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The protective effect of astragaloside IV (AS-IV) on myocardial injury after myocardial

infarction has been reported. However, the underlying mechanism is still largely

unknown. We established a myocardial infarction model in C57BL/6 mice and

injected intraperitoneally with 10 mg/kg/d AS-IV for 4 weeks. The cardiac function,

myocardial fibrosis, and angiogenesis were investigated by echocardiography, Masson’s

trichrome staining, and CD31 and smooth muscle actin staining, respectively. Cardiac

mitochondrial morphology was visualized by transmission electron microscopy. Cardiac

function, infarct size, vascular distribution, and mitochondrial morphology were

significantly better in AS-IV-treated mice than in the myocardial infarction model mice. In

vitro, a hypoxia-induced H9c2 cell model was established to observe cellular apoptosis

and mitochondrial function. H9c2 cells transfected with silent information regulator 3

(Sirt3) targeting siRNA were assayed for Sirt3 expression and activity. Sirt3 silencing

eliminated the beneficial effects of AS-IV and abrogated the inhibitory effect of AS-IV on

mitochondrial division. These results suggest that AS-IV protects cardiomyocytes from

hypoxic injury by maintaining mitochondrial homeostasis in a Sirt3-dependent manner.

Keywords: astragaloside IV, myocardial infarction, mitochondrial function, silent information regulator 3, dynamin-

related protein 1

INTRODUCTION

Myocardial infarction (MI) refers to the ischemic necrosis of the myocardium. In coronary artery
disease, the blood flow of the coronary artery is sharply reduced or interrupted, resulting in
serious and lasting acute ischemia in the corresponding myocardium. This eventually leads to
the ischemic necrosis of the myocardium and seriously endangers patient health (1). Therapeutic
angiogenesis aims at treating ischemic diseases by generating new blood vessels from existing
vasculature (2). Therapeutic angiogenesis has been widely examined for treatment of many
human diseases, such as wound healing and organ repair and regeneration (3). The pathogenesis
of myocardial injury mainly includes energy metabolism disorder (4), free radical injury (5),
calcium overload (6), and inflammatory response (7), which are related to mitochondria.
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In recent years, the role of mitochondria in the process of
myocardial ischemia has attracted extensive attention. Protecting
the structure and function of mitochondria and enhancing the
ischemic tolerance of mitochondria has become an important
strategy to prevent and treat myocardial injury (8). Silent
information regulator 3 (Sirt3) is one of seven members of
the mammalian sirtuin family. Sirt3 balances the redox state of
cells by the regulating metabolism to stabilize cell energy and
regulate enzyme activity (9). The fusion of the mitochondrial
inner membrane is mediated by optic atrophy protein-1 (Opa1),
which is located on the inner membrane (10). Dynamin-related
protein 1 (Drp1) is a major protein that mediates mitochondrial
division (11). Evidence suggests that mitochondria constantly
fuse and divide for self-renewal, changing their ownmorphology,
interconnecting, and maintaining their own steady state. An
unbalanced process of mitochondrial fusion and division will
affect the morphology and function of the mitochondria; this
mitochondrial dysfunction leads to cardiac dysfunction (12, 13).
In a study on mitochondrial dynamics, Sirt3 enhanced the
activity of Opa1 and inhibited the activity of Drp1 by modifying,
regulating the fusion and cleavage of mitochondria, and affecting
the functional state of mitochondria, so as to maintain the steady
state of mitochondria in myocardial injury (14, 15).

Astragalus membranaceus is a traditional Chinese herbal
medicine that is thought to promote health. Astragaloside IV
(AS-IV) is the main active component of Astragalus. AS-IV
has a certain effect on inflammation by inhibiting the pro-
inflammatory factor high mobility group protein 1, which
has a potential effect on regulatory T cells (16). Studies
have suggested that AS-IV has a protective effect on brain
injury (17), lung injury (18), kidney injury (19), and heart
injury (20) caused by ischemia-reperfusion. AS-IV showed
anti-inflammatory activity by inhibiting NF-κB pathway (21).
Previous studies have confirmed that AS-IV has a positive
effect on MI (22–24). The potential mechanism of AS-IV
in the treatment of MI might involve the downregulation
of CaSR expression, upregulation of ERK1/2 phosphorylation
(25), inhibition of nuclear NF-κB p65 subunit translocation to
the nucleus (26), downregulation of TLR4/NF-KB expression
(27), upregulation of HIF-1A expression (28), changes in
Ca2+-ATPase activity (29), improvement in myocardial energy
metabolism (30), and regulation of the mitochondrial apoptosis
signaling pathway (31). However, the mechanisms by which
AS-IV regulates mitochondrial homeostasis in the treatment of
MI remain unknown. We hypothesized that AS-IV ameliorates
MI by regulating key mitochondrial proteins (Sirt3, Opa1, and
Drp1). This study mainly focused on the role mitochondrial
homeostasis in the protection of cardiomyocytes by AS-IV.

Abbreviations: AS-IV, astragaloside IV; Sirt3, silent information regulator 3;

MI, myocardial infarction; Opa1, optic atrophy protein-1; Drp1, dynamin-related

protein 1; α-SMA, α-smooth muscle actin; Bet, Betloc; EF, ejection fraction; FS,

fractional shortening; H&E, hematoxylin and Eosin; PBS, phosphate-buffered

saline; BSA, bovine serum albumin; DMEM, Dulbecco’s modified eagle medium;

FBS, fetal bovine serum; DCFH-DA, dichlorodihydrofluorescein diacetate;

DCFH, 2
′

,7
′

-dichlorodihydrofluorescein; DCF, 2
′

,7
′

-dichlorofluorescein; MMP,

mitochondrial membrane potential.

MATERIALS AND METHODS

Drugs and Reagents
AS-IV (batch number: 140913) was obtained from Weikeqi
Biotechnology (Sichuan, China). Betloc tablets (batch number:
2010038) were purchased from AstraZeneca (Wuxi, China).
Cell Counting Kit-8 (CCK-8, CAS Number: ZP328-3) was
purchased from Zomanbio (Beijing, China). ATP Assay kit
(CAS Number: S0026), mitochondrial membrane potential
assay kit with JC-1 (CAS Number: C2006), and reactive oxygen
species assay kit (CAS Number: S0033S) were purchased
from Beyotime Biotechnology (Shanghai, China). RiboFECT
transfection kit (CAS Number: C10511-1) was obtained from
Ribo Biotechnology (Guangzhou, China). Mitochondrial
isolation kit (Lot#019M4159V) was purchased from Sigma (St.
Louis, USA). Troponin I antibody (CAS Number: ab209809),
CD31 antibody (CAS Number: ab222783), α-smooth muscle
actin (α-SMA) antibody (CAS Number: ab124964), BAX
antibody (CAS Number: ab32503), Bcl2 antibody (CAS Number:
ab196495), cytochrome C antibody (CAS Number: ab133504),
Sirt3 antibody (CAS Number: ab246522), Opa1 antibody (CAS
Number: ab42364), VDAC1 antibody (CAS Number: ab15895),
and Drp1 antibody (CAS Number: ab184247) were obtained
from Abcam (Cambridge, MA, USA).

MI Model and Treatment
The animal experiments conducted in this study strictly complied
with the National Institutes of Health Guide for Care and Use
of Laboratory Animals (32). The animal research protocol was
approved by the Institutional Animal Care and Use Committee
of the Laboratory Animal Research Center of Zhejiang Chinese
Medical [License No. SYXK (Zhe)2018–0012].

Eight-week-old healthy male C57BL/6 mice (SPF quality
standard) were purchased from Shanghai Slaker Company and
fed in an SPF quality standard animal room (temperature 23
± 2◦C, humidity 50–70%, 12 h light/dark cycle, and water ad
libitum for 1 week).

For MI induction, 40 male C57BL/6 mice were anesthetized
with 0.3% pentobarbital at the dosage of 50 mg/kg followed
by endotracheal intubation, supine fixation, and ethanol
disinfection of the incision fur. Along the line between the axilla
and lower sternum, a 1.5 cm incision was made in the third
and fourth intercostal spaces of the heart, and the thoracic wall
muscle tissue was obtusely separated. The left main descending
branch of the coronary artery was ligated with no. 6-0 silk line.
After the cardiac apex turned gray, the MI model was considered
to be successfully established. In the normal group, the incision
was made and the left anterior descending coronary artery was
separated without ligation (33).

The model mice were randomly divided into four groups, the
normal group, the model group (n = 10), in which the mice
were orally administered distilled saline; the AS-IV treatment
group (n= 10), in which the mice were injected intraperitoneally
with 10 mg/kg AS-IV (34) for 4 weeks; and the positive control
group (n = 10), in which the mice were orally administered 18
mg/kg Betloc (Bet) (35) for 4 weeks. Bet is a β1-selective blocker
that reduces blood pressure and heart rate, increases ventricular
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diastolic time, and improves cardiac function. Ibanez et al. (36–
38) have demonstrated the important role of bet in the treatment
of patients with MI.

Echocardiography
Cardiac function was non-invasively monitored using a
Vevo1100 systemwith a 15MHz probe. The ejection fraction (EF)
and fractional shortening (FS) were the calculated parameters.

Hematoxylin and Eosin Staining
The apical tissues of the mice were fixed with 4%
paraformaldehyde at room temperature, embedded in paraffin,
and sectioned. Prior to analysis, the paraffin sections were
dewaxed in water, stained with H&E, dehydration sealed,
observed under microscope, and imaged.

Masson Staining
The paraffin sections were dewaxed in water, stained with iron
hematoxylin, Ponceau red, acid fuchsin, phosphomolybdic acid,
and aniline blue, dehydration sealed, observed undermicroscope,
imaged, and analyzed.

Immunofluorescence
After dehydrating the paraffin sections, antigen repair was
performed, and the sections were blocked with 5% goat serum
at room temperature for 30min. Subsequently, the serum was
discarded, and primary antibody was added (troponin I 1:300
dilution, CD31 1:100 dilution, α-SMA 1:300 dilution) followed
by incubation at 4◦C overnight. On the next day, the sections
were reheated at room temperature for 1 h, rinsed three times
with phosphate-buffered saline (PBS), dropped with fluorescent
secondary antibody (1:300 dilution), and incubated at room
temperature for 1 h in the dark. After rinsing three times with
PBS, DAPI was added, and the sample was observed under a
fluorescence microscope.

Transmission Electron Microscopy
The apical tissues of mice were cut into 1-mm3, fixed in 2.5%
glutaraldehyde, rinsed with PBS, refixed with 1% Qian acid,
dehydrated stepwise using acetone, soaked in 812 embedding
agent, embedded, and solidified. Ultrathin sections (70 nm)
were double stained with uranium acetate and lead citrate. The
structural changes of the mitochondria were observed under a
transmission electron microscope.

Western Blotting Analysis
Western blotting was used to detect the expressions of Sirt3,
Drp1, and p-Drp1. The apical of the mice hearts was used for
protein extraction and Western blot analysis. Cardiac tissues
were fully ground in liquid nitrogen and lysed using RIPA
buffer with 10% protease inhibitor cocktail and 10% phosphatase
inhibitor. Protein concentrations were determined by Pierce
BCA protein assay kit. The total protein was analyzed by
electrophoresis for 2 h. The membrane was turned at a constant
pressure of 100V for 2 h followed by blocking with 5% bovine
serum albumin (BSA) for 1 h, incubating overnight with primary
antibody (1:1,000) at 4◦C, and incubating with secondary
antibody (1:5,000) at room temperature for 1 h. The bands were

then visualized using an enhanced ECL reagent (Bio-Rad, USA).
The levels of each protein relative to β-actin were quantified
using Image J software (National Institutes of Health, Bethesda,
MD, USA).

Cell Culture and Hypoxia Condition
H9c2 cardiomyocytes were cultured in Dulbecco’s modified eagle
medium (DMEM) containing 10% fetal bovine serum (FBS)
and placed in a cell incubator containing 5% CO2 at 37◦C
(39). FBS was inactivated before use. Penicillin (100 u · ML−1)
and streptomycin (100 u · ML−1) were added to the culture
medium to prevent bacterial infection. The culture medium was
changed every 2 days and subculturing was conducted when
the cell density reached 80–90% of the Petri dish by area. The
experimental cells were randomly divided into the three groups
(normal, model, and AS-IV groups).

Based on previous reports, the conditions for establishing the
model were 4 h of hypoxia (40). H9c2 cells resuspended. When
cells grew to ∼80% of the Petri dish by area, the medium was
removed, and the cells were washed with PBS. Serum-free and
sugar-free DMEMwas then added to the cells, which were placed
in a self-made anaerobic tank, sealed, and cultured for 4 h tomake
the cells hypoxia.

Transfection
The three siRNAs targeting Sirt3, negative control siRNA, and
transfection kit were obtained from Ribo Biotechnology Co.,
Ltd. (Guangzhou, China). Transfection reagent was added to the
medium to facilitate transfection, following the manufacturer’s
instructions. Twenty-four hours later, the efficiency of Sirt3
silencing was measured via western blotting. Sirt3-siRNA-3
exhibited the best interference efficiency and labeled the treated
cells as the Sirt3-siRNA group.

The H9c2 cells were randomly divided into 5 groups: (1)
Normal; (2) Model + NC-siRNA; (3) Model + Sirt3-siRNA; (4)
AS-IV+ Sirt3-siRNA; (5) AS-IV.

Cell Viability Assay
Logarithmic H9c2 cells were inoculated in 96-well-plates at a
density of 0.6 × 105 cells/well in 100 µL medium under 5%
CO2 at 37◦C. Subsequently, different concentrations of AS-IV
(0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50, and 100 µmol/mL)
were added to establish themodel according to the abovemethod.
Cell viability was estimated by CCK-8 assay. The absorbance
(optical density, OD) of each well was measured at 450 nm using
a microplate reader (Molecular Devices Spec-tra MAX Plus 384,
MD, USA). The same amount of CCK-8 solution was added
to the cell-free culture medium. The absorbance was measured
according to the same method used for the control, and the cell
survival rate was calculated as follows: cell survival rate (%) =
(OD value of experimental hole – OD value of blank hole) ÷
(OD value of control hole – OD value of blank hole) × 100%.
The optimal concentration of drug was 1 µmol/mL, which was
selected for the subsequent mechanistic study.
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Measurement of ATP Level
The intracellular ATP content was analyzed using an ATP
assay kit according to the manufacturer’s instructions. After
corresponding treatments, 100 µL of ATP detection working
solution containing 10 µL of the supernatant sample was
added to a white 96-well-plate for luminescence analysis using
a microplate reader. A standard curve was drawn using ATP
standard solution to determine the concentration of ATP.

Mitochondrial Membrane Potential
H9c2 cardiomyocytes in the logarithmic growth stage (6 × 104

cells/well) were inoculated in a 10-mm laser confocal culture
dish. The cells were cultured according to the method in Section
Western Blotting Analysis, and cleaned twice with PBS, after
adding 100µL of serum-free DMEM and 100µL of JC-1 solution
to each well, the cells were incubated at 37◦C, and 5% CO2 for
15 min. The cells were then observed under a laser confocal
microscope (LSM 880, Carl Zeiss Meditec, Jena, Germany), and
the numbers of red and green cardiomyocytes in each group
were counted.

ROS Detection
According to the instructions of the kit, H9c2 cells were
inoculated into a six-well-plate. After culturing according to
the above methods, the cells were collected and loaded with
probes. After incubation in a cell incubator at 37◦C for
20 min, the dichlorodihydrofluorescein diacetate (DCFH-DA)
that did not enter the cells was removed with serum-free cell
culture medium and analyzed by flow cytometry (Beckman,
Suzhou, China).

Annexin V-FITC/PI Detection
H9c2 cells were inoculated into six-well-plates. After treatment
according to the experimental scheme, apoptosis was detected
according to the operational instructions of the Annexin V-
FITC/PI kit. The cells were digested with 0.25% trypsin,
washed with PBS, and centrifuged. The cells were then
resuspended in 200 µL buffer, 5 µL Annexin V-FITC, and
5 µL PI were added. After gentle mixing and incubation in
the for 15min, detection was carried out within 1 h using
flow cytometry.

Intracellular Western Blotting Analysis
Western blotting was used to detect the expressions of Sirt3,
cytochrome C, Bax, and Bcl2. H9c2 cardiomyocytes were
inoculated into a 25-cm2 culture flask at a density of 6 × 106

cells/mL. After culturing the cells according to the method in
Section Cell Culture and Hypoxia Condition, the cells were
collected and washed twice with precooled PBS. The residual
PBS was absorbed and discarded, and the cells were lysed on ice.
The supernatant was collected by centrifugation at 4◦C, and total
protein was extracted using a total protein extraction kit. The
total protein was quantified using a BCA kit. According to the
method in Section Western Blotting Analysis, western blotting
analysis was performed.

Mitochondrial Western Blotting Analysis
Western blotting was used to detect the expressions of Drp1
and Opa1. H9c2 cardiomyocytes were inoculated into a 25-cm2

culture bottles at a density of 6 × 106 cells/mL. The cells
were collected after culturing according to the method specified
in Section Cell Culture and Hypoxia Condition. After adding
mitochondrial separation reagent and centrifuging at 4◦C,
the supernatant was carefully removed, and the isolated cell
mitochondria were precipitated. According to the method in
Section Western Blotting Analysis, western blotting analysis
was performed. The VDAC1 protein level was used as a
loading control.

Statistical Analysis
All data were analyzed by SPSS 25 (IBM Corp., Armonk,
NY, USA). All data are expressed as mean ± standard
deviation (SD). All data conformed to normality using the
Shapiro–Wilk test. One-way analysis of variance was used to
analyze differences between groups with P < 0.05 indicating
statistical significance.

RESULTS

AS-IV Improved Cardiac Function and
Reversed Left Ventricular Remodeling in
the MI Model
Compared with the normal group, EF and FS were significantly
decreased in the MI model group, indicating that MI seriously
damaged the cardiac structure and function. AS-IV treatment
increased EF and FS, demonstrating that were AS-IV had
a significant protective effect on cardiac insufficiency and
structural changes (Figures 1A–C). But the heart function of
mice was weak, other echocardiography parameters did not
reflect the difference of cardiac function in mice (Table 1).
The mice in the normal group exhibited normal myocardial
morphology with purplish red nuclei and light red cytoplasm.
In the model group, myocardial vacuolization was obvious,
collagen tissue was purple blue, myocardial fibrosis was
obvious. In the AS-IV treatment group, we observed unclear
cell boundaries, a small amount of neutrophil infiltration,
cardiomyocytes swelling and degeneration, loose cytoplasm, and
mild myocardial fibrosis. In the positive control group, the
cardiomyocytes were swollen and degenerated, the cell boundary
was unclear, the cytoplasm was loose and inconsistent, and
mild myocardial fibrosis were observed (Figure 1D). Based on
Masson staining, showed myocardium in the normal group
was bright red, and the cytoplasmic was uniform. Interstitial
collagen deposition was observed in the myocardial tissue of
the model group. The collagen density of myocardial tissue in
the AS-IV group and positive control groups were decreased
significantly compared to the model group, while the collagen
deposition was significantly improved. The AAR/LV ratio was
not significantly different among the model group, the AS-
IV group, and the Bet group, which suggested that the same
ischemic area was present in the three groups. The infract
areas in the model group was 42.7%. Treatment with AS-
IV decreased the infract areas significantly to 24.9%. These
results indicate that AS-IV can reduce myocardial fibrosis
(Figures 1E–G).
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FIGURE 1 | AS-IV protects the myocardium from ischemia-reperfusion injury. (A) M-mode echocardiographic images obtained before (pre), immediately after (post),

and 28 days after the surgery to induce MI was completed. (B,C) Echocardiographic analysis of EF and FS. (D) H&E staining of the myocardium (scale bar =

100µm). (E) Representative photograph of Masson staining. (F) Statistical analysis of area at risk/left ventricular (AAR/LV). (G) Statistical analysis of myocardial

fibrosis. n = 4; #P < 0.05, ##P < 0.01 vs. the normal group; **P < 0.01 vs. the model group.
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TABLE 1 | Echocardiographic parameters in different groups 4 weeks after treatment (x ± s) (n = 4).

Group EF (%) FS (%) LVIDd (mm) LVIDs (mm) IVSd (mm) IVSs (mm)

Normal 59.102 ± 6.705 31.087 ± 4.533 0.707 ± 0.134 1.074 ± 0.150 3.954 ± 0.284 2.997 ± 0.235

Model 26.156 ± 11.113## 12.020 ± 5.394## 0.701 ± 0.326 0.800 ± 0.388 4.040 ± 1.218 3.597 ± 1.372

AS-IV 53.339 ± 4.018** 26.943 ± 2.447** 0.772 ± 0.094 1.197 ± 0.231 3.718 ± 0.130 2.726 ± 0.205

Bet 54.186 ± 5.193** 27.811 ± 3.472** 0.823 ± 0.188 1.227 ± 0.123 4.178 ± 0.335 3.012 ± 0.215

EF, ejection fraction; FS, fractional shortening; LVIDd, left ventricular end diastolic internal diameter; LVIDs, left ventricular internal dimension in systole; IVSd and IVSs, interventricular

septum thickness in diastole and systole, respectively. ##P < 0.01 vs. the normal group; **P < 0.01 vs. the model group.

AS-IV Promoted Angiogenesis in MI Model
Mice
CD31 and SMA were used to indicate capillary density and
arteriole formation, respectively. Both capillary density and
arteriole density enhanced after MI, and CD31 staining positive
cells were significantly increased in the AS-IV group compared
with the model group. Similarly, the formation of small and
medium arteries in the AS-IV group was significantly increased
compared with the model group. These results indicate that AS-
IV can increase capillaries and arterioles after operation for MI
(Figures 2A–D).

AS-IV Improved Mitochondrial Morphology
In the normal group, the ultrastructure of myocardial
mitochondria was clear, the mitochondrial bilayer membrane
was clear, and the sarcomeres showed ordered arrangement;
In contrast, the ultrastructure of myocardial mitochondria in
the model group showed obvious vacuolization and partial
double-layer membrane fusion. In the AS-IV group, the
myocardial mitochondria were slightly vacuolated, and the
sarcomere arrangement was slightly disordered. In the positive
control treatment group, the myocardial mitochondria were
slightly vacuolized and exhibited edema (Figures 3A,C). The
mitochondrial length was significantly shorter after exposure to
hypoxia than that under normoxia, whereas the mitochondrial
length was longer in the AS-IV group than that in the model
group (Figure 3B).

AS-IV Reversed MI via Sirt3/Drp1 Pathway
Compared with the normal group, the expression of Sirt3 in
the model group was down-regulated, and the expression of p-
Drp1/Drp1 was up-regulated. Compared with the model group,
the expression of Sirt3 in the AS-IV group was up-regulated,
and the expression of p-Drp1/Drp1 was down-regulated. These
results indicate that AS-IV effectively activate the Sirt3/Drp1
signaling pathway induced by hypoxia (Figures 4A–C).

AS-IV Inhibited Hypoxia-Induced Apoptosis
in H9c2 Cells
Hypoxia treatment significantly decreased the cell viability,
whereas treating the MI mice with AS-IV significantly increased
cell viability. Among the tested AS-IV concentrations, 1µM had
the most significant protective effect and the cell viability reached
75%. One micrometer was selected for further experiments
(Figure 5A). The Annexin V-FITC/PI response is well-known

in apoptosis. The apoptosis rate was lower in the AS-IV group
(14%) than that in the model group (35%). Bcl2 as anti-apoptotic
protein, and Bax a pro-apoptotic protein, play important roles
in regulating apoptosis. Compared with the control H9c2 cells,
the model cells exhibited significantly decreased Bcl2 expression
along with significantly increased Bax expression, and these
changes were improved by AS-IV treatment (Figures 5B,C).
These results are consistent with the Annexin V-FITC/PI analysis
(Figures 5D,E).

AS-IV Maintained Mitochondrial Integrity
After Hypoxia
DCFH-DA, which has membrane permeability but not
fluorescence, was used as a probe for active oxygen detection.
Once DCFH-DA enters cells, it is hydrolyzed by cellular esterase

to 2
′

,7
′

-dichlorodihydrofluorescein (DCFH). In the presence of

ROS, DCFH can be rapidly oxidized to 2
′

,7
′

-dichlorofluorescein
(DCF), which cannot penetrate the cell membrane. The mean
fluorescence intensity of DCF is directly proportional to the level
of ROS in cells (41). In this study, the intracellular ROS level was
significantly higher in the model group than in the control group.
Compared with the model group, AS-IV treatment significantly
reduced the level of ROS (Figures 6A,C). The levels of 1ΨM
and ATP indicated mitochondrial dysfunction and apoptosis.
To evaluate the protective effect of AS-IV against mitochondrial
membrane damage induced by hypoxia, the 1ΨM and ATP
levels were determined as indicators of the mitochondrial
function of H9c2 cells (42, 43). The cells in the normal group
showed red aggregation and normal hyperpolarized membrane
potential. After hypoxia, the cells in the model group showed
obvious green JC-1 monomers (Figures 6B,D), decreased
mitochondrial membrane potential (MMP), and decreased ATP
level. However, in the AS-IV group, the ATP level increased, the
decrease inMMPwas reduced. Light red and orange fluorescence
was observed. These results suggest that AS-IV significantly
ameliorated the hypoxia-induced decreases in MMP and ATP
level (Figure 6E).

The Benefits of AS-IV in Mitochondria Are
Related to the Expressions of Sirt3 and
Drp1
Sirt3 and the mitochondria related proteins Opa1 and Drp1
are involved in the regulation of mitochondrial function along
with cardiomyocyte apoptosis after hypoxia. After hypoxia,
the expression of Sirt3 decreased, the expression of Drp1
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FIGURE 2 | AS-IV promoted angiogenesis in infarcted mouse heart. (A,C) CD31 and SMA expression to identify endothelial cells and smooth-muscle cells. (B,D)

Vessels were quantified as the number of CD31-positive structures and SMA-positive structures (scale bar = 100µm). n = 4; ##P < 0.01 vs. the normal group; **P

< 0.01 vs. the model group.
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FIGURE 3 | Changes in the mitochondrial structure in the myocardial tissue of mice. (A) Changes in the microvascular ultrastructure of myocardial tissue from the

infarct border zone under transmission electron microscopy (scale bar = 500 nm). (B) The mitochondrial length was measured at least four fields for each group. (C)

Vacuolar structure of myocardial mitochondria from the infarct border zone (scale bar = 500 nm). Red arrows point to the ultrastructure of mitochondria, and blue

arrows point to the vacuolization in mitochondria. n = 4; ##P < 0.01 vs. the normal group; **P < 0.01 vs. the model group.

FIGURE 4 | AS-IV reversed MI via Sirt3/Drp1 pathway. (A–C) Sirt3, p-Drp1, and Drp1 protein levels in the normal, model, and AS-IV groups evaluated by western

blotting. The β-actin levels were evaluated to confirm equal loading. n = 3; #P < 0.05 vs. the normal group; *P < 0.05 vs. the model group.

increased and the level of cytochrome C increased; in
contrast, these changes were not observed in the AS-IV group
(Figures 7A–D,F). However, the expression of Opa1 did not
change significantly (Figure 7E).

The Absence of Sirt3 Attenuates the
Protective Effects of AS-IV on H9c2 Cells
After Hypoxia
To figure out the effects of AS-IV and Sirt3 on hypoxia-
induced cells, we synthesized three siRNAs targeting Sirt3
and then transfected them into H9c2 cells. The expression
of Sirt3 was assessed via western blotting (Figures 8A,B). We
observed that Sirt3-siRNA-3 exhibited the best interference
efficiency and labeled the treated cells as the Sirt3-siRNA group.
Subsequently, apoptosis was evaluated after AS-IV treatment
and Sirt3 silencing. The results showed that Sirt3 silencing
abolished the ability of AS-IV to decrease apoptosis after hypoxia

(Figures 8C,D), suggesting that Sirt3 is necessary for AS-IV-
mediated cardio protection.

AS-IV Regulates Mitochondrial Dynamics
by Enhancing Sirt3 Expression and Activity
We wished to ascertain if Sirt3 is necessary for AS-IV to
maintain mitochondrial homeostasis. Hence, we assessed the
1ΨM using JC-1 staining and Sirt3 expression in H9C2 cells.
The results showed that compared to the normal group, hypoxia
decreased the MMP, and AS-IV increased the MMP, an effect
of that was eliminated by Sirt3 silencing (Figures 9A–D). We
demonstrated that the mitochondrial fission related protein p-
Drp1/Drp1 was up-regulated in response to hypoxia (Figure 9E).
AS-IV treatment reduced the levels of p-Drp1/Drp1 that was
achieved by increasing Sirt3 activity. These findings suggest that
AS-IV maintains mitochondrial homeostasis.
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FIGURE 5 | Effects of AS-IV on H9c2 cells after hypoxia. (A) Effects of different concentrations of AS-IV on the survival rate of hypoxia injured H9c2 cardiomyocytes

determined by CCK-8 assay. (B,C) Quantification of Annexin V-FITC/PI in the normal, model, and AS-IV groups. (D,E) Bcl2 and Bax protein levels in the normal,

model, and AS-IV groups evaluated by western blotting. The β-actin levels were also evaluated to confirm equal loading. n = 3; ##P < 0.01 vs. the normal group; *P

< 0.05, **P < 0.01 vs. the model group.

DISCUSSION

Li (34) found that AS-IV at dose of 10 mg/kg improved cardiac

function in mice with MI. So, according to the literature, we

selected the dose of 10 mg/kg for AS-IV in treating MI. In the
present study, we confirmed that the permanent ligation of the
left anterior descending coronary artery can cause pathological
damages including fibrosis, interstitial edema, and inflammatory

cell infiltration in mouse myocardial tissue along with decreases
in EF and FS. Treatment with AS-IV significantly ameliorated
these pathological abnormalities, consistent with previous results
(25, 44), indicating that AS-IV can prevent and treat MI. We
observed serious mitochondrial swelling, cristae disorder, and
other structural damages in mouse cardiomyocytes after MI,
suggesting that the mitochondrial structure was broken after MI,
which would eventually lead to apoptosis and loss of function.
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FIGURE 6 | AS-IV mediated mitochondrial integrity and inhibited cell apoptosis. (A,C) ROS contents estimated by ROS assay. (B,D) 1ΨM values assessed via JC-1

staining (scale bar = 5µm). (E) ATP levels measured using an ATP detection kit. n = 3; ##P < 0.01 vs. the normal group; *P < 0.05, **P < 0.01 vs. the model group.

AS-IV treatment significantly improved the ultrastructure of
mitochondria in the myocardial ischemic area and increased the
ATP content and membrane potential.

To evaluate the mechanism by which AS-IV inhibits
cardiomyocyte apoptosis and reduces cardiomyocyte injury after
hypoxia, indexes related to of mitochondrial structure were
analyzed. The Bcl2 of family pro-apoptotic proteins plays a
key role in the regulation of mitochondrial apoptosis (45). Bax
can promote apoptosis, inhibit the effect of its homolog Bcl2,
reduce the level of cytochrome C, and accelerate apoptosis
(46, 47). Bcl2 inhibits apoptosis induced by many factors and
affects the apoptosis rate of myocardial cells in MI (48). Cell
viability was estimated by CCK-8 assay. Among the tested AS-IV
concentrations, 1µM had the most significant protective effect
and 1µM was selected for further experiments. In the current
study, AS-IV treatment significantly reduced the expression of
Bax and increased the expression of Bcl2 compared to the model

group, suggesting that AS-IV can help inhibit cardiomyocyte
apoptosis and protect cardiac function.

Sirt3 exerts anti-apoptotic effects by directly binding and
deacetylating Ku70, promoting the interaction of Ku70 with
the pro-apoptotic protein Bax, and impeding the translocation
of Bax to mitochondria (49). As an important mitotic
protein, Drp1 affects mitochondrial morphology and participates
in the regulation of apoptosis (50). Drp1 stimulates Bax
oligomerization initiated by tBid by promoting the half-fusion of
cardiolipin-containing membranes and releasing cytochrome C
through the membrane half-fusion intermediate formed during
mitochondrial division, thereby initiating apoptosis (51, 52).
Liu et al. (53) found that mitochondrial fission increased
after MI, leading to mitochondrial oxidative stress, metabolic
disorders, and reduced membrane potential, thereby resulting
in cardiomyocyte apoptosis. The overexpression of Sirt3 can
reduce mitochondrial fission by normalizing the AMPK-Drp1
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FIGURE 7 | AS-IV maintained mitochondrial integrity and inhibited cell apoptosis through the Sirt3/Drp1 pathway. (A–C) Expressions of Sirt3 and cytochrome C in the

normal, model, and AS-IV groups determined via western blotting. The β-actin levels were also evaluated to confirm equal loading. (D–F) Levels Opa1 and Drp1 in the

normal, model, and AS-IV groups. The VDAC1 levels were also evaluated to confirm equal loading. n = 3; ##P < 0.01 vs. the normal group; **P < 0.01 vs. the

model group.

FIGURE 8 | The absence of Sirt3 attenuates the protective effects of AS-IV on H9c2 cells after hypoxia. (A,B) The efficiency of Sirt3 silencing was evaluated via

western blotting. (C,D) Quantification of Annexin V-FITC/PI was used to analyze cell apoptosis. n = 3; #P < 0.05, ##P < 0.01 vs. the normal group; *P < 0.05 vs.

the M+NC-siRNA group; $P < 0.05 vs. the M+Sirt3-siRNA group; &P < 0.05 vs. the AS-IV group.
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FIGURE 9 | AS-IV regulates mitochondrial dynamics by enhancing Sirt3 expression and activity. (A,C) MMP was analyzed by JC-1 staining and expressed as the ratio

of red/green fluorescence intensity. (B,D,E) Expressions of Sirt3, p-Drp1, and Drp1 were determined via western blotting. n = 3; #P < 0.05 vs. the normal group; *P

< 0.05 vs. the M+NC-siRNA group; $P < 0.05 vs. the M+Sirt3-siRNA group; &P < 0.05 vs. the AS-IV group.

pathway. The inhibitory effect of Sirt3 on mitochondrial division
can be eliminated by increasing the activity of Drp1. Opa1 is a
key regulatory protein of mitochondrial inner membrane fusion.
Opa1 plays an important role in mitochondrial ridge formation
and morphological maintenance. Opa1 can oligomerize to
regulate mitochondrial ridge remodeling during apoptosis (54,
55). In addition, Opa1 deletion can expand the mitochondrial
ridge area (56). However, in the current study western blot
analysis indicated that the expression of Opa1 did not change
after hypoxia. Thus, the role of Opa1 requires further research.

The present study has some limitations. We did not use
Drp1 inhibitors to confirm the role of Drp1 deficiency in H9c2
cells exposed to hypoxia. The metabolic data and mitochondrial
respiration were not tested in thismanuscript. In thismanuscript,
only mitochondrial division and related proteins were detected,
but membrane associated membrane integrity was not detected.
They will be tested in subsequent experiments.

In conclusion, we have demonstrated that AS-IV can
ameliorate the negative effects of MI in mice. The mechanism
of these effects is related to the up-regulation of Sirt3 and Drp1
by AS-IV. These findings provide a new strategy for cardiac
protection using AS-IV.
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