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Abstract

In this work, we develop a novel method that bridges between material properties of pro-

teins, particularly the modulus of elasticity, and the underlying molecular interactions. To

this end, we employ both an all-atom normal mode analysis (NMA) model with the

CHARMM force field and an elastic solid model for proteins and protein interfaces. And the

“bridge” between the two models is a common physical property predictable by both models:

the magnitude of thermal vibrations. This connection allows one to calibrate the Young’s

moduli of proteins and protein interface regions. We find that the Young’s moduli of proteins

are in the range of a few Gpa to 10 Gpa, while the Young’s moduli of the interface regions

are several times smaller. The work is significant as it represents the first attempt to system-

atically compute the elastic moduli of proteins from molecular interactions.

1 Introduction

Solid is one of the fundamental states of matter. Atoms in solids are packed tightly and kept

together by physical interactions, such as ionic bonds (as in sodium chloride), covalent bonds

(as in diamond), metalic bonds (as in metals), hydrogen bonds (as in ice), or van der Waals

interactions (as in organic compounds) [1]. Solids held together mostly by van der Waals

interactions are called van der Waals solids.

The type of force that keeps a solid together determines its material properties, such as elas-

ticity. Solids held together by metalic, ionic, or covalent bonds appear stiff and have a much

higher elastic moduli than solids held together mostly by non-bonded interactions such as pro-

teins [2].

The elasticity of proteins has been studied in three primary ways, namely, protein fibers or

fibrils [3], protein crystals [4], and protein capsids [5].

Among protein fibers, some exhibit high extensibility and have a very low Young’s modu-

lus, on the order of only 1–10 MPa. These fibers usually contain unstructured regions or high

mobility motifs, undergo α-helix to β-strand transitions, or even unfold under external forces,

and consequently they appear very soft (1-10 Mpa) [3]. Other protein fibers are significantly

different as they “form highly regular, nearly crystalline arrangement of monomer units
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without regions that can extend, change secondary structure or unfold” [3] and thus appear

much stiffer. Experimental studies showed these fibers, such as actin [6], tubulin, collagen [2],

and keratin [7], fibrin [3], β-lactoglobulin fibrils [8], had an elastic modulus in the range of a

few Gpa. The Young’s moduli of these fiber proteins were obtained through direct measure-

ment of force under stretching, mostly using atomic force spectroscopy (AFM) [8, 9].

The mechanical properties of proteins were studied also using protein crystals, mostly the

crystals of hen egg-white lysozyme (HEWL), a model protein. Table 1 summarizes the tech-

niques used, proteins studied, and results obtained. It lists also results from the compressibility

studies done in solvent [10] and on a crystal structure solved at high pressure (1,000 bar) [11].

The results show a large variation, from less than 1 Gpa to over 10 Gpa. Compressibility study

by Gavish et al. [10] showed that under most conditions, the adiabatic compressibilities of

lysozyme, hemoglobin, and myoglobin in solution were on the order of 10-20% of the com-

pressibility of water, or 5-7 × 10−11 m2/N. Consequently, the bulk moduli of these proteins,

which are the inverse of their compressibilities, are over 10 Gpa. (The bulk modulus or volume

modulus should not be confused with Young’s modulus or tensile modulus, though they tend

to have similar values for most solids.) Kundrot and Richards [11] found that the isothermal

compressibility of lysozyme proteins was 4.7 10−3 kbar−1, or 20 Gpa in bulk modulus. On the

other hand, the Young’s moduli obtained from protein crystals using techniques such as vibra-

tion, indentation, ultrasound, or Brillouin scattering are much smaller, from 0.3 Gpa to 5.5

Gpa (see Table 1). How to understand this discrepancy? It is possible that the larger values

obtained from compressibility studies represent the elastic modulus of proteins themselves,

while the elastic moduli of protein crystals probably represent the moduli of both proteins and

protein interface regions, as well as other noncrystalline elements in the crystal cell such as

intracrystalline liquid [4]. This would reconcile the seemingly conflicting results on elastic

moduli of proteins in the literature.

The Young’s moduli of proteins measured experimentally as reviewed above depend on a

number of factors, including conditions of the samples (such as pH in solvent [10] or water

content in crystals: moistened or dried [15], etc.), and the frequency range at which a measure-

ment was carried out [17], which varies from static to kilohertz [12–14], to ultrasonic in the

megahertz range [16, 17] and Brillouin light scattering method in the gigahertz range [18]. The

elastic modulus of a protein is also temperature dependent. Morozov and Gevorkian analyzed

that the mechanical properties of protein crystals at different temperatures and found that pro-

teins became significantly more rigid below glass transition temperature, when the surface

layer of proteins and their bound water became immobilized [4]. In this work, we also will

look into the influence of temperature on a protein’s elastic modulus.

The elastic modulus of proteins was studied also through protein capsids by nano-indenta-

tion using atomic force microscopy (AFM). Nano-indentation allows one to measure the stiff-

ness of viral capsids. The elastic modulus of the capsid material can then be deduced from the

Table 1. A summary of studies on the elasticity of proteins using protein crystals (top half), or compressibility measurements (bottom half).

Techniques Proteins Young’s modulus References

vibrating reed lysozyme 0.3-1.5 Gpa [12–14]

indentation lysozyme 0.49-4.2 Gpa [15]

ultrasound lysozyme 4.87-5.5 Gpa [16, 17]

brillouin scattering lysozyme 5.5 Gpa [18]

bulk modulus

ultrasound in solution lysozyme, Mb, Hb >10 Gpa [10]

X-ray at high pressure lysozyme >20 Gpa [11]

https://doi.org/10.1371/journal.pone.0247147.t001
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measured stiffness. However, in order to do so, in most cases a thin-shell model was assumed

and thin-shell elasticity theory applied. The limitation of the thin shell model is that it neglects

the molecular structure of the capsid and assumes a homogeneous material property through-

out, as well as an idealized spherical geometry and uniform thickness [5]. Thick shell models

combined with finite element analysis were also tried [19] and the effect of non-uniform

geometry was investigated [20]. These work all represent a top-down approach since experi-

mental determined stiffness values were used in all cases to fit the underlying elastic moduli of

capsids. A review article in 2012 by Mateu [5] summarized the nano-indentation results of a

dozen viral capsids: the stiffness of the viral capsids and the derived Young’s moduli. The

review showed the Young’s moduli of capsid proteins varied over a span of more than one

order of magnitude, from 0.14 GPa for CCMV to 1-3 GPa for MVM and F29 [5]. The range of

variation in Young’s moduli seen in capsids is consistent with what is seen in protein crystals

(Table 1, top half) but is much lower overall than what is obtained from compressibility studies

(Table 1, bottom half), A possible explanation is that elastic moduli thus obtained represent

the average moduli of both proteins and protein interface regions, while the elastic moduli

obtained from compressibility studies represent those of individual proteins.

The Young’s moduli of globular and membrane proteins were also estimated theoretically

or computationally [2, 6, 21, 22]. By approximating proteins as solid materials with sheets that

interacted through van der Waals interactions, Howard estimated that the Young’s modulus of

proteins to be around 4 Gpa (see Appendix 3.1 of [2]). In the case of F-actin, Bathe applied

axial stretching of his elastic solid model for actin to match experimental stretching stiffness

data [6] and found that the effective Young’s modulus of actin was 2.7 Gpa [21].

Contribution of this work. In this work, we develop a novel bottom-up approach for com-

puting the elastic moduli of proteins from the underlying molecular interactions. Our

approach utilizes both normal mode analysis (NMA) [23–25], a well established technique for

studying the fluctuating dynamics of macromolecules, and elastic solid models (ESM) [26]

developed more recently that treat macromolecules as elastic solids with material properties

such as Young’s modulus. Since both of these models can predict the magnitude of thermal

vibrations of macromolecules, this commonality is used as a bridge to link material properties

modeled in ESM [26] with molecular interactions used in NMA. To the best of our knowledge,

This work represents the first attempt to determine the Young’s moduli of proteins and pro-

tein interface regions separately and systematically from all-atom molecular interactions. We

find the Young’s modulus of proteins can be as high as 10 Gpa, while the Young’s modulus of

protein interface regions is several times smaller. Our work reconciles the high modulus values

found through compressibility studies and low values found in protein crystals or capsids. The

large span of variations of elastic moduli at interface regions provides an explanation also for

the similar extent of variations seen in protein crystals and protein capsids.

2 Methods

2.1 σESM, a molecular surface-based elastic solid model

Recently, we presented a novel elastic solid model called αESM[26] for macromolecules based

on alpha shape [27]. The model has a parameter alpha which was chosen empirically.

Here we present a new extension of αESM whose major improvement over αESM is that

the alpha value is now tuned individually for each protein so that the final elastic solid model

of the protein has the same volume as its solvent excluded volume, such as that computed by

the MSMS algorithm [28]. Another significant difference of the present ESM model from

αESM is that in representing the solid, not only the atomic coordinates of the protein are used,

which is the case for αESM, but also selected points on the protein’s molecular surface [21].
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Consequently, the final solid model has a similar surface to the molecular surface of the pro-

tein. In this aspect the model is similar to Bathe’s elastic solid model [21]. We name this new

variant of ESM σESM, since σ is a symbol commonly used for surface area or surface tension

[29].

The procedural flow of σESM is given in Fig 1. The script takes as input xyz, which contains

the coordinates of all the heavy atoms of a given protein structure that is available in its PDB

file, and verts, faces, and volume, all three of which are outputs of the MSMS software [28] and

represent respectively the vertices and faces of the solvent excluded surface mesh and its

enclosed volume (line 1). The program first computes an initial alpha shape of the protein

alone (line 11), which is used to set the number of faces that should be on the surface mesh

(lines 12-13). It then simplifies the surface mesh produced by MSMS using MATLAB script

reducepatch (line 15). The vertices on the reduced molecular surface are then appended to the

coordinates of the atoms in the protein (line 16). Lastly, an alpha value is selected (line 18) so

that the final alpha shape has the same volume as the the volume computed from MSMS [28].

Once the alpha value is determined, the script used for αESM[26] can be adopted to compute

the stiffness matrix K and mass matrix M (line 19), from which eigenmodes and eigen frequen-

cies are computed (Fig 1 in Ref. [26]).

Fig 2 shows the αESM model of a protein (pdb-id: 1aqb) in red. The molecular surface, or

solvent excluded surface, computed from the MSMS software [28] is shown in blue as a trian-

gular surface mesh. The total volume of the αESM solid model (shown in red) is 16,600 Å3,

while the solvent excluded volume is 23,720 Å3. Fig 2(B) shows the σESM model in cyan,

which has an extra layer over the αESM model and resembles closely the molecular surface in

Fig 1. The algorithmic flow of σESM as expressed in a MATLAB script. A complete copy of the above MATLAB script is available at https://github.

com/gsongISU/sigmaESMrelease. The scripts for computing stiffness matrix and mass matrix used in alphaESM are available at MATLAB file exchange

(https://www.mathworks.com/matlabcentral/fileexchange/27826-fast-fem-assembly-nodal-elements), kindly contributed by Anjam and Valdman [30].

https://doi.org/10.1371/journal.pone.0247147.g001
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Fig 2(A). Specifically, the volume of σESM model is 23,770 Å3, nearly the same as the protein’s

solvent excluded volume.

In summary, σESM is a more accurate representation than αESM in describing both molec-

ular surface and and its enclosing volume.

The magnitude of thermal vibrations by σESM. Given a protein structure and its molec-

ular surface mesh (which can be generated for instance by the MSMS software [28]), an appli-

cation of the σESM script given in Fig 1 produces a stiffness (K) and a mass (M) matrix. The

(global) stiffness matrix K is a 3M-by-3M matrix, where M is the number of nodes in the

model, built with the element stiffness matrices of all the elements (tetrahedral in the current

work). Each element stiffness matrix is a 12x12 matrix that can be written as:

k ¼ ½B�T½D�½B�V; ð1Þ

where B and D are standard matrices available in textbooks on finite element method [31] that

depend solely on the coordinates of the four nodes of the tetrahedral element, and V is the vol-

ume of the tetrahedron. The unit of K is kcal/mol/Å2. For the mass matrix M used in finite ele-

ment method, one has the option of a consistent mass matrix or a lump-sum mass matrix [31].

In this work, the lump-sum mass matrix is used, which is the same as the mass matrix used in

NMA and is diagonal. (The consistent mass matrix, on the other hand, is not a diagonal

matrix.) According to Ref. [26], the mean-square thermal vibrations of atom i by ESM is:

hDR2

i iESM ¼
kBT
E

trace M� 1
2K� 1

m M� 1
2

h i

ii

� �
; ð2Þ

where the subscript ii represents the ith 3-by-3 diagonal block and Km is the mass-weighted

stiffness matrix, i.e., Km = M−1/2 KM−1/2. E is the Young’s modulus of the protein solid.

The magnitude of thermal vibrations of a whole protein is defined as the mass-weighted
average of hDR2

i iESM over all the nodes [32], i.e.,

hDR2iESM ¼

P
imihDR

2

i iESMP
imi

¼
kBTtraceðK

� 1

m Þ

E
P

imi
; ð3Þ

Fig 2. The αESM model [26] (in red) using an alpha value of 3.6 Å. The solvent excluded surface computed from MSMS [28] is shown in blue as a

triangle mesh. (B) The σESM model: the difference between it and αESM (in red) is shown in cyan.

https://doi.org/10.1371/journal.pone.0247147.g002

PLOS ONE Bridging between material properties of proteins and the underlying molecular interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0247147 May 5, 2021 5 / 20

https://doi.org/10.1371/journal.pone.0247147.g002
https://doi.org/10.1371/journal.pone.0247147


where i is the index of the nodes that include both protein atoms and added molecular surface

nodes. mi are the mass of node i. Each surface node is given a mass of 1 atomic unit.

2.2 The sbNMA model

The sbNMA model developed by Na and Song [33] is an all-atom NMA model based on the

CHARMM force field [34]. It was designed to maintain the high accuracy of classical NMA

(cNMA) using all-atom force fields. By circumventing the cumbersome step of energy minimi-

zation, it can be applied directly to experimental structures. Extensive studies have demon-

strated its accuracy [32, 33, 35–37]. The entire sbNMA code is publicly available at https://

github.com/htna/sbNMA-Matlab. Given a protein structure, an application of the sbNMA

code (particularly the sbNMA_PSF.m script available at the above link) produces a Hessian

matrix H and a mass matrix M that is diagonal (the sbNMA_PSF script actually produces the

diagonal of the mass matrix as a vector, which can be easily converted to a mass matrix when

needed). The Hessian matrix H is a 3N-by-3N matrix containing the second partial derivatives

of the potential energy function with respect to the (x,y,z) coordinates of the N atoms in a pro-

tein. The unit of the Hessian matrix is kcal/mol/Å2.

Once the Hessian matrix H and the mass matrix M are obtained, the mean square fluctua-

tion of atom i is [33]:

hDR2

i iNMA ¼ kBTtrace M� 1
2H� 1

m M� 1
2

h i

ii

� �
; ð4Þ

Thus,

hDR2iNMA ¼

P
imihDR

2

i iNMAP
imi

¼
kBTtraceðH

� 1

m ÞP
imi

ð5Þ

As will be shown later, the magnitude of thermal vibrations as computed from sbNMA in

Eq (5) can be used to calibrate the Young’s moduli of proteins.

2.3 B-factors, static disorder, and glass transition

The Debye–Waller factor (DWF), or B-factor as it is called in protein X-ray crystallography, is

a factor used to describe for each atom the degree to which electron density spreads out. The

spread around the mean position of each atom i is generally modeled as a Gaussian function

and the magnitude of the spread is characterized by hu2
i i, the mean-square displacement from

the mean position. The isotropic Debye-Waller factor, or B-factor, is related to hu2
i i as:

hu2
i i ¼

3

8p2
Bi: ð6Þ

The magnitude of mean-square displacement of a whole protein is defined as the mass-
weighted averages of hu2

i i over all the atoms [32], i.e.,

hu2i ¼

P
imihu2

i iP
imi

; ð7Þ

where i is the atom index.
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2.4 Determine the Young’s moduli of proteins based on molecular

interactions

sbNMA is an accurate NMA model for predicting the magnitude of thermal vibrations. How-

ever, like all NMA models and elastic network models, one major limitation of sbNMA is that

it assumes harmonicity. Thus the predicted magnitude by sbNMA represents only a lower
bound of the actual magnitude of fluctuations of proteins that may contain also anharmonic

motions, especially at above Tg, the temperature of glass transition [38].

The magnitude of thermal vibrations can be obtained also experimentally. X-ray crystallog-

raphy that is widely used in protein structure determination produces such magnitude infor-

mation in atomic displacement parameters that are commonly known as B-factors. Since B-

factors contain also a significant amount of static disorder [32], the magnitude of mean-square

displacement obtained from B-factors thus represents an upper bound of the actual magnitude

of fluctuations of proteins.

A possible third alternative for obtaining the magnitude of thermal fluctuations of proteins

is molecular dynamics (MD) simulation [39, 40], which is able to take into account anharmo-

nic motions and is unaffected by static disorder. However, it suffers from the problem of insuf-

ficient sampling of the conformation space. Consequently, the actual magnitude of thermal

fluctuations is difficult to obtain using MD.

The Young’s modulus represents a material property of a solid. By representing a protein

using both a molecular model (as in NMA) and an elastic solid model as in σESM, we can link

material properties with molecular interactions. Particularly, we can deduce a protein’s

Young’s modulus by requiring the magnitude of thermal vibrations predicted by σESM in Eq

(3) to be the same as the magnitude obtained from sbNMA in Eq (5) or the magnitude of

mean-square displacement from B-factors in Eq (7). Since the magnitudes obtained from

sbNMA and B-factors represent the lower and upper bounds of the actual magnitude respec-

tively, the Young’s moduli thus deduced represent the upper and lower bounds of the actual

Young’s moduli. Specifically, by requiring hΔR2iESM = hΔR2iNMA (Eqs (3) and (5)), we have:

Eupper ¼
traceðK� 1

m Þ=m
ESM
tot

traceðH� 1

m Þ=mNMA
tot

; ð8Þ

where mESM
tot and mNMA

tot are the total masses in σESM and NMA, respectively. And similarly, by

requiring hΔR2iESM = hu2i (Eqs (3) and (7)), we have:

Elower ¼
traceðK� 1

m Þ=m
ESM
tot

ð
P

imihu2
i iÞ=m

Bfac
tot

; ð9Þ

where mBfac
tot is the total mass of all the atoms with B-factors, which usually are the heavy atoms.

2.5 Quaternary structures based on crystal contacts

For each protein chain p in the dataset, we determine the all the other chains in its unit cell

based on the space group and symmetry matrices given in its PDB file. Additionally we find all

the neighboring cells to the current cell in all directions: altogether 27-1 = 26 neighboring cells

are considered. Of all the chains in these cells, we identify the one that is the closest to p and

denote this chain as q. p and q form a crystal contact and a quaternary structure. (In the case

when the selected q has a very small contact surface with p, a different chain q is used instead.)

The quaternary structures are saved in PDB files as xxxx2.pdb, where xxxx is the pdb-id, and

are available at https://github.com/gsongISU/sigmaESMrelease, under folder pdbDataset. In
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the following, we explain how to compute the Young’s modulus of the interface region of a

quaternary structure.

2.6 σESM of the quaternary structures

σESM is readily applicable to the aforementioned quaternary structures in the same fashion as

to regular tertiary structures, and as a result, an elastic solid model is produced for each quater-

nary structure (see Fig 3 of structure 2pwa2.pdb). The nodes in the model consists of heavy

atoms of two protein chains (regions in red) in the quaternary structure and the surface nodes

(in cyan) given by the MSMS software [28]. The elements in the solid model are tetrahedra

generated by alpha shape [27] (see Fig 1). Given the elastic solid model of a quaternary struc-

ture, the interface region, which is in blue in Fig 3, is identified as follows.

First, all the tetrahedral elements formed by atoms from chain p or surface nodes but not

from chain q are identified. Let all the nodes of these elements be nodes1. nodes1 consists of all

the atoms of chain p and some surface nodes, but no atoms from chain q. Similarly, compute

nodes2 for the second chain q. Next, remove any common surface nodes shared by nodes1 and

nodes2 from them. As a result, the intersection of nodes1 and nodes2 is an empty set. Finally,

identify all the tetrahedral elements formed solely by nodes1 or nodes2. The remaining ele-

ments are identified as the interface region (in blue).

2.7 Computing the Young’s modulus of the interface region

Next, we compute the Young’s modulus of the interface region of the quaternary structure.

This allows us to assess how “soft” or “firm” the region is. Again, our method to determine the

material property of the interface region is to link it with the underlying molecular interactions

using σESM and sbNMA, by requiring the two models to give the same magnitude of thermal

vibrations.

Fig 3(B) shows the molecular structure model of the same quaternary structure after pro-

tonation using psfgen from VMD [42]. We apply sbNMA to compute the magnitude of ther-

mal vibration using Eq (5). To focus on the interface region and to speed up the computations,

we set the two proteins as rigid, i.e., the internal degrees of freedom within each protein chain

is left out, by employing a projection matrix as was done in the RTB model [43]. The magni-

tude of thermal vibration of the whole structure (Fig 3(B)) is thus dictated solely by inter-pro-

tein interactions. Similarly, when applying σESM to the solid model in Fig 3(A), the two

protein regions, which are in red, are set as rigid and only the interface region (in blue) is flexi-

ble. By requiring the two models to give the same magnitude of thermal vibration, we can

determine the Young’s modulus of the interface region, similar to what is done in Eq (8). The

entire program for computing the Young’s modulus of the interface region is given at https://

github.com/gsongISU/sigmaESMrelease. The program uses σESM and sbNMA and a matrix

projection module. All of them are available at the above website.

It is worth noting that only non-bonded interactions (possibly also disulfide bonds) are

present at the interface region. Therefore it is expected that the Young’s modulus of the inter-

face region should be smaller than that of a protein itself, since the latter contains also bonded

interactions. Also, quaternary structures constructed from crystal contacts as described above,

especially after protonation, may contain steric clashing in the interface region. For atom pairs

that are too close to each other (i.e., closer than their equilibrium separation distance which is

the sum of their van der Waals radii), we use their equilibrium separation distances as their

separation distances when computing the potential energy at the interface.
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3 Results

3.1 The choice of protein dataset

In our recent work [32], we have shown that the percentage of thermal vibrations in B-factors

is small in most proteins but is significantly large (50% or higher) for structures determined at

Fig 3. Models of a quaternary structure. (A) An elastic solid model of a quaternary structure (2pwa2.pdb). The pdb quaternary structure is available at

https://github.com/gsongISU/sigmaESMrelease, under folder pdbDataset. (B) the all-atomic molecular model of the same structure. The image is

generated by Rasmol [41].

https://doi.org/10.1371/journal.pone.0247147.g003
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both high resolution (1.2 Å or higher) and high temperature (that is, room temperature).

Unfortunately such structures are rare in the PDB, as most structures in the PDB [44] are

determined at cryogenic temperature to reduce the radiation damage [45].

Based on this premise, we select a group of 18 structures determined at high resolution (1.1

Å or high) and at room temperature. This set of structures are taken from a list of 1522 struc-

tures used in our previous work [32] that was originally generated by PDB_SELECT [46, 47].

3.2 Upper bound and lower bound of thermal fluctuations in proteins

There are a few universal properties of globular proteins that are intriguing. First, it was estab-

lished that the vibrational spectra of globular proteins, once properly normalized, follow a uni-

versal curve [35, 48]. It was shown later that this universality in vibrational spectrum held true

also for protein capsids [36]. Second, it was shown in one of our recent work that a direct cor-

ollary of the universality in vibrational spectrum among globular proteins is that the magni-

tudes of their thermal vibrations are nearly universal, having a narrow distribution that peaks

at 0.093 Å2 at 100 K [32]. In obtaining this value, a harmonic potential is assumed. The harmo-

nicity assumption is reasonable for thermal vibrations at or below 100 K. At higher tempera-

ture, particularly at above the glass transition temperature of proteins which is about 200-220

K, proteins undergo “glass transition” and become much more flexible [38]. As a result, the

magnitude of mean-square displacements grows super-linearly. Therefore, the magnitude of

thermal vibrations of globular proteins at 300 K is at least three times as high as 0.093 Å2, or

0.279 Å2. In other words, the magnitude of thermal vibrations computed from sbNMA (which

assumes harmonicity) represents a lower bound of the actual magnitude at room temperature.

On the other hand, the magnitudes of thermal fluctuations of globular proteins are available

in crystallographic B-factors, though in which unfortunately a large amount of static disorder

co-resides. Because of static disorder, B-factors do not represent the actual magnitudes of ther-

mal fluctuations but rather an upper bound.

The aforementioned upper and lower bounds define a range of the actual magnitudes of

thermal vibrations of globular proteins. The range, though not as ideal as a single definite

value, gives us a good sense of the magnitude.

Fig 4 shows the upper and lower bounds of the magnitudes of thermal fluctuations of the 18

structures in the dataset. For three out of the 18 structures, the lower bound obtained from the

sbNMA computation is slightly higher than the upper bound obtained from B-factors. This

could be due to the imperfection of sbNMA or uncertainties in B-factors, or both. However,

for most proteins, the over trend is that the upper bound is about 1.6-1.7 times higher than the

lower bound. The mean lower and upper bounds of the proteins shown in Fig 4 are 0.30 and

0.51 Å2, respectively.

3.3 Glass transition

It is known that proteins undergo glass transition at Tg, the glass transition temperature, which

is about 200-220 K for proteins [38]. At above Tg, proteins become much more flexible. Past

work indicated that “the glass transition in hydrated samples is located in the surface layer of

proteins and related to the (im)mobilization of the protein groups and strongly bound water.”

[4]. As a result, the magnitude of mean-square displacements grows super-linearly with

temperature.

Fig 5 presents the magnitudes of thermal vibrations as computed from sbNMA [32, 33] of

the 18 proteins in the dataset, as well as their mean-square displacements from crystallographic

B-factors. The blue line represents the linear growth of mean-square displacements as a
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function of temperature should there be no glass transition. The red line in Fig 5 represents a

fitting to hu2i (of B-factors). A clear picture of glass transition emerges.

3.4 The range of Young’s modulus

Fig 6 shows the range of Young’s moduli computed from σESM and calibrated with sbNMA or

B-factors. The median Young’s modulus when fitting to B-factors is 6.03 Gpa, and 10.6 Gpa

when fitting to sbNMA. sbNMA does not consider glass transition but only harmonic

motions. Thus, the Young’s moduli calibrated with sbNMA can be thought of as the Young’s

moduli of proteins at temperatures below Tg, while the Young’s moduli fit to B-factors can be

thought of as Young’s moduli at the room temperature.

3.5 Estimating the Young’s modulus of the interface region using sbNMA

and CHARMM force field

The interface region is kept together mostly by non-bonded electrostatic and van der Waals

interactions. Electrostatic interactions are difficult to include in normal mode analysis as they

Fig 4. The magnitudes of thermal fluctuations obtained from B-factors (in red) and from sbNMA computations (in blue), which form the upper

and lower bounds of the magnitudes of thermal fluctuations of the 18 structures in the dataset, listed by their sizes in the ascending order. For

three out of the 18 structures, the lower bound is slightly higher than the upper bound.

https://doi.org/10.1371/journal.pone.0247147.g004
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introduce negative spring constants [33]. Our past studies showed that van der Waals interac-

tions provided a greater contribution than the electrostatic interactions (Fig 1 in Ref. [33]) and

a model without electrostatic interactions could still maintain most of the accuracy of the clas-

sical NMA [33]. For these reasons, our current model for the interactions at the interface

includes only the van der Waals interactions. It is planned that a future release of the model

should improve this deficiency. The van der Waals potential employed in the CHARMM force

field is a 6-12 Leonard-Jones potential that takes the following form:

VvdW ¼ �
r0

r

� �12

� 2
r0

r

� �6
� �

: ð10Þ

Fig 5. The magnitude of thermal fluctuations as a function of temperature. Tg denotes the temperature of glass transition that is 200-220K [38]. The

magnitudes computed from sbNMA at 100K are marked by black crosses, while the magnitudes obtained from B-factors by black circles. The blue line

represents the universal trend of the magnitude of harmonic vibrations by sbNMA with CHARMM force field, having a nearly universal value around

0.093 Å2 at 100 K for all proteins [32], and 0.279 Å2 at 300 K. At above Tg, anharmonic motions kick in and the magnitude of total thermal fluctuations

increases superlinearly, as marked by the red line that is fitted to the black circles.

https://doi.org/10.1371/journal.pone.0247147.g005
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The spring constant due to the van der Waals potential is:

kvdW ¼
@

2VvdW

@r2
¼

12�

r2
13

r0

r

� �12

� 7
r0

r

� �6
� �

¼
72�

r2
0

; ð11Þ

the last step of which assumes r = r0.

Fig 7 shows the histogram distribution of the van der Waals parameter � of the 50

CHARMM atom types in par_all36_prot.prm and the histogram distribution of kvdW(r0),

which falls mostly in the range of 0.1 to 1 Kcal/mol/Å2. It is thus clear that kvdW, the spring

constant due to van der Waals interactions, is much weaker than the spring constants for cova-

lent bonds that are in the order of several hundreds Kcal/mol/Å2.

Since the equilibrium distance between a pair of atoms are in the range of 2.5 to 4.5 Å, The

Young’s modulus of the interface region, Einter, is estimated to be on the order of
kvdW
r0

, or 0.02

to 0.4 Kcal/mol/Å3 (or 0.1 to 3 Gpa, the converting factor between the two units is 6.9). This is

Fig 6. A bar plot of the Young’s moduli (E) calibrated with sbNMA (in blue) and those with crystallographic B-factors (in red), for the 18 proteins

in the dataset (listed by their sizes in the ascending order). The blue bars can be interpreted also the Young’s moduli at temperatures below Tg, while

the red bars Young’s moduli at the room temperature.

https://doi.org/10.1371/journal.pone.0247147.g006
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2 to 3 orders smaller than that of covalent solids or ionic solids, which is expected since spring

constants derived from van der Waals interactions are 2 to 3 orders smaller than those of cova-

lent bonds or ionic bonds.

3.6 Young’s moduli of the protein interface regions

Using the approach described in the Methods, we first generate quaternary structures of all the

18 proteins in the dataset. σESM (see Methods section for details) is then applied to compute

the Young’s moduli of the interface regions (the MATLAB scripts used for this computation

are available at https://github.com/gsongISU/sigmaESMrelease). The results are given in

Table 2. It is seen that while the Young’s moduli of the proteins are a few Gpa, the Young’s

moduli of interface regions are about an order smaller. Such a significant difference in stiffness

between proteins and protein interfaces must be due to the underlying chain connectivity of

proteins and the associated bonded interactions. Proteins can be considered as van der Waals

solids with “steel enforcement” [49]. Also listed in Table 2 are the buried surface areas of inter-

face regions of the quaternary structures. The buried surface area is the difference between the

total surface area of individual proteins and that of the complex, both of which are computed

using MSMS [28].

The above 18 quaternary structures are artificially generated based on crystal contacts. An

insightful reviewer commented that interfaces thus identified tend to be fortuitous and recom-

mended that real protein-protein interfaces existing naturally should also be used and a com-

parison be made. For this reason, we selected another 18 high resolution structures (1.0 Å or

higher) from the PDB that are in the form of homodimers in the asymmetric unit. Their pdb-

ids and sizes are given in Table 3, as well as the buried surface areas and the Young’s moduli of

the interface regions.

To compare the Young’s moduli of protein interfaces of the naturally existing dimers

(Table 3) with those created by crystal contacts (Table 2), we show in Fig 8 a scatter plot

between the buried surface areas and the Young’s moduli of the interface regions, for both nat-

ural interfaces (red dots) and artificial interfaces created by crystal contacts (blue crosses).

First, a significant correlation is seen between the buried surface areas and the Young’s moduli

(correlation coefficient: 0.77). Secondly, The natural interfaces (red dots) have a much higher

Fig 7. Histogram distributions of (A) the van der Waals parameter � used in CHARMM and (B) of kvdW(r0), the spring constant of van der Waal

interactions.

https://doi.org/10.1371/journal.pone.0247147.g007
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Table 2. The lower and upper bounds of Young’s moduli of the 18 proteins and the Young’s moduli of the interface regions of the corresponding quaternary struc-

tures artificially generated based on crystal contacts.

pdb-id residue # buried area [Å2] Einter Eintra (lower bound) Eintra (upper bound)

1p9g 41 75 0.09 12.71 12.10

1rb9 52 263 0.58 7.76 11.19

1iro 53 388 0.56 4.56 10.19

2igd 61 171 0.40 8.04 7.56

1aho 64 493 1.17 8.75 7.70

5tog 75 541 0.56 6.88 7.95

1ctj 89 352 0.96 3.29 8.23

1lwb 122 251 0.58 7.10 9.88

1c7k 132 81 0.36 5.45 13.17

3r87 132 837 0.83 5.48 11.91

6gz8 133 293 1.13 5.75 10.95

5vg0 142 181 0.23 5.53 11.57

4b9g 146 264 1.02 6.69 9.91

4ann 176 527 0.57 6.27 11.41

4qa8 210 401 0.91 3.51 9.99

6h40 220 183 0.57 4.83 7.89

2pwa 279 203 0.44 7.45 16.32

6gy5 285 103 0.15 5.80 13.79

median 132 263 0.57 6.03 10.57

The lower bounds are obtained by fitting σESM results to B-factors, while the higher bounds are obtained by fitting the σESM results to sbNMA. Also listed in the table

are the sizes of the 18 proteins and the buried surface areas of the interface regions. The unit for all Young’s moduli is Gpa.

https://doi.org/10.1371/journal.pone.0247147.t002

Table 3. The buried surface areas and the Young’s moduli (Einter) of the natural interfaces found in a list of 18

high resolution structures from the PDB that are in the form of homodimers in the asymmetric unit.

pdb-id residue # buried surface area [Å2] Einter [Gpa]

4ynh 58 1,964 2.06

3rq9 84 900 1.60

4nds 94 1,279 2.26

2nmz 99 2,381 3.12

4unu 109 597 0.53

6j64 115 2,695 2.69

2xr4 116 1,987 1.89

4egu 118 2,256 2.02

2gud 121 2,997 3.50

4axo 137 2,615 2.09

5nld 138 1,058 1.15

5idb 142 1,390 1.89

2wyt 153 729 1.71

4a7v 153 704 1.50

5sy4 195 1,802 2.14

6rk0 214 5,313 3.77

3noq 229 3,327 2.17

4ypo 325 7,924 2.50

median 129 1,976 2.08

The buried surface areas and the Young’s moduli of these natural interfaces are distinctly higher than those of the

artificial interfaces seen in Table 2.

https://doi.org/10.1371/journal.pone.0247147.t003
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buried surface areas, though the two sets of proteins have similar sizes, and are much stiffer,

having a median Young’s modulus of about 2.0 Gpa that is about 4 times as high as that of arti-

ficial interfaces. Thirdly, even for the natural interfaces, the Young’s moduli are still a few

times lower than those of proteins. Since a clear distinction is seen between artificial interfaces

and natural interfaces in Fig 8, a potential application of the present study is to use the inter-

face’s Young’s modulus proposed in this work to assess the quality of a predicted protein

interface.

4 Discussion

In this work, we have studied the elastic moduli of proteins and protein interfaces using a bot-

tom-up approach. The material properties of solids are determined by the underlying physical

interactions. For proteins and protein interfaces in particular, their material properties such as

elasticity are dictated by the underlying molecular interactions.

The innovation of this work is the development of a novel method that can bridge between

material properties at the macroscopic level and molecular interactions at the microscopic

Fig 8. A scatter plot between the buried surface areas and the Young’s moduli of the interface regions, for both artificial (blue crosses, data points

from Table 2) and natural (red solid circles, data points from Table 3) interfaces.

https://doi.org/10.1371/journal.pone.0247147.g008
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level. To achieve this, we employ both an all-atom NMA model (here sbNMA [33]) and an

elastic solid model (σESM) for proteins and protein interfaces. And the “bridge” between the

two models is a common physical property predictable by both models: the magnitude of ther-

mal vibrations (see Eq (8)), i.e.,

hDR2iESM ¼ hDR
2iNMA ð12Þ

This connection allows us to determine the Young’s moduli of proteins and protein inter-

faces using molecular interactions.

A similar bridge can be built between σESM and crystallographic B-factors (Eq 9) as well. A

significant benefit of doing both is that the two constraints are complementary to each other

and together they provide both an upper and lower bound for the Young’s moluli of proteins.

Atoms at the interface region interact primarily through non-bonded interactions. One key

realization is that the spring constant due to the van der Waals interaction, or kvdW, is small

and is mostly in the range of 0.1-1 kcal/mol/Å2 (Fig 7). Since the separation distances r0

between pairs of atoms at the interface region should be about the sum of their van der Waals

radii, one may estimate the order of Young’s modulus at the interface region by simply taking

the ratio of the two, which comes to be about 0.1 to 3 Gpa. Our actual computations are in

agreement with this estimation. Covalent solids such as diamond have a Young’s modulus that

is hundreds of Gpa or even over a thousand Gpa, which is 2-3 orders higher than that of pro-

teins or protein interfaces. The difference has a simple physical explanation: the spring con-

stants for covalent bonds (as in CHARMM force field) are 2-3 orders higher than the van der

Waals spring constants while the separation distances between interacting atoms are similar.

In a nutshell, the low Young’s modulus at protein interface is directly due to the weak non-

bonded interactions.

Another interesting finding is that, compared with protein interfaces, the Young’s modulus

of proteins is several times higher. After all, proteins are chains of amino acids linked together

by covalent bonds. The covalent chain serves as a “steel enforcement” [49] that stiffens a pro-

tein solid. The abundance of secondary structures in proteins provides additional enforcement

through hydrogen bonds. As a result, the internal of a protein is several times stiffer than pro-

tein interface.

As part of future work, we plan to apply the method to study the elastic properties of protein

capsids. The stiffness of viral capsids has been measured for a large number of viruses using

AFM technique [5]. The stiffness varies greatly among the viral capsids, with that of some cap-

sids being an order of magnitude higher than that of others [5]. The physical cause of this large

degree of variations in stiffness is not known. As mentioned in the Introduction, existing

work, using with either the thin shell or thick shell models, all represents a top-down approach

that uses experimental determined stiffness values to fit the underlying elastic moduli of cap-

sids and were not able to provide a physical explanation for the observed stiffness. Our present

approach has the potential to take into the account not only the structural details of protein

capsids (instead of a shell with uniform spherical geometry and thickness), but also the striking

difference in elastic properties between protein subunits and protein interface regions, and

consequently may be used to predict capsid stiffness and provide an explanation for the

observed differences in stiffness among viral capsids.
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