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Abstract

Positron emission tomography (PET)-based staging of regional amyloid deposition has

recently emerged as a promising tool for sensitive detection and stratification of pathol-

ogy progression in Alzheimer's Disease (AD). Here we present an updated methodologi-

cal framework for PET-based amyloid staging using region–specific amyloid-positivity

thresholds and assess its longitudinal validity using serial PET acquisitions. We defined

region-specific thresholds of amyloid-positivity based on Florbetapir-PET data of

13 young healthy individuals (age ≤ 45y), applied these thresholds to Florbetapir-PET

data of 179 cognitively normal older individuals to estimate a regional amyloid staging

model, and tested this model in a larger sample of patients with mild cognitive impair-

ment (N = 403) and AD dementia (N = 85). 2-year follow-up Florbetapir-PET scans from

a subset of this sample (N = 436) were used to assess the longitudinal validity of the

cross-sectional model based on individual stage transitions and data-driven longitudinal

trajectory modeling. Results show a remarkable congruence between cross-sectionally

estimated and longitudinally modeled trajectories of amyloid accumulation, beginning in

anterior temporal areas, followed by frontal and medial parietal areas, the remaining

associative neocortex, and finally primary sensory-motor areas and subcortical regions.

Over 98% of individual amyloid deposition profiles and longitudinal stage transitions

adhered to this staging scheme of regional pathology progression, which was further

supported by corresponding changes in cerebrospinal fluid biomarkers. In conclusion, we

provide a methodological refinement and longitudinal validation of PET-based staging of

regional amyloid accumulation, which may help improving early detection and in-vivo

stratification of pathologic disease progression in AD.
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1 | INTRODUCTION

One of the most important and earliest histopathological hallmarks of

Alzheimer's disease (AD) are senile plaques mainly consisting of amyloid-

β (Aβ) protein. Assessment of amyloid pathology extent based on

Data used in preparation of this article were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within

the ADNI contributed to the design and implementation of ADNI and/or provided data but

did not participate in analysis or writing of this report. A complete listing of ADNI

investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf
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autopsy studies suggests downward amyloid pathology spread from the

associative neocortex over limbic and primary sensory-motor areas to

subcortical structures (Braak & Braak, 1991; Braak, Thal,

Ghebremedhin, & Del Tredici, 2011; Thal, Rüb, Orantes, & Braak, 2002).

Numerous studies have shown that early phases of amyloid accumula-

tion can be observed in cognitively unimpaired older individuals decades

before the onset of dementia (Braak et al., 2011; Jack et al., 2013;

Sperling, Mormino, & Johnson, 2014; Thal et al., 2002).

Amyloid imaging with positron emission tomography (PET) has

become an important diagnostic tool for AD (Villemagne et al., 2011),

displaying high sensitivity and specificity by comparison with neuro-

pathological findings (Clark et al., 2012; Sabri, Seibyl, Rowe, &

Barthel, 2015; Villeneuve et al., 2015). Recent amyloid PET studies

have attempted to characterize and stage the regional amyloid pathol-

ogy spread in-vivo, either using an a priori distinction between early

neocortical and later subcortical amyloid deposition (Cho et al., 2018;

Hanseeuw et al., 2018; Thal et al., 2018) or more comprehensive

data-driven models including regional deposition differences within

both cortical and subcortical areas (Cho et al., 2016; Grothe

et al., 2017; Sakr et al., 2019). In our previous work (Grothe

et al., 2017) we have developed an in-vivo staging model that adopts

a commonly used analytic approach for determining regional staging

schemes in neuropathological studies (Braak & Braak, 1991; Josephs

et al., 2016; Thal et al., 2002) and is based on the frequency of region-

ally measured uptake positivity in cognitively normal older partici-

pants. The hierarchical stage model showed a progression pattern

evolving from temporobasal and frontomedial areas (I), over the

remaining associative neocortex (II), to primary sensory-motor cortex

and the medial temporal lobe (III), and finally the striatum (IV). Across

individuals the amyloid deposition patterns were highly consistent

with the predicted hierarchy across these brain regions, allowing to

classify almost all individual profiles (>98%) into one of four progres-

sive amyloid stages. Furthermore, in a follow-up study we were able

to show the validity of this model in an independent cohort consisting

of people with subjective memory complaints enrolled in the French

INSIGHT-pre-AD study (Sakr et al., 2019). The first stages of amyloid

accumulation identified by the in-vivo staging scheme were already

paralleled by concomitant decreases in CSF-Aβ values, but in both

cohorts were largely classified as amyloid-negative by commonly used

mean global cortical radiotracer uptake measurement. Moreover,

while AD dementia patients unanimously exhibited advanced in-vivo

amyloid stages (III/IV), amyloid burden among nondemented individ-

uals varied across the full spectrum of amyloid stages and correlated

with decreased memory scores in these individuals.

Together, the proposed method of in-vivo amyloid staging shows

promising results for early detection of amyloid accumulation and a

stratification of the predementia phase of AD based on an individual's

extent of amyloid pathology. However, in analogy to neuropathologic

staging schemes, the model describes cross-sectional data, and thus it

is still unclear whether this frequency-based approach reflects actual

longitudinal progression patterns. Moreover, it is important to keep in

mind that the staging approach also depends on a range of methodo-

logical settings that may affect the final staging outcome. In particular,

our staging approach as originally devised employed a constant thresh-

old for defining regional amyloid-positivity, which may not accurately

account for differing noise levels across different brain regions. Thus,

amyloid PET studies have shown considerable regional signal variations

even in young adults (Joshi et al., 2012) who are highly unlikely to

exhibit any cerebral amyloid deposition (Braak et al., 2011; Kok

et al., 2009), indicating region-specific signal confounds.

In the present study we updated our original in-vivo amyloid stag-

ing method using a technically more appropriate approach for

detecting regional amyloid-positivity based on region-specific signal

thresholds defined in a young control population, and then further

assessed the longitudinal validity of the cross-sectionally estimated

staging model by studying individual amyloid progression patterns in

serial PET assessments.

2 | MATERIALS AND METHODS

2.1 | Participants

As in our previous staging study (Grothe et al., 2017), we included

baseline Florbetapir-PET scans of 667 participants from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://

adni.loni.usc.edu/). The sample comprised 179 cognitively normal

older controls (CN), 403 participants with mild cognitive impairment

(MCI), and 85 Alzheimer's disease dementia patients (AD). Clinical

assessment criteria for each of the groups were described in detail

previously and are available in the protocols of the ADNI study

(https://adni.loni.usc.edu/methods/). A total of 436 subjects (135 CN,

274 MCI, 27 AD) had 2-year follow-up Florbetapir-PET scans avail-

able. A summary of demographic and cognitive characteristics for all

clinical groups is displayed in Table 1.

In addition, we included Florbetapir-PET scans of 13 cognitively

normal young controls (YC) to estimate region-specific amyloid-

positivity thresholds. All YC subjects were younger than 45 years of

age (mean ± SD: 27 ± 4.3 y), the sample had equal gender distribution

(M/F: 6/7), and low APOE4 positivity prevalence (9 negative, 1 posi-

tive, 3 unknown). The data was originally acquired to serve as a YC

reference data set for scaling of global Florbetapir-PET signal to the

standardized Centiloid scale (Navitsky et al., 2018a) and is freely avail-

able on the Global Alzheimer Association Interactive Network website

(GAAIN; http://www.gaain.org/centiloid-project).

TABLE 1 Sample characteristics

Clinical group CN MCI AD

N 179 403 85

Age 73.8 ± 6.5 71.7 ± 7.7 75.6 ± 8.3

Sex (M/F) 88/91 220/183 49/36

MMSE 29.1 ± 1.2 28.1 ± 1.7 22.9 ± 2.0

Note: Average values are reported as mean ± SD.

Abbreviations: MMSE, mini-mental state examination; M, male; F, female.
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As reported previously (Grothe et al., 2017; Navitsky

et al., 2018a), written informed consent was obtained for all study

participants and/or authorized representatives, and data collection

and sharing were performed in accordance with the ethical standards

of the institutional and/or national research committees (http://adni.

loni.usc.edu/methods/documents/) (Navitsky et al., 2018a). Only de-

identified imaging and clinical data was used for the analysis according

to data sharing and publication policies of the providing institutions

(http://adni.loni.usc.edu/data-samples/access-data/).

2.2 | Imaging data

Detailed acquisition and standardized pre-processing steps of the

Florbetapir-PET images are available at the ADNI website (adni.loni.

usc.edu/methods/). Briefly, Florbetapir-PET images for all participants

were acquired as 4 × 5 min frames 50 to 70 min after 370 MBq bolus

injection of Florbetapir (18F). To account for the multicentric acquisi-

tion of the data, all images undergo standardized pre-processing steps

within ADNI, including realignment and averaging of the dynamic vol-

umes, reslicing to a common voxel size (1.5 mm × 1.5 mm × 1.5 mm),

and scanner-specific smoothing to an approximate final resolution of

8 mm FWHM. For further pre-processing we also used the

corresponding 3T T1-weighted 3D magnetization-prepared rapid

acquisition gradient echo (MPRAGE) MRI scan that was closest in time

to the Florbetapir-PET scan (all obtained within 3 months from the

corresponding PET scans; interval = 1.08 ± 1.06 months).

Pre-processing and analysis of both baseline and follow-up imag-

ing data followed previously reported procedures (Grothe et al., 2017;

Sakr et al., 2019). Briefly, MRI images were realigned, segmented into

tissue types, and spatially normalized to an aging/AD-specific refer-

ence template space using standard procedures (Ashburner, 2007)

implemented in Statistical Parametric Mapping software (SPM8, the

Wellcome Trust Centre for Neuroimaging). Florbetapir-PET images

were rigidly aligned to their corresponding structural MRI scan in

native space, corrected for partial volume effects (PVE) using the

“Müller-Gärtner” method (Gonzalez-Escamilla et al., 2017; Müller-

Gärtner et al., 1992), and spatially normalized to the reference tem-

plate space using transformation parameters from the corresponding

MRI. Fifty-two regional volumes of interest (rVOI) were defined

within the reference template using the Harvard-Oxford atlas, includ-

ing 48 different cortical regions, as well as the hippocampus, amyg-

dala, striatum, and thalamus, all masked for >50% gray matter

probability. Regional standard uptake value ratios (SUVR) for rVOI

were calculated by scaling mean tracer uptake values to the mean

uptake value of the whole cerebellum. The employed 3-compartment

PVE correction method (Müller-Gärtner et al., 1992) has been shown

to provide improved estimates of regional amyloid tracer binding in

the brain's gray matter (Gonzalez-Escamilla et al., 2017; Rullmann

et al., 2016), but it does not provide values for the white matter com-

partment. Thus, the signal of the whole cerebellar reference region

(including cerebellar gray and white matter) that is most commonly

used for scaling Florbetapir-PET data (Clark et al., 2012; Navitsky

et al., 2018a) was extracted from the PET data before PVE correction

(Grothe et al., 2017).

Adopting a commonly used approach for defining global signal

cut-offs (Jack Jr et al., 2017; Joshi et al., 2012), regional amyloid-

positivity within each rVOI was defined as 1.65 SDs above the mean

value in the YC sample. Acquisition parameters for the YC imaging

data followed similar protocols as for the ADNI data and are detailed

in the original publication of this dataset (Navitsky et al., 2018a). Pre-

processing and analysis of Florbetapir-PET images of the YC group

followed the identical MRI-based processing pipeline as described

above. Given the relatively small sample size, mean and SD values for

all rVOIs were calculated on 10,000 bias-corrected and accelerated

bootstrap resamples. In sensitivity analyses we used alternative cut-

off definitions based on 2 and 3 SDs above the mean value, as well as

using the maximum value observed in the YC sample.

For comparison, we also studied standard global cortical SUVRs

(with whole cerebellum reference) for all ADNI PET scans using cen-

trally calculated values that are made available on the ADNI server

(https://adni.loni.usc.edu/methods/pet-analysis). Global amyloid-

positivity was defined using a recommended cut-off of SUVR >1.1

(Joshi et al., 2012; Landau et al., 2014).

2.3 | Cerebrospinal fluid (CSF) AD biomarkers

Amyloid-β 1–42 peptide (Aβ1-42), total tau (t-tau), and phosphorylated

tau (p-tau) in the CSF were measured using the multiplex xMAP Luminex

platform with Innogenetics immunoassay kit–based reagents. Immunoas-

say reagents, analytical platform, and other details of biomarker quantifi-

cation are described elsewhere (Shaw et al., 2009). 90% of the included

ADNI sample in this study (603 subjects) had complete baseline CSF bio-

marker data measured at the same study point as the neuroimaging data.

2.4 | Cognitive assessment

Cognition was assessed using the mini-mental state examination

(MMSE) (Folstein, Folstein, & McHugh, 1975) as a measure of global

cognitive performance, as well as 30-min delayed recall (DR) of the

Rey Auditory Verbal Learning Test (Schoenberg et al., 2006) and the

Trail Making Test B (TMT-B) (Reitan, 1958) as domain-specific mea-

sures of episodic memory and executive function, respectively.

2.5 | Cross-sectional model of regional amyloid
progression and staging scheme

Estimation of a regional amyloid progression model and derived stag-

ing scheme followed the same general approach as in our previous

staging study (Grothe et al., 2017), including calculation of regional

frequencies of amyloid-positivity in the CN cohort (percentage of indi-

viduals showing suprathreshold SUVR in the different rVOI) as an indi-

cator of regional pathology progression, and grouping single regions
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into four larger anatomical divisions based on their estimated tempo-

ral involvement (frequency count). Methodological improvements

over the original approach included the calculation of regional

amyloid-positivity based on region-specific cut-offs as determined in

the YC data, as well as defining the four larger anatomical divisions

using the optimal k-means clustering algorithm (Wang & Song, 2011)

instead of equal partitions of the observed amyloid-positivity fre-

quency range. Moreover, in sensitivity analyses we assessed potential

effects of confounding factors on the estimated regional progression

pattern by repeating the analysis in separate subsamples of males and

females, APOE4 carriers and non-carriers, older and younger individ-

uals (using a median split at 73y), as well as higher and lower educated

individuals (median split at 16 years of education). The similarity of

the progression sequences derived from the different subgroups was

assessed by calculating pair-wise Spearman rank correlations between

the respective regional frequency counts (Grothe et al., 2017).

Following the previously described protocol for individual amyloid

staging analyses (Grothe et al., 2017), each anatomical division was

considered positive for amyloid pathology if at least 50% of rVOI

within this division were displaying suprathreshold signal. The individ-

ual in-vivo amyloid stage was then assigned based on the estimated

hierarchical involvement of anatomical divisions. For example, stage I

was defined as being positive in the first anatomical division, but neg-

ative in all following divisions, and stage II as being positive in first

and second anatomical division, but not in third or fourth. Individual

pathology profiles that would not follow the hierarchical order of ana-

tomical divisions as predicted by the estimated staging scheme were

considered non-stageable (mismatch). Individual profiles that would

not display suprathreshold signal in at least 50% of rVOI within any

anatomical division were assigned stage 0. Given that CN subjects

were also used to derive the regional progression model, an unbiased

estimate of non-stageable CN subjects was calculated using 10,000

resamples of randomly selected test and train subsamples. In sensitiv-

ity analyses, we assessed staging outcomes when systematically alter-

ing both the rVOI positivity requirement for an anatomical division to

be considered positive (initially set to 50%) as well as the overall num-

ber of considered anatomical divisions (initially set to 4).

2.6 | In-vivo stages and longitudinal amyloid
progression

To estimate the validity of the cross-sectionally estimated amyloid

progression model, we studied regional amyloid progression using

2-year follow-up imaging data. First, in order to validate the cross-

sectional in-vivo staging approach, we determined the in-vivo amyloid

stages for the follow-up dataset and assessed how many subjects

progressed, remained stable, or displayed unexpected progression

patterns (reverse stages or progression along deviating patterns).

In addition to the longitudinal staging analyses, we also explored

the temporal progression of regional amyloid-positivity independently

of the cross-sectionally estimated staging scheme. For this we used a

probabilistic model that starts with the longitudinal detection of earliest

amyloid accumulation in cases that are amyloid-negative at baseline,

and then iteratively searches for individuals at increasing amyloid pro-

gression phases in the baseline data to record their regional progression

over follow-up. Thus, based on the longitudinal rVOI changes in the

subset of subjects that displayed no suprathreshold signal in any of the

rVOI at baseline, we defined a regional profile corresponding to the first

signs of amyloid pathology deposition. This profile was then used to

select another subset of subjects who already showed the

corresponding rVOI positivity profile at baseline. Assuming that these

subjects were at the second year of the progression from an all-

negative rVOI state, we analyzed their follow-up data to define a profile

for an estimated fourth year of amyloid pathology progression. In total,

this procedure was repeated until the remaining individual profiles at

baseline would display amyloid-positivity in more than 70% of analyzed

rVOI, indicating globally widespread amyloid pathology. To allow inde-

pendent validation against our cross-sectional model, we excluded from

this analysis all baseline regionally positive CN individuals that were

also used to define the cross-sectional model (N = 116). The CN indi-

viduals who were all-negative at baseline did not contribute to the esti-

mated progression sequence in the cross-sectional model (based on

regional positivity counts) and were thus included in the longitudinal

probabilistic analysis. The obtained results were used to approximate

amyloid pathology progression for approximately 10 years from an all-

negative baseline state. For each of the analysis steps, the frequency of

rVOI amyloid-positivity in follow-up data was used to calculate the

probability of a region to become involved after each of the modeled

2-year intervals. Note that assignment of “progression year” in the

model is a modeled approximation that does not necessarily correspond

to actual individual timelines of amyloid pathology progression.

2.7 | Statistical analyses

Cross-sectional associations of in-vivo amyloid stages with baseline

CSF AD biomarkers and cognitive test scores were assessed using

age-corrected Spearman rank correlation coefficients (ρ). In addition,

for each amyloid stage differences in baseline CSF biomarker values

were compared to its preceding stage using Mann–Whitney U tests.

Similarly, in the longitudinal staging analysis Mann–Whitney U tests

were used to compare baseline CSF biomarker values between groups

that remained stable in their respective stage and those who prog-

ressed to a different stage at follow-up. Differences in the distribution

of baseline in-vivo amyloid stages between clinical groups were evalu-

ated using Pearson's Chi-squared test (χ2).

3 | RESULTS

3.1 | Updated cross-sectional staging model of
regional amyloid progression

As expected, regional means and SDs of SUVR values in the YC data

differed considerably between rVOIs, resulting in variable region-
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specific amyloid-positivity cut-offs (Supplemental Figure 1). Applying

these cut-offs to the regional SUVRs in the CN cohort resulted in a

frequency-based progression model (Figure 1 and Supplemental

Figure 2) where most frequent involvement was observed for the

temporal pole (67%), anterior parts of the middle temporal (62%) and

parahippocampal gyri (56%), and the planum polare (51%) (stage I).

The anterior temporal lobe regions were followed by widespread fron-

tal, temporal, and parietal association regions (40–20%), including for

example, the anterior inferior temporal gyrus (39%), anterior (32%)

and posterior (23%) cingulate cortex, and precuneus (28%) (stage II). A

third stage involved posterior temporobasal and medial temporal

areas, as well as most parts of the occipital cortex and the postcentral

gyrus (20%–10%), whereas the final stage was characterized by amy-

loid deposition in the precentral cortex, hippocampus, and striatum

(10–0%). Regional progression models estimated in subsamples strati-

fied by demographic (age, gender, education) or genetic (APOE4) vari-

ables were all highly similar to the original model calculated in the

whole CN group (all pair-wise Spearman rank correlation coefficients

ρ > .96, p < .001), indicating little effect of these variables on the

regional distribution of amyloid-positivity (Supplemental Figure 3).

Moreover, regional progression models calculated for varying cut-off

definitions all showed a highly similar ordering of the 52 brain regions

(all pair-wise Spearman rank correlation coefficients ρ > .96, p < .001;

Supplemental Figure 4).

Amyloid-positivity in the four anatomical divisions defining the

cross-sectional staging scheme showed a highly consistent regional

hierarchy across individual amyloid deposition profiles (Figure 2). Only

1% (2 individuals) of the amyloid-positive subjects in the analyzed

sample and on average only 2 ± 4% of the CN subjects in the sensitiv-

ity analyses displayed non-stageable patterns. Sensitivity analyses

altering the total number of considered anatomical divisions and the

methodology to define positivity for each anatomic division indicated

that the a priori settings (4 divisions, 50% positivity requirement) offer

a good trade-off for sensitive detection of regional amyloid-positivity

in a relatively detailed staging model while keeping the number of

unstageable subjects as low as possible (Supplemental Figure 5).

F IGURE 1 Four-stage model of regional amyloid progression. Brain renderings on the left illustrate the frequency of regional amyloid-
positivity across individuals on a color scale from black/blue (lowest) to yellow/red (highest). In the resulting four-stage model of regional amyloid
progression (I–IV), incremental stages are defined by involvement of higher numbered anatomic divisions (in red), in addition to the affected areas
of the previous stage (blue)

F IGURE 2 Staging of individual amyloid burden. Six hundred and
sixty-seven study participants are plotted as rows of the matrix,
anatomical divisions are plotted as columns. Absence or presence of
amyloid is displayed in gray and red, and two subjects that deviated
from the predicted pattern are displayed in yellow (1 CN and 1 MCI)

JELISTRATOVA ET AL. 4223



Stage I subjects were mostly classified as amyloid-negative

according to standard global cortical SUVRs but displayed significantly

lower CSF-Aβ1-42 values as compared to stage 0 (−6.6%, p < .001)

(Table 2), and overall, higher amyloid stages were strongly associated

with lower CSF-Aβ1-42 levels (ρ = −.72, p < .001). Additionally, higher

amyloid stages were associated with higher t-tau (ρ = .52, p < .001) and

p-tau (ρ = .56, p < .001) levels. In pairwise comparisons, both t-tau and

p-tau levels were significantly higher in stage II compared to stage I and

stage 0, but did not differ between stage 0 and stage I (Table 2). No sig-

nificant CSF-based amyloid or tau biomarker differences were found

between stage III and stage IV, probably reflecting saturation effects in

these measures (Jack Jr. et al., 2012; Mattsson et al., 2015).

Distribution of in-vivo amyloid stages differed significantly

between clinical groups (χ2 = 117.66, p < .001; Figure 3). Advanced

amyloid stages III and IV accounted for 86% of amyloid deposition

profiles in AD, 45% in MCI, and 20% in the CN group, with only a sin-

gle CN subject classified as stage IV. Within separate clinical groups,

higher amyloid stages (I-IV) were associated with lower DR scores in

the CN, MCI, and AD groups, as well as with higher TMT-B scores

and lower MMSE scores in the MCI group (Table 3). Similar associa-

tions were observed for standard global cortical SUVR values (> 1.1),

although associations with DR in the CN group did not reach statisti-

cal significance.

3.2 | Longitudinal staging of individual amyloid
progression

Out of 436 subjects that had 2-year follow-up imaging data available,

73.4% of subjects remained at the same stage after two years, 18.3%

showed a model-conform transition to a higher stage, 8.3% decreased

to a lower stage, and no subjects followed a regional progression pat-

terns that deviated from the staging model. Reverse progressions

almost entirely corresponded to reclassifications of stage I to stage

0, as well as stage IV to stage III at follow-up, affecting 15.3% of stage

I and 28.5% stage IV individuals at baseline. Distribution of the stages

in the 2-year follow-up data by the stage at baseline is displayed in

Figure 4.

A Mann–Whitney test indicated that there was no significant dif-

ference in the baseline CSF-Aβ1-42 values of the stage 0 subjects that

progressed to stage I (228 ± 31) over follow-up compared to the

TABLE 2 Amyloid stages in comparison to clinical diagnosis, CSF biomarkers, and global Florbetapir-PET signal

Stage 0 Stage I Stage II Stage III Stage IV

N 143 208 77 163 74

CN 35.7% 40.9% 20.8% 15.3% 1.4%

MCI 59.4% 57.7% 68.8% 63.2% 55.4%

AD 4.9% 1.4% 10.4% 21.5% 43.2%

Aβ1-42 227 ± 32 212 ± 40* 142 ± 32* 132 ± 22** 127 ± 19

t-tau 57.3 ± 21.6 61.7 ± 33.1 97 ± 52.4* 123.3 ± 54* 122.1 ± 59.7

p-tau 29.7 ± 15 28.5 ± 14.2 44 ± 22.5* 57.7 ± 24.6* 58.5 ± 29.3

SUVR 0.99 ± 0.06 1.04 ± 0.07* 1.22 ± 0.09* 1.41 ± 0.12* 1.55 ± 0.14*

SUVR>1.1 6% 15% 88% 100% 100%

Higher stage at 2y follow-up 21.7% 8.2% 18.2% 11% —

Annual SUVR change 0.9 ± 1.9% 3.6 ± 2.6% 4.6 ± 3.9% 4.2 ± 4.7% —

Note: Values are reported as mean ± SD.

Abbreviation: SUVR, global cortical standard uptake value ratio.

*Significantly different from the previous stage at p ≤ .001, Mann–Whitney U test.

**Significantly different from the previous stage at p ≤ .01, Mann–Whitney U test.

F IGURE 3 Proportions of in vivo amyloid stages by clinical
diagnosis. Higher amyloid stages are more likely to be observed in the
MCI and AD groups. Only one subject in the CN group was classified
as stage IV
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baseline CSF-Aβ1-42 values of those who remained stable at stage

0 (227 ± 34) (U = 1,149, p = .38). Additionally, the baseline CSF-Aβ1-42
values of stage I subjects that reversed to stage 0 (227 ± 39) at

follow-up were not different from the baseline CSF-Aβ1-42 values of

the stage 0 subjects (227 ± 34) (U = 1,621, p = .46). By contrast, stage

I subjects that remained stable over two years had significantly lower

baseline CSF-Aβ1-42 values (215 ± 40) as compared to the baseline

CSF-Aβ1-42 values of the stage I subjects that reversed to stage

0 (227 ± 39) (U = 982.5, p = .047), and significantly higher baseline

values as compared to the subjects that transitioned from stage I to

stages II or III over follow-up (179 ± 27) (U = 614, p = .01).

3.3 | Probabilistic longitudinal trajectory model

16% of the selected subcohort with follow up data (N = 46/320) dis-

played no suprathreshold signal in any of the rVOI at baseline. Analy-

sis of 2-year follow-up images of these subjects suggested a very

similar regional pattern of earliest amyloid deposition as the one esti-

mated by the cross-sectional frequency-based model (Figure 5 and

Supplemental Figure 6). Thus, first longitudinal changes from an all-

negative state most likely occurred in stage I regions, including the

temporal pole and anterior parts of the middle temporal and para-

hippocampal gyri. This was followed by increasing probability of stage

II regions to become involved, whereas probability for stage III regions

to become positive began to increase from modeled progression year

6 onwards. Stage IV regions were highly unlikely to become positive

before the modeled progression years 8–10.

Similarly to the CSF-Aβ1-42 results for the longitudinal staging

analysis, a Mann–Whitney test indicated that there was no significant

difference in baseline CSF-Aβ1-42 values between all-negative subjects

who remained negative (230 ± 23) and those who showed regional

amyloid-positivity at 2-year follow-up (228 ± 39) (U = 242, p = .32).

4 | DISCUSSION

In the present study we have reassessed our previously developed in-

vivo amyloid staging model (Grothe et al., 2017) by applying new

methodology that accounts for regionally varying noise levels in the

Florbetapir-PET imaging data. Additionally, we evaluated the validity

of the cross-sectionally estimated amyloid progression model using

longitudinal PET data. Similarly to the previous model (Grothe

et al., 2017) and to the established neuropathologic amyloid staging

schemes (Braak et al., 2011; Braak & Braak, 1991; Thal et al., 2002),

the updated model shows a consistent pattern of spreading from

associative neocortex over allocortical and primary sensory-motor

areas to subcortical structures. Compared to our previous staging

model, the use of regionally varying amyloid-positivity cut-offs altered

the temporal ordering of some neocortical regions, but overall

resulted in a similar progression pattern across macroscopic brain sys-

tems as well as largely identical amyloid staging characteristics across

individuals. Longitudinal progression analyses demonstrated that

TABLE 3 Associations between
amyloid severity and cognitive scores

Cognitive test CN MCI AD

In-vivo amyloid stages

MMSE, AU ρ128 = −.11, p = .22 ρ318 = −.23, p < .001 ρ78 = −.13, p = .26

DR, AU ρ128 = −.19, p = .03 ρ313 = −.36, p < .001 ρ77 = −.25, p = .03

TMT, sec ρ128 = .024, p = .78 ρ308 = .2, p < .001 ρ69 = .16, p = .2

Global SUVR (>1.1)

MMSE, AU ρ53 = −.06, p = .65 ρ219 = −.21, p = .002 ρ75 = .08, p = .51

DR, AU ρ53 = −.2, p = .14 ρ215 = −.29, p < .001 ρ74 = −.23, p = .05

TMT, sec ρ53 = .01, p = .93 ρ214 = .28, p < .001 ρ67 = −.02, p = .87

Abbreviations: MMSE, mini-mental state examination; DR, delayed recall; TMT, Trail Making Test B.

F IGURE 4 Amyloid stages in 2-year follow-up data. Bar plots
display the stage at baseline, with the proportion of stages in 2-year
follow up data displayed by color code
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individual progression patterns closely match the cross-sectionally

estimated staging scheme.

In the cross-sectional progression model, the greatest effect of

the regionally varying thresholds is observed for the chronological

ordering of specific temporal lobe regions, shifting earliest amyloid

accumulating regions from inferior temporal to anterior temporal lobe

areas. An early increase of amyloid signal in the temporal neocortex

has been reported in several previous studies on independent study

cohorts employing Florbetapir (Gonneaud et al., 2017; Rodrigue

et al., 2012) or Florbetaben radiotracers (Cho et al., 2016). The results

were also supported by our longitudinal progression analysis in

completely amyloid-negative subjects at baseline, who after 2 years

of follow-up displayed amyloid-positivity in the same anterior tempo-

ral lobe regions (corresponding to stage I of the cross-sectional staging

scheme). Nonetheless, these results are in contrast with reports of

early amyloid accumulation in anterior and posterior midline regions

(Mattsson, Palmqvist, Stomrud, Vogel, & Hansson, 2019; Palmqvist

et al., 2017; Villeneuve et al., 2015). Such differences can most likely

F IGURE 5 The probabilistic longitudinal trajectory model. Progression phases are modeled for 2-year intervals from an all-negative state. In
the upper panel warmer color corresponds to a higher probability (p ≥ 5%) of the region to become amyloid-positive. The lower panel displays
mean SUVR values at the different modeled time-points for each of the regions displayed above. Pie charts display the average amyloid-positive
region count at each of the modeled time points
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be explained by the different analytic approaches across studies. Thus,

studies reporting an early involvement of the temporal neocortex typ-

ically analyzed direct signal elevations across individuals (Cho

et al., 2016; Gonneaud et al., 2017; Rodrigue et al., 2012), whereas

elevated amyloid-PET signal in anterior and posterior midline regions

is principally observed in studies contrasting high-amyloid groups to

age-matched low-amyloid control groups (Mattsson et al., 2019; Pal-

mqvist et al., 2017). Moreover, previous longitudinal amyloid-PET

studies have typically focused on spatiotemporal dynamics as

reflected by regional accumulation rates of SUVR values (Bilgel,

Prince, Wong, Resnick, & Jedynak, 2016; Marinescu et al., 2019;

Mattsson et al., 2019; Villain et al., 2012), whereas the focus of our

longitudinal modeling approach lied on the regional order of amyloid

progression as indicated by the occurrence of suprathreshold SUVR

signal (i.e., regional amyloid-positivity), which is the metric used by the

regional staging approach. We note that these two metrics, occur-

rence of suprathreshold SUVR signal and SUVR accumulation rates,

provide complementary information on the regional onset of pathol-

ogy and its further temporal dynamics, respectively. Interestingly, a

comparison of the evolution of mean regional SUVR values with the

probabilistic information on regional amyloid-positivity in our longitu-

dinal probabilistic model suggests that the observed regional onset of

pathology does not coincide with fastest progression in amyloid accu-

mulation (Figure 5). Thus, SUVR values of the temporal regions identi-

fied to exhibit the first suprathreshold signal displayed only a rather

moderate increase over the modeled time intervals, and were sur-

passed at later time points by the higher SUVR increases in AD-typical

frontoparietal regions that were also consistently identified as fast

accumulating regions in previous longitudinal amyloid-PET studies

(Bilgel et al., 2016; Marinescu et al., 2019; Mattsson et al., 2019; Vil-

lain et al., 2012).

Gonneaud et al. (2017) suggested that the early signal increase in

the temporal neocortex may be attributable to “physiologic” age-

related amyloid accumulation that occurs independently from AD-

related changes in the anterior and posterior midline regions. How-

ever, these early signal elevations could also reflect some form of

(age-related) off-target binding, or a confound by blood flow and

radiotracer delivery effects as previously described for settings with

low global amyloid levels (Sojkova et al., 2015). Here we find that the

regionally restricted temporal lobe signal defining stage I in our study

corresponds to lower CSF-Aβ1-42 values (but not different CSF tau

values) as compared to stage 0, which suggests that this signal at least

partly represents amyloid accumulation. The initial signal increase in

anterior temporal lobe regions is followed by amyloid-positivity in

several neocortical association areas that have previously been linked

to early AD-related amyloid accumulation (together defining stage II

of our staging scheme) (Gonneaud et al., 2017; Mattsson et al., 2019;

Palmqvist et al., 2017; Villeneuve et al., 2015). Interestingly, we also

found that, in addition to a further decrease in CSF-Aβ values, involve-

ment of these stage II regions was associated with a significant

increase in tau biomarker values, thus corroborating their closer link

to AD-related pathology. Nonetheless, the exact nature of early signal

increases in the temporal neocortex and their significance for AD-

related pathologic changes remains to be studied in more detail. To

date all amyloid-PET studies reporting early signal increases in the

temporal neocortex employed 18F-based amyloid radiotracers (Cho

et al., 2016; Gonneaud et al., 2017; Rodrigue et al., 2012), and thus

studying these regional signal elevations using 11C-based PIB-PET

may provide additional information as to the tracer-specificity of this

finding. For instance, tracers may differ in their binding characteristics

to specific types of amyloid-β aggregates, potentially also resulting in

differential binding affinities to the early “diffuse” and later “neuritic”

forms of amyloid plaques (Beach et al., 2018; Ni, Gillberg, Bergfors,

Marutle, & Nordberg, 2013; Seo et al., 2017).

In the longitudinal staging analysis, none of the progressed indi-

viduals deviated from the regional progression pattern predicted by

the cross-sectional staging model. However, a relatively large propor-

tion of individuals classified as stage I at baseline showed an unex-

pected regression to stage 0, indicating that these early signal

elevations may be more susceptible to false positive errors. Accord-

ingly, in contrast to stage I individuals that stayed stable or further

progressed, those who reverted to stage 0 did not show lower CSF-

Aβ1-42 levels at baseline compared to stage 0 individuals. Interestingly,

baseline CSF-Aβ1-42 levels were lower in progressive compared to sta-

ble stage I individuals. This agrees with previous reports of CSF-

Aβ1-42 changes preceding global amyloid accumulation (Palmqvist

et al., 2017). However, we did not observe any evidence for lower

CSF-Aβ1-42 levels preceding the early amyloid accumulation in stage I

regions (i.e., no difference between all-negative individuals who prog-

ressed vs those who remained stable).

When characterizing amyloid progression by longitudinal change

in global cortical Florbetapir-PET values, individuals who progressed

from stage 0 to stage I showed only a small annual increase of +0.9%

(Table 2), which is expected based on the subtle, spatially cir-

cumscribed signal elevations that define stage I. By contrast, mean

annual global SUVR increase for individuals progressing to cortically

more widespread stages II-IV was in the range of 3.6–4.6%. For com-

parison, a previous longitudinal Florbetapir-PET study using ADNI

data reported mean annual increases in global SUVR values (with

whole cerebellar reference) of 1.4 ± 3.9% (range: −9.3% to +15%) in

the early phase of amyloid progression as defined by CN and early

MCI individuals with a positive amyloid-status defined by CSF Aβ1-42
values (Landau et al., 2015). Thus, mean global SUVR changes in our

study are well in the range of this previous study, and indicate

increased global cortical amyloid accumulation from stage I onwards.

The data-driven probabilistic longitudinal trajectory model rev-

ealed a pattern of regional amyloid spread that was highly consistent

with the pattern estimated by regional frequency counts in the cross-

sectional staging scheme, thus supporting the validity of this staging

approach as a method for estimating an individual's pathology pro-

gression on the basis of a single cross-sectional PET scan. This method

may be particularly useful for risk stratification in preclinical cohorts,

where the utility of clinical data for staging disease progression is very

limited. Importantly, increasing amyloid stages were also associated

with lower memory scores among cognitively normal individuals, thus

indicating the potential of this method for estimating risk of disease
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progression towards clinically relevant stages during the preclinical

phase of AD. Recent studies of the topography of amyloid progression

suggest that amyloid spread to subcortical regions is associated with

higher risk of cognitive decline among nondemented individuals (Cho

et al., 2018; Hanseeuw et al., 2018). Hanseeuw et al. (2018) suggested

to stratify subjects into three stages according to their cortical and

striatal radiotracer uptake values (low cortical, high cortical, and high

cortical with high striatal signal), and showed that high neocortical and

striatal signal predicted faster cognitive decline than elevated cortical

signal alone. A similar staging approach was employed by Cho

et al. (2018), who observed cognitive changes over a decade-long

period and reported that involvement of subcortical regions (amygdala

and striatal regions) was associated with the steepest longitudinal

changes in cognitive measures. Our data-driven staging system very

similarly places striatum and other subcortical structures to the latest

stage of regional amyloid accumulation but additionally offers a more

detailed subdivision of the preceding cortical deposition stage. Farrell

et al. (2018) suggested that earliest amyloid-related memory decline

among cognitively normal individuals most closely corresponds to

regional amyloid-PET signal increases in the medial and lateral parietal

neocortex (corresponding to stage II of our regional staging scheme).

Consistently, using long-term clinical follow-up information of up to

6 years we could most recently demonstrate that an individual's in-

vivo amyloid stage as defined by our four-stage model translates into

a stage-proportional risk for cognitive decline, where cognitively nor-

mal individuals from stage II onwards were at a significantly increased

risk for conversion to MCI compared to stage 0 (Teipel et al., 2020).

4.1 | Methodological considerations

Our regional analysis of Florbetapir-PET data from young healthy

adults indicates that even in this assumedly amyloid-negative group

Florbetapir-PET signal varies significantly across brain regions, thus

strongly arguing for the use of region-specific amyloid-positivity cut-

offs. However, the derived cut-offs in the present study are limited to

a relatively small sample of young controls with available Florbetapir-

PET data (Navitsky et al., 2018a), and larger samples of truly amyloid-

negative individuals would be desirable for a more robust estimate of

regional amyloid-positivity thresholds. In our regional amyloid staging

approach, we apply partial volume effect correction to the

Florbetapir-PET images, which has previously been shown to improve

amyloid-PET quantification (Brendel et al., 2015; Gonzalez-Escamilla

et al., 2017; Rullmann et al., 2016; Su et al., 2016), particularly by

accounting for confounding effects of high nonspecific white matter

binding (Matsubara et al., 2016). Nonetheless, quantitative amyloid

imaging results are also affected by the choice of several other experi-

mental variables, including type of acquisition, preprocessing tech-

niques, and reference tissue selection (Landau et al., 2014; Schmidt

et al., 2015). Thus, future methodological work should also assess

potential effects of other commonly applied reference regions

(Landau et al., 2015; Su et al., 2016) or of different approaches to PET

signal quantification (e.g., full kinetic modeling instead of the

simplified SUVR approach [Ottoy et al., 2017]). Finally, our longitudi-

nal modeling of amyloid progression was limited to two time points

with a relatively short interval of 2 years, which previously was associ-

ated with less stable amyloid trajectories than models based on three

or more time points (Landau et al., 2018). Observing baseline amyloid-

negative subjects over longer intervals would result in more robust

temporal amyloid progression estimates with less reliance on model-

ing assumptions and could also provide better insights into the long-

term stability of the observed regressions in early stage I subjects.

5 | CONCLUSION

We have updated our previously published in-vivo amyloid staging

scheme to account for regionally varying noise levels in Florbetapir-

PET signal and provided evidence for the longitudinal validity of the

cross-sectionally estimated amyloid progression pattern. This tech-

nique may offer a valuable tool for stratification of pathologic disease

progression based on a single cross-sectional PET scan, with poten-

tially important implications for early detection and risk assessment in

the preclinical phase of AD. Further evaluation of the effects of

regional amyloid progression on longitudinal dynamics of cognitive

decline in at-risk individuals is warranted.
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