parameter	values	is	either	ac-
cepted	and	thereby	added	to	the	posterior	distribution	of	the	param-
eter	values,	or	it	is	rejected	(based	on	if	the	distance	1	−	TSS is less 
than	or	greater	 than	 the	 threshold	distance,	as	mentioned	above).	
This process is repeated until there are enough acceptances to give 
stable	(approximate)	posterior	distributions.	Acceptance	or	rejection	
of	a	set	of	parameter	values	is	probabilistic	and	depends	on	a	weight	
assigned	to	that	set	of	parameter	values.	This	weight	 is	given	by	a	
kernel	 function,	where	 the	weight	 is	 inversely	proportional	 to	 the	
distance	(1	−	TSS).	This	weight	is	then	used	in	a	way	that	makes	it	the	
probability	of	the	set	of	parameter	values	being	accepted.

In	 the	 upcoming	 section,	 we	 further	 detail	 the	 rejection	 ABC	
method.

Properties:

•	 A	prior	distribution	� (�): �	is	the	uniform	distribution	for	parame-
ters � =

(

a, ai , aj , b
)

•	 A	model	prediction	model (�):	ADBM	(�).	This	is	a	predicted	food	
web,	xi,	 given	by	a	particular	 set	of	parameter	values	�i.	Hence,	
xi = ADBM

(

�i

)

•	 A	summary	statistic	s (x): x	 is	 the	predation	matrix	predicted	by	
the	ADBM.

• Akernel function K (u) : epanechnikov K (u)=
1

tol
⋅

3

4
(1−

(

u

tol

2
)

if u≤ tol

=0 otherwise

where	tol is the distance threshold.

•	 A	distance	function	d
(

xi , y
)

:d
(

xi , y
)

= 1 − TSS
(

xi , y
)

•	 An	observed	food	web	y,	 in	the	form	of	a	predation	matrix	con-
taining	zeros	and	ones.

Sampling:
for	i = 1…n = 1000.

•	 Draw	a	set	of	parameter	values	�i	from	the	prior	distribution	� (�).
•	 Compute	the	model	result	xi = model

(

�i

)

•	 Compute	s(xi) and d
(

s
(

xi
)

, s (y)
)

•	 Accept	or	reject	the	parameter	set	probabilistically:
Assign	a	weight	pi to �i	as	per	the	kernel	K; pi =

K(d)

K(0)
,	where	d is the 

distance evaluated in the previous step.

Compute	�:U (0, 1)

If	� ≤ pi,	then	accept	�i and i = i + 1

Output:
An	approximate	 joint	posterior	distribution	using	 the	accepted	

�1,…, �n.

2.4  |  Assessment of model fit

Accuracy	 is	how	close	 the	model	prediction	 is	 to	 the	observation.	
The	ADBM's	 prediction	 is	 a	 predation	matrix	 that	 consists	 of	 the	
presence	and	absence	of	links	thus	comparing	how	close	the	predic-
tion	is	to	the	observation	is	not	as	straightforward	as	comparing	two	
numerical	values.	We	defined	the	accuracy	of	the	ADBM	using	TSS	
to	take	into	account	the	true	and	false	predictions	of	both	the	pres-
ence	and	absence	of	links,	which	is	defined	above.

We	 examined	 how	 closely	 structural	 properties	 of	 the	 pre-
dicted	 food	web	matched	 those	of	 the	observed	 food	webs	using	
the R cheddar	package	(Hudson	et	al.,	2013).	We	evaluated	proper-
ties	such	as	proportion	of	basal	species,	proportion	of	intermediate	
species,	proportion	of	top	species,	proportion	of	herbivores,	mean	
omnivory,	 clustering	 coefficient,	 standard	 deviation	 of	 generality,	
standard	deviation	of	vulnerability,	diet	similarity,	mean	path	length,	
and	nestedness.	We	could	not	compute	mean	trophic	level	and	max-
imum	trophic	level	because	the	networks	contained	too	many	paths	
for	the	cheddar	package	algorithm	to	compute.

F I G U R E  2 The	prediction	interval	of	the	predicted	connectance	
increases	with	increasing	distance	threshold	for	the	Benguela	
Pelagic	food	web.	The	green	line	and	black	line	represent	the	
observed	connectance	and	mean	of	predicted	connectance,	
respectively
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We	 investigated	 the	 performance	 of	 the	 ADBM	 parameterized	
with	the	ABC	by	computing	standardized	error	of	the	food	web	prop-
erties,	where	 the	 standardized	 error	 is	 the	 absolute	 raw	 error	 (the	
difference	 between	 observed	 and	 predicted	 value)	 divided	 by	 the	
maximum	absolute	raw	error	for	that	property.	We	did	not	calculate	
the	standardized	error	for	mean	omnivory	and	mean	path	length	be-
cause	it	had	some	NA	values	and	infinite	values	for	all	the	food	webs,	
respectively.

3  |  RESULTS

As	an	example	of	the	model	outcomes,	we	first	present	the	results	
for	the	Benguela	food	web	(e.g.,	predicted	food	web	structure,	varia-
tion	in	predicted	food	web	structure,	and	posterior	parameter	distri-
butions).	We	chose	this	food	web	as	it	was	well	explained	using	the	
method	of	(Petchey	et	al.,	2008).	The	results	of	the	other	food	webs	
are	 included	 in	 the	Figures	S2–	S25.	We	 then	compare	model	out-
comes	across	all	empirical	food	webs	between	the	PBRW	study	and	
our	current	work.	We	compare	the	TSS	of	the	two	approaches	and	
compare	some	 food	web	properties,	 such	as	proportions	of	basal,	
intermediate,	and	top	species.

The	 true	 skill	 statistic	 (TSS)	 of	 the	 predicted	Benguela	Pelagic	
food	web	varied	between	0.4	and	0.52.	This	variation	in	the	TSS	is	
represented	 in	 terms	of	predation	matrices	displayed	 in	Figure	3a,	
which	overlays	1000	independent	predation	matrices	accepted	from	
the	ABC	method.	 In	all	 the	1000	 independent	predation	matrices,	
the	predicted	 links	are	mostly	present	 in	the	upper	triangular	por-
tion	of	the	matrix	where	most	of	the	observed	links	are	also	present.	
Links	in	the	upper	right	triangle	of	the	predation	matrix	are	for	pred-
ators	feeding	on	prey	smaller	than	themselves.

In	 the	1000	predicted	predation	matrices,	 there	predators	 are	
sometimes	smaller	than	their	predicted	prey,	the	links	in	the	lower	
left	triangle	of	the	predation	matrix.	This	is	also	portrayed	in	the	mar-
ginal	distribution	of	log10 (b)	in	Figure	4d,	as	it	includes	values	greater	
than b = 2	 (log10 (b) = 0.3).	This	 is	 relevant	as	values	of	b = 2	make	
the	 most	 profitable	 prey	 item	 equal	 in	 size	 to	 the	 predator	 size.	
Lower	values	of	b	make	the	most	profitable	prey	item	smaller	than	
the	size	of	the	predator.

There	were	 around	 250	 potential	 links	 in	 the	 lower	 left	 trian-
gle	of	the	predation	matrix	that	were	never	predicted	in	any	of	the	
1000	predicted	predation	matrix	(Figure	3b).	This	strongly	suggests	
that	the	predator–	prey	size	ratio	of	these	links	is	so	small	(i.e.,	very	
large	 prey,	 very	 small	 predator)	 that	 the	 links	 cannot	 occur,	 given	
that	the	preponderance	of	observed	links	are	predators	consuming	
prey	smaller	than	themselves.

The	marginal	posterior	of	parameter	b	 in	 the	Benguela	Pelagic	
food	web	was	more	constrained	than	the	marginal	posterior	distri-
bution	of	the	other	three	allometric	parameters	(Figure	4)	as	the	pos-
terior	range	was	the	narrowest.

The	mean	TSS	using	the	ABC	approach	was	higher	than	the	point	
estimates	 from	 the	 PBRW	 study	 (Figure	 5a)	 across	 all	 food	webs	
except	one.	Our	present	approach	led	to	estimates	of	connectance	

greater	than	the	values	of	connectance	of	the	PBRW	study,	which	
were	fixed	to	equal	the	observed	values	of	connectance.

We	did	not	find	a	consistent	relationship	between	the	parame-
ters	estimated	using	 the	 current	 approach	and	 those	estimated	 in	
the	PBRW	study	(Figure	5c–	f),	except	for	in	the	case	of	parameter	b. 
The	mean	using	the	ABC	approach	was	always	higher	than	the	esti-
mates	from	the	PBRW	study	(Figure	5f)	and	the	95%	credible	inter-
val	of	the	posterior	of	b	includes	the	estimate	from	the	PBRW	study.

The	 marginal	 posterior	 of	 parameter	 b	 was	 more	 constrained	
than	 the	 other	 three	 allometric	 parameters,	 that	 is,	 the	 posterior	
range	was	the	narrowest	(Figures	S14–	S25).	In	all	of	the	food	webs	
except	 Grasslands,	 the	 parameter	 b	 had	 a	 unimodal	 distribution	
(Figures	S14–	S25),	whereas	Grasslands	had	a	bimodal	distribution.

Compared	to	the	estimates	in	the	PBRW	study,	the	proportion	
of	 intermediate	 species,	mean	omnivory,	 clustering	 coefficient,	 sd	
of	 generality,	 sd	 of	 vulnerability,	 diet	 similarity,	 and	 nestedness	
estimated	 from	 the	 current	 ABC	 approach	 were	 generally	 higher	
(Figure	 6b,e–	j).	 The	 proportion	 of	 basal	 species,	 proportion	 of	
top	 species,	 and	 proportion	 of	 herbivores	 were	 generally	 lower	
(Figure	6a,c,d).

The	observed	values	of	the	proportion	of	intermediate	species,	
mean	omnivory,	clustering	coefficient,	sd	of	generality,	sd	of	vulner-
ability	 and	nestedness	were	mostly	within	 the	 lower	 range	of	 the	
predicted	95%	interval	by	the	ABC	method.	The	proportion	of	basal	
species,	 proportion	 of	 top	 species,	 and	 proportion	 of	 herbivores	
were	underestimated	in	comparison	to	the	observed	values	for	most	
of	the	food	webs.

The	ADBM,	when	parameterized	with	 the	ABC,	 generally	bet-
ter	predicted	the	structural	food	web	properties,	such	as	proportion	
of	basal	species	when	the	TSS	was	higher	(Figure	7a)	across	the	12	
food	webs.	However,	the	ABC	parameterized	ADBM	less	accurately	
predicted	food	web	properties	on	average	than	in	the	PBRW	study	
(Figure	7b).

Within	each	food	web,	we	found	various	relationships	between	
the	standardized	error	and	TSS	(Figures	S30	and	S31).	For	example,	
for	Skipwith	Pond	food	web	(Figure	S30h),	high	values	of	TSS	were	
associated	with	high	error,	whereas	the	opposite	was	true	for	other	
food	webs,	 such	 as	 Broadstone	 Stream	 (Figure	 S30b,l).	 The	 other	
food	webs	showed	more	complex	relationships.	The	shapes	of	the	
point	scatters	in	Figures	S30	and	S31	are	caused	by	the	structural	
constraints	of	the	ADBM	(e.g.,	it	can	only	predict	contiguous	diets)	
interacting	with	the	TSS	and	the	connectance	of	the	observed	food	
web.	 These	 features	 prevent,	 for	 example,	 a	 predicted	 food	 web	
with	very	high	connectance	from	having	high	TSS.	Similarly,	a	pre-
dicted	food	web	with	connectance	equal	to	that	of	the	highest	TSS	
prediction	tends	to	have	low	TSS.

4  |  DISCUSSION

The	ABC	parameterization	method	employed	here	 improves	on	the	
basic	 parameterization	 methods	 applied	 in	 Petchey	 et	 al.	 (2008)	
(PBRW).	 The	 ABC	 method	 provides	 uncertainty	 in	 parameter	
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estimates	and	thereby	a	range	of	predicted	food	webs	(Figure	5c–	f).	
It	 also	 allowed	 us	 to	 estimate	 parameters	 that	 were	 fixed	 by	 the	
PBRW	 study	 and	 thereby	 also	 predicts	 connectance	 (Figure	 5b).	
Including	uncertainty	and	predicting	connectance	are	significant	ad-
vances	because	they	allow	predictions	in	changes	of	food	web	struc-
ture	caused	by	environmental	changes	that	include	uncertainty	in	the	
predicted	food	web	structure	and	including	uncertainty	in	such	pre-
dictions	is	critical	(Cressie	et	al.,	2009;	Lindegren	et	al.,	2010;	Petchey	
et	al.,	2015).	A	future	development	will	be	to	partition	the	contribu-
tion	of	different	sources	of	uncertainty	such	as	incomplete	sampling	
and	model	deficiencies	to	make	improvements	in	the	model	with	the	
aim	of	reducing	uncertainty.	Future	research	should	also	investigate	
the	 functional	 and	dynamical	 significance	of	 the	uncertainty	 in	 the	
predicted	food	web	structure.	Below,	we	discuss	some	of	the	results	
of	our	study	and	expand	on	these	opportunities	and	priorities	for	fu-
ture research.

4.1  |  Connectance and missing links

In	 all	 cases,	 the	 predicted	 connectance	was	 greater	 than	 the	 ob-
served	connectance	(Figure	5b).	This	result	is	similar	to	that	of	a	re-
cent	study	of	European	vertebrate	food	webs	by	Caron	et	al.	(2022).	
They	found	that	local	food	web	connectance	was	consistently	over-
estimated	by	a	trait-	based	model	which	used	diet,	nesting	habitat,	
activity	time,	foraging	behavior,	and	body	mass	of	species.

Why	was	the	predicted	connectance	greater	than	the	observed	
connectance?	 Firstly,	 it	 is	 important	 to	 recognize	 that	 the	 ADBM	
(when	using	only	body	size	as	a	trait)	can	only	predict	diets	that	are	
contiguous	with	respect	to	the	size	of	prey.	That	is,	it	cannot	predict	
that	a	predator	will	consume	prey	of	sizes	1	and	3	and	not	prey	of	
size	2.	Such	patterns	can	however	be	predicted	if	a	trait	in	addition	
to	 size	which	 is	 not	 perfectly	 correlated	with	 size,	 influences	 for-
aging	parameters	(Allesina	et	al.,	2008;	Caron	et	al.,	2022;	Petchey	

F I G U R E  3 (a)	Observed	and	predicted	
predation	matrices	for	Benguela	Pelagic	
food	web.	Body	size	increases	from	left	
to	right	and	top	to	bottom	along	the	
predation	matrix.	Black	circles	show	
where	there	is	an	observed	trophic	link.	
The	intensity	of	the	pink	circles	shows	
the	proportion	of	1000	predicted	food	
webs	that	had	a	trophic	link	between	
the corresponding species. This type 
of	overlay	is	shown	for	two	examples	
predicted	in	panel	(c).	(b)	The	histogram	of	
the	number	of	times	a	link	was	predicted	
across 1000 independently predicted 
food	webs.	There	were	841	species	pairs	
in	this	food	web.	About	150	of	these	were	
predicted	to	have	a	trophic	link	in	all	1000	
predicted	predation	matrices.	The	red	bar	
shows	the	number	of	pairs	of	species	for	
which	a	trophic	link	was	never	predicted.	
(c)	Two	predicted	predation	matrices	for	
Benguela	Pelagic	food	web	corresponding	
to	the	minimum	and	the	maximum	value	
of	estimated	b,	and	their	sum
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et	al.,	2008;	Stouffer	et	al.,	2006).	Secondly,	it	is	important	to	note	
that	the	observed	diets	were	not	contiguous	when	prey	are	ordered	
by	 their	 size.	 This	 could	 be	 due	 to	 some	 ecological	 differences	 in	
how	predator	groups	choose	their	prey	(Caron	et	al.,	2022).	Hence,	
the	estimation	process	will	result	 in	a	greater	number	of	predicted	
links	than	observed	given	these	features,	and	the	model	attempts	to	
maximize	the	coincidence	of	predicted	and	observed	link	presence	
and	absence	(i.e.,	the	TSS).

These	 findings	 raise	 the	 question	 as	 to	whether	 the	model	 or	
the	observed	data	are	incorrect.	We	expect	that	some	of	the	links	
that	 do	 in	 reality	 occur	 are	 not	 present	 in	 the	 empirical	 datasets.	
This	could	be	caused	by	low	empirical	sampling	effort	or	rare	prey–	
predator	interactions	even	when	sampling	is	extensive.	In	this	case,	
a	false	positive	may	actually	be	a	correctly	predicted	link.	More	in-
tensive	and	more	complete	sampling	of	links	in	food	webs	has	been	
recognized	as	 important,	due	 to	 the	potential	 that	 a	 low	sampling	
effort	 will	 influence	 the	 perceived	 food	 web	 structure	 (Martinez	
et	al.,	1999).

We	 expect	 there	 are	 also	 cases	 of	 real	 false	 positives,	 where	
the	model	predicts	a	feeding	link	despite	no	possibility	that	such	a	
link	could	occur	in	reality.	This	may	be	the	case	when	a	trait	other	
than,	or	 in	 addition	 to,	prey	 size	 is	 influential.	 For	example,	 a	par-
ticular	prey	species	may	have	a	defensive	trait	that	means	 it	takes	
longer	 to	 consume	 it	 than	 an	 undefended	 prey	 of	 the	 same	 size.	
Incorporating	traits	other	than	body	size	in	the	ADBM	would	allow	

for	discontiguous	diets	along	the	size	axis.	It	is	also	possible	that	bet-
ter	estimates	of	parameters	that	could	result	from	acquisition	of	new	
empirical	data	could	cause	lower	estimated	values	of	connectance.	
Furthermore,	 the	ADBM's	current	 form	 is	a	biology-	only	model;	 it	
does	not	include	an	observation	process,	although	this	could	be	in-
cluded.	The	model	would	then	be	able	to	predict	the	absence	of	a	
link	due	to	incomplete	observations.

It	would	 be	 interesting	 to	 take	 a	 very	well-	sampled	 food	web	
(real	or	simulated)	and	remove	links	at	random	to	create	a	less	well-	
sampled	version,	 and	 to	 test	 if	 the	 very	well-	sampled	version	 can	
be	predicted	from	the	less	well-	sampled	version	(with	ABC	parame-
ter	estimation).	If	it	could,	then	there	is	potential	to	compensate	for	
under-	sampling	with	an	appropriate	food	web	model	and	estimation	
procedure.

The	ABC	parameterization	resulted	 in	a	 lower	prediction	accu-
racy	of	structural	features	of	the	food	webs	(Figure	7b)	due	to	the	
overestimation	 of	 connectance.	 This	 was	 confirmed	 by	 principal	
component	analysis	of	variation	in	the	food	web	structural	proper-
ties	which	revealed	a	first	PC	axis	representing	on	average	62%	of	
the	 overall	 variance,	 and	 this	 first	 axis	was	 highly	 correlated	with	
connectance,	with	an	average	Spearman	correlation	of	0.87	(see	SI	
S8	for	details).	Furthermore,	there	was	a	strong	positive	relationship	
between	the	mean	standardized	error	in	structural	properties	of	the	
food	webs	and	mean	standardized	error	in	connectance	of	the	food	
webs	(Figure	S32).

F I G U R E  4 Marginal	prior	and	marginal	
posterior	distribution	of	the	ADBM	
parameters	for	the	Benguela	Pelagic	food	
web	estimated	using	rejection	ABC.	The	
black	vertical	line	in	(d)	corresponds	to	
the	value	of	b	(=2)	above	which	the	most	
profitable	prey	item	is	larger	in	respect	to	
the	predator	size
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4.2  |  Observing and predicting link absences

Our	parameterization	 approach	was	 to	maximize	 the	TSS	 (the	 co-
incidence	of	predicted	and	observed	 link	presences,	and	the	coin-
cidence	of	predicted	and	observed	link	absences).	The	TSS	assigns	
equal	importance	to	the	collection	of	presence	and	absence	of	ob-
served	links	with	the	weight	of	an	observed	single	presence	or	ab-
sence	link	being	dependent	on	the	connectance	of	the	food	web.	If	
the connectance is <0.5,	the	TSS	assigns	more	weight	to	a	presence	
of	link	than	to	an	absence	of	a	link	and	vice	versa.

Because	 the	 connectance	 of	 the	 observed	 food	webs	 is	<0.5	
(Table	1),	the	TSS	implicitly	assigned	more	weight	to	a	presence	of	
link	than	to	an	absence	of	 link.	This	upweighting	of	 link	presences	
seems	 appropriate	 since	 observing	 a	 feeding	 interaction	 is	 unam-
biguous,	whereas	not	observing	one	may	be	caused	by	various	pro-
cesses.	That	is	to	say,	the	observation	of	a	single	feeding	interaction	
is	sufficient	to	record	the	presence	of	a	link,	whereas	this	is	not	true	
for	the	absence	of	links:	One	observation	of	a	predator	not	consum-
ing	a	prey	does	not	mean	that	it	will	never	do	so.

To	 improve	 our	 estimation	 procedure,	 we	 could	 quantify	 the	
uncertainty	in	the	recorded	absence	of	links	and	include	this	uncer-
tainty	 in	 the	 parameterization	method.	Weight/importance	 could	
be	 assigned	 to	 true	 positives,	 true	 negatives,	 false	 positives,	 and	
false	negatives	calculated	from	empirical	studies	which	may	be	spe-
cific	to	that	food	web.	Alternatively,	an	observation	process	could	
be	added	to	the	model,	such	that	the	biological	part	of	the	model	
can	predict	that	a	feeding	link	is	possible,	but	then	the	observation	
process	in	the	model	leads	to	that	link	not	being	predicted.

4.3  |  Allometric parameters

In	the	PBRW	study,	the	parameter	b	played	a	major	role	in	maintain-
ing	the	maximum	predictive	power	of	the	ADBM.	Indeed,	they	found	
that	estimating	b	only,	and	not	estimating	either	ai or aj only slightly 
decreased	model	performance,	and	that	estimating	only	b and aj did 
not	decrease	model	performance	relative	to	when	all	three	param-
eters	were	estimated.

F I G U R E  5 TSS	(a),	connectance	(b)	and	ADBM	parameters	(c,	d,	e,	f)	computed	using	the	ABC	method	compared	with	the	corresponding	
point	estimates	from	Petchey	et	al.	(2008).	The	red	lines	are	the	95%	credible/prediction	intervals	and	the	black	filled	circles	represent	the	
corresponding	means.	The	gray	region	represents	the	intervals	of	the	prior	distributions	for	ai and aj. The gray lines represent the prior range 
of	the	parameters	a and b in the log10	scale.	The	prior	range	for	the	parameter	b	extends	above	and	below	the	y-	axis	limits	for	some	food	
webs	and	so	the	values	of	the	limits	are	shown	on	the	plot.	The	dashed	black	lines	are	the	1:1	relationships	for	reference
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F I G U R E  6 Structural	properties	of	predicted	food	webs	with	95%	prediction	interval	parameterized	using	the	ABC	method	plotted	
against	the	point	estimates	from	Petchey	et	al.	(2008).	The	black	filled	circles	correspond	to	the	mean,	and	green	filled	circles	correspond	to	
the	properties	of	the	observed	food	webs.	The	dashed	black	lines	are	the	1:1	relationships	for	reference

F I G U R E  7 (a)	The	mean	standardized	
error	of	the	food	web	properties	
predicted	from	the	ADBM	parameterized	
using	rejection	ABC	plotted	against	
the	mean	TSS	for	each	food	webs.	The	
vertical	and	horizontal	bars	correspond	
to	95%	prediction	intervals	of	the	
standardized	error	and	TSS,	respectively.	
Solid	blue	line	is	linear	regression	through	
the	means	(t =	−2.335,	df =	10,	p =	.041).	
(b)	The	mean	standardized	error	computed	
from	the	ABC	method	plotted	against	the	
mean	standardized	error	from	Petchey	
et	al.	(2008).	The	dashed	line	is	the	1:1	
relationship	for	reference
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We	found	that	the	posterior	distribution	of	the	parameter	b	was	
the	most	constrained	of	all	 the	parameters	 (Figure	4).	Parameter	b 
defines	the	range	of	prey	body	size	which	has	a	finite	handling	time,	
and	 the	 prey	 size	 with	 the	 highest	 energetic	 profitability.	 As	 the	
parameter	b	 relates	 to	 the	prey–	predator	body	size	 ratio,	 the	con-
strained	posterior	of	b	 (Figure	4d)	 recapitulates	 the	 importance	of	
the	ratio	of	body	size	of	prey	and	predator	in	determining	the	food	
web	structure	with	the	ADBM.

The	 marginal	 posterior	 of	 parameter	 a	 was	 right-	skewed	
(Figure	 4c).	 This	may	 be	 because	 the	ABC	 parameterization	 over-
estimates	the	connectance,	which	means	that	lower	values	of	a are 
preferred	over	higher	values	of	a	(a	lower	value	of	a	leads	to	a	lower	
space	clearance/attack	rate,	and	a	lower	space	clearance	rate	results	
in	a	higher	connectance).

4.4  |  Incorporating other observed data

Information	about	who	eats	whom	can	be	collected	 from	multiple	
sources,	such	as	gut	contents	of	organisms,	stable	isotope	composi-
tion	of	 tissues,	and	experimentation	 (Layman	et	al.,	2007;	Peralta-	
Maraver	 et	 al.,	 2017;	 Warren,	 1989).	 Moreover,	 experimentation	
provides	independent	estimates	of	allometric	foraging	parameters,	
such as b,	ai,	and	aj	(Rall	et	al.,	2012).	Diverse	data	could	be	used	to	
parameterize	the	ADBM's	predictions	to	test	how	uncertainty	in	the	
different	 datasets	 influences	 the	 ADBM's	 predictions	 using	 ABC.	
Appropriate	summary	statistics	in	the	ABC	method	could	be	used	to	
address	such	challenges.	We	could	use,	as	an	example,	the	approxi-
mate	trophic	position	inferred	from	stable	isotope	ratio	data	from	an	
individual	tissue	and	gut	content	data	of	a	predator	simultaneously	
to	parameterize	the	ADBM.	The	trophic	position	and	the	gut	content	
information	would	be	the	summary	statistics	in	this	example.	A	fur-
ther	question	that	could	be	addressed	in	future	studies	is	how	the	
quantity	of	data	 affects	 the	ADBM's	predictions.	The	outcome	of	
such	a	study	could	help	food	web	researchers	decide	on	how	much	
data	from	a	specific	source	is	needed	to	predict	the	food	web	struc-
ture	and	help	further	optimize	the	deployment	of	 limited	sampling	
resources.

When	only	partial	food	web	data	are	available	(Patonai	&	Jord'an,	
2017),	the	summary	statistics	in	ABC	can	be	used	to	infer	these	food	
web	structures	from	the	ADBM.	It	would	be	possible	to	use	gut	con-
tent	data	of	only	some	of	the	species	in	a	food	web	to	parameterize	
the	ADBM	and	predict	the	food	web	structure.	Summary	statistics	
opens	up	a	broad	 spectrum	of	possibilities	 in	parameterizing	 food	
web	models.	There	are	multiple	empirical	and	theoretical	studies	on	
a	range	of	different	properties	of	food	webs	across	different	ecosys-
tems	(Goldwasser	&	Roughgarden,	1993;	Martinez,	1991;	Williams	
&	Martinez,	2000).	These	can	conceivably	be	used	in	parameterizing	
food	web	models	using	ABC	to	constrain	the	model	predictions.
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