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Abstract: Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture
industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe,
but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have
gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-
destructive and multimodal classification using deep convolutional neural networks that estimate
fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and
hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured
with RGB images, while spectral signatures that provide high sensitivity and high correlation with
the internal properties of fruits can be extracted from hyperspectral images with wavelength range in
between 400 nm and 900 nm—factors that must be considered when building a model. This study
further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet,
and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for
sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error
rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with
powerful deep convolutional neural network models can classify fruit maturity even at refined levels
of six stages. This indicates that multimodal deep learning architectures and multimodal imaging
have great potential for real-time in-field fruit maturity estimation that can help estimate optimal
harvest time and other in-field industrial applications.
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1. Introduction

As an abundant source of antioxidant nutrients, vitamins, minerals, and fiber, fruits
play a crucial part in human health outcomes [1]. Papaya (Carica papaya L.), one of the
major tropical fruits worldwide, has excellent flavor, high nutritional content, many phar-
macological properties, and growing commercial value [2]. Papaya fruit consumption
provides antioxidant nutrients, B vitamins, potassium, magnesium, and fiber that help
prevent digestive system disorders and heart diseases [3]. Recent research also indicates
that consumption of papaya leaf juice can rapidly increase the production of platelets,
which is beneficial to dengue patients [4].

Global papaya production has reached 13.58 million tons in 2018, where about 60%
is produced in Asia and 38% from other regions. Countries in Central America and the
Caribbean are the top exporters of papaya with an estimated 219,400 tons or 77% of the
world gross export followed by South America and Asia. Due to the high nutritional
properties, papaya consumption has increased in many countries especially in North
America and Europe with a total net import of 203,000 tons and 43,800 tons, respectively [5].
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The tropical fruit industry in the Philippines and Taiwan contributes to the biggest
source of earnings among food exports. In 2011, the Food and Agriculture Organization
(FAO) reported that edible fruits in the Philippines are valued at US$940 million [6] and in
2018, the production of papaya, mango, and pineapple was about 164,300 tons, 676,900 tons,
and 2,717,400 tons, respectively [5]. The export value of papaya, pineapple, and mango in
Taiwan has increased to US$440,000, US$2.34 million, and US$13.34 million in the same
year, respectively [7]. The high economic value of these fresh produce has led to different
research studies on fruit cultivation, production, pre-harvest, and post-harvest handling,
and fruit grading [6,8,9].

Post-harvest regulatory measures and quality standards on fresh produce imposed
by both exporting and importing countries help reduce the risk associated with chemical
safety and health to consumers [10]. In the export industry, fruit grading is one of the
most important post-harvest operations. Produce of highest quality grade remains in the
main flow while those of second- and third-grade quality are sorted out and marketed in
less-demanding outlets [11,12].

Fruit maturity evaluates the physiological development, that is when the fruit contin-
ues to ripen even after harvesting. It directly affects the important quality characteristics
such as the color, size, texture, flavor, and nutrient content, and hence the grade. Perisha-
bility and susceptibility to adverse handling and storage conditions are also dependent
on harvest maturity [13]. Harvesting an under-mature fruit may reduce the taste quality
upon ripening, while harvesting over-mature fruit can result in overripening during trans-
portation for export [14]. For example, an overripened papaya or mango becomes soft and
prone to mechanical damages that may substantially reduce its quality and increase its
susceptibility to decay and microbial growth, and thereby affect food safety and consumer
preference [15,16]. Thus, fruit maturity is a critical factor to preserve post-harvest life [12],
reduce waste along the supply chain, and increase fruit quality [11]. More than 40% of
food losses occur at post-harvest and processing levels in developing countries, while more
than 40% of food losses in industrialized countries occur at retail and consumer levels.
The estimated post-harvest losses of major food crops in the Philippines is about 27–42%,
which is commonly caused by inaccurate maturity estimation, mechanical damage, weight
loss, disease, and rotting [17]. These losses along with the increasing cost of sourcing
skilled farm laborers in the agriculture industry may leave small profit margins [18,19].

Efficient assessment of fruit maturity and grade is indispensable for alleviating these
challenges. Well-trained personnel with experience must classify fruit produce based on
maturity and grade, although inspection results differ from one operator to another [20].
Destructive and non-destructive methods are carefully studied and meticulously performed
to quantify important quality attributes such as the size, shape, texture, firmness, peel color,
chlorophyll concentration, total soluble solids content (TSS), starch, and titratable acid [11].
For instance, juice extraction in a laboratory setup is necessary for a refractometer to
measure the TSS or sweetness of papaya samples [21]. Traditional laboratory processes
like the one mentioned are destructive and time-consuming, however recently promis-
ing non-invasive alternatives are proposed using computer vision techniques, machine
learning, and imaging instruments e.g., visible-light or color imaging and hyperspectral
imaging. Simultaneous assessment with both non-destructive and destructive laboratory
measurements is still time-consuming and so the use of the non-destructive method alone
is becoming promising [11]. Moreover, non-invasive early assessment of fruit maturity
helps prevent early harvesting by estimating the optimal time of harvest. Given this high
accuracy, the post-harvest losses due to the early harvest of under-mature fruit can be
significantly reduced [14].

Hyperspectral and visible imaging coupled with the powerful capabilities of com-
puter vision and deep learning are among the non-destructive systems used in smart and
precision agriculture [22,23]. Hyperspectral imaging can generate hypercubes with high di-
mensionality that makes computation challenging. The spectral signatures extracted from
hypercubes provide a high correlation with the internal properties of fruits, vegetables,



Sensors 2021, 21, 1288 3 of 17

and other materials. But with artificial intelligence, particularly deep learning which can
analyze a large amount of data, more sensitive analyses on this dense spectral information
can be achieved with higher performance.

Deep learning is the main driving force for breakthroughs in processing single modal-
ities, e.g., images, video, audio, text, and speech. Using a general-purpose learning method
like a convolutional neural network (CNN), it can independently acquire features from
provided data with very minimal human engineering. This empowers it to perform greatly
in tasks like object recognition, segmentation, and detection [24].

Recently, the role of deep learning in non-destructive methods of agriculture-related
tasks is becoming increasingly important especially with the rise of smart and precision
agriculture. Deep learning is highly explored today for its potential in various agricultural
applications such as fruit detection and classification [25], fruit maturity estimation [26],
plant disease detection [27–29], and early bruise or damage detection [15,30]. This approach
can provide higher and more precise evaluation results compared to traditional and manual
techniques. This qualifies it for utilization in important tasks in agriculture.

Multimodal deep learning is another emerging approach that needs cultivation in
terms of research. It works its way into applications from diverse research fields such
as medical diagnostic methods [31], breast cancer prognosis prediction [32], activity and
context detection [33], music genre classification [34], microblog sentiment prediction [35],
malware detection [36], software program flaw detection [37], mobile traffic classifica-
tion [38], and fruit detection [25]. This technique takes advantage of the information
from one modality that complements and/or reinforces another. Recent research studies
explored multimodal input datasets to overcome the limitations and complement the
deficiencies of one modality, to help refine the weights, and to improve the accuracy
or F1 score of a deep learning algorithm [25,39,40]. Experiments show that aggregating
learned representations from different modalities help improve classification accuracy,
which could be due to the complementary information embedded in different modalities
used in the dataset [34]. For instance, a multimodal input composed of Red-Green-Blue or
RGB, infrared, and depth images are loaded to the deep learning network to generate local
features and global descriptors of the localized area for an application that helps visually
impaired people. The findings showed that the lack of depth and sensitivity of an RGB
image is supplemented by the information from the other input modalities i.e., infrared and
depth images [39]. Furthermore, in a fruit detection study [25], the experimental results of
utilizing RGB and near-infrared (NIR) images for detection of bell peppers demonstrated
how multimodality improved detection, where the F1 score of 0.838 is higher than those
with a single modality.

Fruit grading or fruit maturity estimation is an agricultural application that benefits
from the potentials of multimodal deep learning. Besides the fruit hyperspectral signatures,
interferences that samples possess (e.g., stem) and other morphological changes in the
samples (e.g., size, shape, etc.,) must be considered when building a model. The use of
visible imaging (i.e., RGB images) for fruit and vegetable quality assessment is widely
used and studied [41]. With RGB images, morphological changes like the size, shape,
texture, and irregularity in sample fruits can be precisely measured using computer vision
techniques and machine learning as classifiers [42–44]. Utilizing both sensitivity of hyper-
spectral signatures and precision of RGB images can leverage the performance of a deep
learning algorithm for estimation or classification tasks in fruit maturity or grading.

This exploration study features the first time deep learning architectures are evaluated
for multimodal deep learning under papaya fruit maturity data. To the best of our knowl-
edge, this study is the first one to combine two modalities: RGB images and hyperspectral
data cube for papaya fruit maturity estimation. Furthermore, the convolutional and other
processing layers constructed also represent an entirely different architecture.

The main objective of this study is to propose a multimodal deep learning model for
high-performance fruit maturity estimation using hyperspectral and visible-light imaging
technologies. Key contributions of this research are: (1) A database of hyperspectral
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reflectance and visible-light or RGB images of papaya fruit samples taken in a laboratory
setup and classified into six maturity stages; (2) a systematic study of multimodal deep
learning architectures applied to an agriculture-related task, specifically to papaya fruit
maturity estimation, evaluated in terms of accuracy, top-2 accuracy, precision, recall, and F1-
score; and (3) recommend a deep convolutional neural network that learns features over
multiple modalities, specifically, a hyperspectral reflectance data cube and an RGB image.
This strengthens the foundation of deep learning in agricultural applications such as
real-time in-field fruit maturity estimation that can help estimate optimal harvest time.

The rest of the paper contains the following sections: Section 2 Materials and Methods,
Sections 3 and 4 Results and Discussion, and Section 5 Conclusions.

2. Materials and Methods
2.1. Experimental Design

Maturity stages of papaya fruit samples are defined based on the visual characteristics
of the peel color as illustrated in Table 1 (summary of papaya stages, description, number
of RGB images, and hyperspectral (HS) data cubes) and Figure 1. Two hundred fifty-three
(253) papaya fruits were purchased from a retail market in Kaohsiung, Taiwan. At least
eight RGB images (one from each side: front, back, left, right; diagonal orientation of each
side) and at least two hyperspectral images (two to four sides) per sample were acquired.
All samples were classified into six maturity stages: green with a trace of yellow (MS1),
more green than yellow (MS2), mix of green and yellow (MS3), more yellow than green
(MS4), fully ripe (MS5), and overripe (MS6). We use six maturity stages same as [45]
to test the sensitivity of the imaging and the deep learning model. The ground truth of
the sample’s maturity stage is based on expert classification that is the same as [45] and
compliant with the Philippine National Standard (PNS/BAFPS 33:2005). The differences in
the number of samples from each maturity stage are due to their initial visual classification
upon collection [46]. Measurements and images were gathered upon purchasing of samples
(Day 1), Day 3, Day 5, and/or Day 7 of maturity. The fruits were stored in a controlled
environment to even ripening. Out of the 253 papaya fruit samples, the numbers of
RGB images and HS data cubes obtained are (520, 64), (570, 74), (964, 88), (707, 80),
(749, 101), and (917, 105) for MS1 to MS6, respectively. A total of 4427 RGB images and
512 HS images were obtained. In terms of sampling, only at most 122 RGB images were
collected in [25,46] which used machine learning methods: Faster R-CNN and random
forest, respectively, while 15,000 images were acquired in [47], which also used Faster
R-CNN. [30,48,49] collected and used 557, 300, and 240 HSI images for classification using
deep learning methods: ResNeXt, GAN, and AlexNet, respectively. Thus, the number of
samples, RGB and HS images gathered in this study, is by far among the highest based on
recently published studies.

Table 1. Maturity stages and data collection information of papaya fruit samples.

Maturity Stage Descriptions Number of RGB Images Number of HS Data Cubes

MS1 Green with trace of yellow (15% ripe) 520 64
MS2 More green than yellow (25% ripe) 570 74
MS3 Mix of green and yellow (50% ripe) 964 88
MS4 More yellow than green (75% ripe) 707 80
MS5 Fully ripe (100% ripe) 749 101
MS6 Overripe 917 105

2.2. Visible-Light Image (VLI) Acquisition and Preprocessing

In the visible-light or visible imaging, the camera specifications used in VLI setting
are Canon EOS 100D with 18.5 megapixels resolution, 5184 × 3456 pixels image size,
and DIGIC 5 image processor. In the VLI setup shown in Figure 2a, the camera is positioned
perpendicularly above the fruit sample using a tripod and is connected to a computer
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for remote capturing of images. Light sources in a laboratory setup are added to help
illuminate the object and eliminate the shadows.
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Figure 2. Experimental setups for image data acquisition using (a) visible-light and (b) hyperspectral imaging systems.

For each papaya fruit sample, two RGB images are acquired for each side: one in a
horizontal position and another in a diagonal position. The number of sides of the fruit
depends on the angle where the fruit can lay flat on the imaging stage to obtain as many
images as possible that helped increase the training dataset. From the original resolution,
the images were cropped at the center to retain only the fruit sample in the middle of
the image and then resized to 32 × 32 pixels due to computational limitation. Figure 3
shows examples of the preprocessed RGB images captured using VLI setup and stored in
the database.

2.3. Hyperspectral Image (HSI) Acquisition and Preprocessing

An Imec SNAPSCAN visible/near-infrared (VNIR) hyperspectral imaging system is
used in this study with 150 channels in between 470 nm and 900 nm wavelength data range
and a spatial resolution of 2048× 1088 pixels. The hyperspectral imaging system , as shown
in Figure 4b, consists of the following parts: an imaging unit with active cooling system,
a halogen illumination source, a platform, and a computer with corresponding control
software. This imaging system uses linescan sensor technology to acquire HS reflectance
data of an object through a push-broom scanning approach, in which acquisition is carried
out line by line using the x and λ dimensions of the cube (Figure 4a).

The region of interest (ROI) in the hyperspectral image is the area corrected by the
circular white reference. The spectral reflectance data enclosed by the 1024× 1024 bounding
box within this ROI in Figure 4b is further preprocessed by removing the outliers. If the
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surface has good reflectance, then the values are closer to 1. However, there are instances
that HS images contain extremely high spectral reflectance values e.g., up to 3.5 × 1038

from the histogram shown in Figure 5a, mainly because of how the bidirectional reflectance
distribution function (BRDF) is affected by the scene and camera geometry [50]. To satisfy
range constraints, reflectance values are clipped to 0 and 1, or values less than 0 are set to 0
while extreme values greater than 1 are set to 1. The histogram of a sample band from an
HS image after clipping the reflectance values is shown in Figure 5b.

Figure 3. Example RGB images of papaya fruits acquired using visible-light imaging. Each row
shows ten RGB images of papaya fruits that belong to each of the six maturity stages: MS1 in the first
row, MS2 in the second row and so on until MS6 or overripe fruits in the last row.

Figure 4. HSI data preprocessing to reduce dimensionality and increase dataset. A three-dimensional
visualization of the raw spectral data, called a hyperspectral data cube, of a sample papaya is shown
in (a). For the subregion extraction, (b) shows the locations of the nine 32 × 32 × 150 subregions
obtained from the raw data cube.

From the bounded 1024 × 1024 ROI of the VNIR HS image (Figure 3b), nine (9)
equally spaced subregions were obtained to increase the sample size and reduce computing
cost and memory allocation because the image file size is reduced from about 1.3 GB to
600 KB only. A non-probabilistic sampling was done during the selection of nine patches
from the hyperspectral images. Based on [45], the color measurements were obtained on
three locations: one on the center and two on opposite sides longitudinally; [51] obtained
measurements on six locations: two on the center and four on opposite sides. Following
the guidelines from [45,51] and an 8-connectivity inspired data collection to obtain the data
on the center of the HS image, three more locations were added to have a total of nine
locations: three in the middle section, three near the apex, and three near the peduncle.
Each subregion has a spatial resolution of 32× 32 and a spectral resolution of 150. The same
spatial resolution is used in [30] to reduce computation cost. These subregion data cubes
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were stored in the dataset to increase the number of input images to the neural network
and help reduce overfitting.

Figure 5. Histograms of a sample band in HS images.

2.4. Multimodal Deep Learning Framework

After data preprocessing, the RGB and HS images were then prepared for multimodal
data integration. One important preparation is feature concatenation or data fusion of
the two input modalities. Once the multimodal image dataset is ready, it is then fed to
a deep learning method for classification to obtain the maturity estimation of the fruit
sample. This subsection explains the framework used in multimodal implementation for
deep learning to accomplish fruit maturity estimation tasks, which includes (i) feature
concatenation and (ii) the deep learning architectures.

2.4.1. Feature Concatenation

In digital image processing, an RGB image a[m, n, c] is divided into M columns,
N rows, and C channels or colors, i.e., C = 3 for red, green, and blue channels in this case.
The value assigned to the integer coordinates [mi, ni] with {mi = 0, 1, 2, . . . , M − 1} and
{ni = 0, 1, 2, . . . , N − 1}, and at channel or color ci with {ci = 0, 1, 2} is ai[ mi, ni, ci] [52].

In hyperspectral image processing, the reflectance data h[ x, y, λ] obtained from the
imaging system are formatted as a three-dimensional (3D) array (M× N× S), where M and
N are the spatial dimensions and S is the spectral dimension that indicates the number of
spectral wavelengths or bands used during data acquisition stage. This 3D array h[ x, y, λ]
containing a set of two-dimensional images h[ x, y] obtained at varying wavelengths
{λ = λ0, λ1, λ2, . . . , λS−1} is also called a hyperspectral data cube.

In multimodal data integration, early fusion of data, also called as feature concate-
nation, is implemented at the input layer. In this approach, the imaging modalities are
concatenated into a single multimodal input, RGB+HS data cube with final spatial dimen-
sions of (M × N), and a total number of channels G = C + S, which generates a single
yet large cross-modality input space. Each RGB+HS data cube in the dataset has 32 ×
32 × 153 dimension and can now be fed to the deep learning model, specifically the con-
volutional neural network for training, validation, and testing. Table 2 shows the total
number of RGB+HS multimodal data cubes for each maturity stage, which sums up to
4608 data cubes. This straightforward design makes it easier to train the network and access
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the whole space of imaging modalities containing cross-modality information needed for
feature representations within the network.

Table 2. Number of multimodal data cube for each maturity stage after feature concatenation.

Maturity Stage Number of RGB+HS Multimodal Data Cubes (32 × 32 × 153 Image Size)

MS1 576
MS2 666
MS3 792
MS4 720
MS5 909
MS6 945

2.4.2. Multimodal Deep Learning Architectures

Deep learning architecture plays an important role in multimodal tasks because it
has significant properties advantageous to multimodal learning [33]. The representation-
learning capabilities enable it to transform a raw multimodal input representation into
a higher and slightly abstract one [24]. Specifically, the feature representation learning
in this architecture does not require rigorous preprocessing to extract domain-specific
features from each modality [33]. Thus, before feature concatenation, each modality is
just lightly preprocessed and after feature concatenation, the multimodal input required
minimal alterations. Figure 6 shows the multimodal deep learning framework for fruit
maturity estimation.

Figure 6. Multimodal deep learning framework for fruit maturity estimation.

The multimodal (MD) framework for deep learning mentioned in this subsection is
implemented on seven multimodal convolutional neural networks (MD-CNNs), namely:
MD-AlexNet, MD-VGG16, MD-VGG19, MD-ResNet50, MD-ResNeXt50, MD-MobileNet,
and MD-MobileNetV2. These state-of-the-art architectures utilize convolution and pooling
operations in their hidden layers of varying depth, width, and cardinality.

AlexNet together with the advent of GPUs is among those deep learning players
that started the CNN revolution for object detection, and until today, it still has proven
its robustness, flexibility, and competence despite its shallow depth [49]. AlexNet only
consists of eight layers and that makes it train faster, which is ideal for real-time applications.
Furthermore, other AlexNet features that inspire researchers to follow its lead in the trends
in CNN are the use of ReLU Nonlinearity, exploitation of multiple GPUs, overlapping
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pooling, data augmentation, and dropouts [53]. Figure 7 shows an illustration of this
MD-AlexNet architecture and other design parameters used in this study.

Figure 7. A multimodal deep learning architecture of AlexNet, a convolutional neural network with eight layers.

VGG16 and VGG19 are among those pioneering very deep convolutional networks.
Both obtained state-of-the-art results in large-scale image recognition tasks. The very small
convolution filters (3 × 3) allowed these networks to extend the depth to 16 and 19 weight
layers. With the increase in depth comes an increase in representations too, which helped
improve the network accuracy [54].

ResNet and ResNeXt are highly modularized networks giving emphasis to the im-
portance of depth and cardinality of representations, respectively. ResNet stacks modules
or blocks composed of a group of layers that further increased the depth, a characteristic
inherited from VGG-nets, and addressed degradation problem (accuracy degrades rapidly
as depth increases) by employing residual learning [55]. Its augment, ResNeXt, on the other
hand, repeats building blocks that assemble a set of simple transformations having the same
configuration. The implementation is like a split-transform-merge strategy, which results
in a homogenous and multi-branch architecture setting with just a few hyperparameters.
ResNeXt architectures introduced cardinality as a new dimension that essentially affects a
network’s performance besides the depth and width [56].

MobileNet and MobileNetV2 are designed for mobile and embedded applications
that take advantage of the CNN dominance in computer vision. The reduced computations
and model size due to depth-wise separable convolutions (DSC) make MobileNet fit for
applications under constrained environments (i.e., with limited resources). DSC applies
factorization in the convolution operations, specifically, it splits the standard convolu-
tion into depth-wise convolution for filtering and pointwise convolution for combining.
In this way, the computation cost is reduced substantially [57]. MobileNetV2 augments
the former model on multiple tasks by employing a different technique called inverted
residual structure. This sets the shortcut connections between the thin bottleneck layers
and uses lightweight depth-wise convolutions for filtering, which allows memory efficient
implementation—an important factor in mobile applications and embedded systems [58].

This study tested the capabilities of these MD-CNN models for the estimation of
the six maturity stages of papaya fruits. The summary of the depth and the number
of parameters used in each architecture during the actual implementation is shown in
Table 3. Among the deep learning models used, MD-ResNet50 has the highest number
of parameters while MD-AlexNet has the lowest with about 30.3 million and 4.9 million
parameters, respectively.

These models are implemented using Python programming language, Anaconda,
Tensorflow-GPU, Keras, and other packages for deep learning model development. They were
trained with a learning rate of 0.0001 and batch size of 100 and deployed in a machine
with Intel Core i5-9300H 2.40 GHz CPU (8 CPUs), NVIDIA GeForce GTX 1660Ti 6 GB
GPU, and 8 GB memory space running on Windows 10 Home 64-bit (10.0, Build 18362)
system. The default values of the deep learning model development tools were used
in these models except that of MD-AlexNet, which is shown in Figure 7. The dataset



Sensors 2021, 21, 1288 10 of 17

distribution used in all seven MD-CNN architectures is 2741 RGB+HS data cubes (60%) for
the training set, 1383 (30%) for the validation set, and 484 (10%) for testing set, with a total
of 4608 multimodal input data cubes.

Table 3. Depth and the number of parameters of the seven MD-CNNs.

Deep Learning Model Depth Number of Parameters

MD-AlexNet 8 4,938,982
MD-VGG16 16 17,956,038
MD-VGG19 19 23,265,734

MD-ResNet50 50 30,358,790
MD-ResNeXt50 50 29,819,206
MD-MobileNet 88 7,475,590

MD-MobileNetV2 88 7,028,998

2.5. Performance Evaluation

The MD-CNN models are evaluated using accuracy, precision, recall, F1 score, and top-
2 error rate. Accuracy is the proportion of correctly classified samples among the total
number of samples examined and is computed as Accuracy = TP+TN

TP+FP+FN+TN , where TP is
the number of true positives or correct classifications (positive class for binary classification
(BC)), TN is the number of true negatives or correct classifications of the other class/es
(negative class for BC), FP is the number of false positives or incorrect classifications
(true negative predicted as positive in BC), and FN is the number of false negatives or
missed classification (true positive predicted as negative in BC). This metric provides sound
judgment for classification tasks with a balanced number of test samples per class.

Precision is the fraction of correct predictions out of all positive predictions whether
correct or incorrect, which is calculated as Precision = TP

TP+FP . While precision provides
us with a quantitative measure of how exact the classifier’s prediction is, recall helps avoid
waste by telling us how many samples per class can the classifier recognize accurately.
Recall is the proportion of correctly detected out of all true/actual samples in a class,
specifically it is computed as Recall = TP

TP+FN .
F1-score is the harmonic mean recall (R) and precision (P): F1(R, P) = 2RP

R+P . This is
a very valuable evaluation metric in this agricultural application because its assessment
reflects the balance between the classifier’s precision and recall. In the fruit production and
export industry, obtaining as many positives as possible makes a difference in the cost and
throughput, and thus recall should be highly considered [30]. However, it is also worth
noting that the industry values precision that assures them of good and exact prediction
because these products should undergo a food safety and quality checking.

Top-2 error rate is the percentage of test samples where the actual/true classification
is not among the two classifications or labels with the highest probabilities as predicted
by the classifier. This is similar to the customary metrics used in ImageNet, which are
top-1 and top-5 error rates. Since there is only a slight change in characteristics between
adjacent maturity stages, human sorters may tend to classify the fruit on either one stage
lower or higher than its correct maturity stage. Furthermore, given that this study involved
experimentation, determining the models’ potential through obtaining the top-2 error rate
is worth investigating in this study. This will better appreciate the performance of the
multimodal deep learning methods in the agricultural field.

3. Results

In this paper, we explored multimodal deep learning architectures and examined
the performance of the classification models, or simply classifiers, for estimating papaya
fruit maturity stages. Specifically, in this section (1) we inspect the preliminary train-
ing results, (2) we examine the training and validation performance of the MD-CNNs,
and (3) we compare the testing results of these classifiers.
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3.1. Inspection of Preliminary Performance

Prior to the formal execution of the seven MD-CNNs, we carried out a preliminary
experiment on a simple deep CNN with two hidden layers (2L CNN) using RGB images
(Figure 8a) and HS data cubes (Figure 8b), and on a simple multimodal deep CNN with
two hidden layers (2L MD-CNN) with the following configurations: 64 filters, 3 × 3 kernel
size, 1 × 1 stride, ReLU as the activation function, categorical cross-entropy for the loss
function, and Adam as optimizer using RGB+HS data cubes (Figure 8c) as input datasets.
Figure 8a shows a fast and smooth convergence of the training loss and accuracy of the
2LCNN using only RGB images, which stabilized at about 40 epochs. Observing the
validation loss and accuracy, there is still a need for improvement since the validation
accuracy remains at about 90% while the validation loss increased from about 0.50 to
0.70 instead of decreasing or stabilizing. The graphs in Figure 8c,d show the behaviors
of the 2L MD-CNN in terms of training and validation accuracy and loss for 100 and
300 epochs, respectively, and a learning rate of 0.001 and a batch size of 100. Given the
same parameter settings, Figure 8c shows that with RGB+HS data cubes, the training and
validation loss values converged faster to zero than with HS data cubes only as shown in
Figure 8b. Inspecting the performance graphs deeper, we found that from epoch 20 to 40
the training and validation loss reduced by approximately 0.20 with RGB+HS data cubes
as compared to that with HS data cubes which is only about 0.1. The lowest loss value
in RGB+HS is about 0.20 while in HS it is about 0.50. Furthermore, in terms of accuracy,
the highest training and validation accuracy reached in Figure 8b is approximately 85% and
70%, respectively. In Figure 8c, on the other hand, the highest training accuracy reached
as high as nearly 95% and its highest validation accuracy is nearly 90%. Increasing the
number of epochs up to 300 shows that the training loss converged to the value zero and
the training accuracy reached 100% as presented in Figure 8d. Although, the validation
loss remained between 0.40 and 0.60 range while the validation accuracy ranges between
85% and 90%.

Figure 8. Preliminary training performance results of a 2L CNN using (a) RGB and (b) HS images,
and a 2L MD-CNN using RGB+HS data cubes for (c) 100 and (d) 300 epochs.
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3.2. Fruit Maturity Estimation Performance Comparison of MD-CNNs

The results on the training and validation sets are summarized in Table 4. All seven
MD-CNNs obtained the best performance in terms of top-2 error rates and accuracy in the
training set which are almost zero percent and 100%, respectively. In the validation set,
however, the top three networks that retained their spots are MD-AlexNet, MD-VGG16,
and MD-VGG19. Although there is a big difference in their depths, the first two MD-CNNs
are at par in performance with the same top-2 error rates of 0.83%, and accuracy of 88.22%
and 88.64%, respectively.

Table 4. Training and validation performance comparison of the seven MD-CNNs in terms of accuracy and top-2 error rate
using 2741 and 1383 RGB+HS data cubes for the training set and validation set, respectively.

Deep Learning Model
Training Validation

Top-2 Error Rate (%) Accuracy (%) Top-2 Error Rate (%) Accuracy (%)

MD-AlexNet 0.00 100.00 0.83 88.22
MD-VGG16 0.00 100.00 0.83 88.64
MD-VGG19 0.00 100.00 1.86 85.74

MD-ResNet50 0.00 99.34 7.44 66.53
MD-ResNeXt50 0.04 99.42 16.12 56.40
MD-MobileNet 0.04 99.27 16.32 56.40

MD-MobileNetV2 0.04 99.23 19.63 55.37

The comparison of results on the multimodal test set is presented in Table 5. The trend
seen in the training and validation results is also reflected in the estimations of each MD-
CNN on the multimodal test set. MD-VGG16, MD-AlexNet, and MD-VGG19 still obtained
the most promising results among the seven MD-CNNs with F1-scores and top-2 error
rates of (0.90, 1.45%), (0.88, 1.81%), and (0.87, 2.31%), respectively. The same pattern is also
observed in terms of precision and recall. MD-VGG16 outperformed the rest in terms of
the mentioned performance metrics. Interestingly, MD-AlexNet exhibited a comparable
performance with MD-VGG19 by a difference of only (0.01, 0.50%), considering that only
the former has a depth of 8 layers with almost 4.9 M parameters while the latter has
19 layers and 23.2 M. Similar to [49], despite being a small network, MD-AlexNet provided
an accuracy of 98.6% in real-time strawberry ripeness (two ripeness stages only) estimation
system and demonstrated its competitive advantage through dropouts [53].

Table 5. Performance comparison of the seven MD-CNNs in terms of precision, recall, F1-score and
top-2 error rate on multimodal test set.

Deep Learning Model Precision Recall F1-Score Top-2 Error Rate

MD-AlexNet 0.8850 0.8817 0.88 1.8077
MD-VGG16 0.9016 0.9033 0.90 1.4461
MD-VGG19 0.8733 0.8733 0.87 2.3138

MD-ResNet50 0.7516 0.6850 0.69 7.3030
MD-ResNeXt50 0.6150 0.5550 0.52 16.3413
MD-MobileNet 0.5617 0.5633 0.55 16.9197

MD-MobileNetV2 0.5783 0.5667 0.56 18.3659

Given these results (Table 5) and the bubble scatter plot in Figure 9, the depth, width,
and the number of parameters of these architectures may not necessarily have a direct
nor an inverse effect on their performance (F1-score) in a multimodal dataset. A diverse
group of networks obtained promising outcomes while the others gave inferior ones.
Observe that the two largest neural networks, i.e., with large bubble sizes such as MD-
ResNet50 (50 layers, 30.3 M parameters) and MD-ResNeXt50 (50, 29.8 M), obtained very
poor performance particularly MD-ResNeXt50 which practically produced a flip coin
probability (50% chance). Moreover, even with very deep but also very thin neural networks



Sensors 2021, 21, 1288 13 of 17

i.e., with small bubble sizes, which are MD-MobileNet (88, 7.4M) and MD-MobileNetV2
(88, 7.0M), the same worse performance was exhibited on the test dataset.

Figure 9. Bubble scatter plot of F1-score, depth, and number of parameters. While the first two data
series identify the (x, y) location, the third one determines the bubble diameter.

In terms of top-2 error rates, however, all MD-CNNs showed effectiveness in estimat-
ing the true maturity stage of the samples within the two most probable labels or maturity
stages. Consistently, VGG16 still ranked highest with a top-2 error rate of 1.45%, followed
by MD-AlexNet (1.80%), MD-VGG19 (2.31%), MD-ResNet50 (7.30%), and the rest with
error rates as low as 16.34% up to 18.36%.

4. Discussion

The preliminary result in this study adheres to the findings of [25] where the CNN
with early fused RGB and NIR obtained a higher F1-score than the one using the NIR
images alone, and even with that of [25,26] in which the deep learning methods using only
RGB images obtained better results than the early fused multimodal technique. However,
looking at the validation loss and accuracy, there is still room for improvement, and it is very
interesting to note that the results of the CNN with only RGB images and only HS data cubes
improved when the RGB images and HS data cubes were concatenated. Hence, despite
the high-density data contained in the HS data cube, features from an RGB image can still
contribute to the improvement in performance. As mentioned in Section 1, RGB images
can contain an object’s morphological characteristics that the network can easily recognize,
which can supplement the information derived from spectral data. Furthermore, [46]
also explored the significant differences of various color spaces on papaya fruit ripening
with only three maturity stages. Their study showed that the normalized RGB channels
obtained higher accuracy and the RGB color channels achieved satisfactory results. Yet,
it is still interesting to know the effect of the fusion of the various color channels and the
hyperspectral data on fruit maturity estimation.

Among the multimodal deep learning models used in this study, MD-VGG16, MD-
AlexNet, and MD-VGG19 were the top-performing models. These findings correspond to
the studies of [26], which used only RGB images of three maturity stages of papaya and
transfer learning on the deep learning models, and to [49], which utilized the first three
principal components of hyperspectral images of strawberries and a pretrained AlexNet.
From reference [26,49], VGG19 and AlexNet displayed superior performance, respectively.
Similar to [49], despite being a small network, AlexNet without dropout layers provided
an accuracy of 98.6% in real-time strawberry ripeness (two ripeness stages only) estimation
system. In this study, transfer learning was not implemented because the nature of input
images, which is multimodal, is different from that of the available pretrained models.
Also, AlexNet is employed with dropout layers as shown in Figure 7 because of the dense
multimodal input data, i.e., fused RGB+HS, and it also demonstrated its competitive
advantage through these dropouts [53].
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Moreover, the accuracy of the multimodal deep learning models especially those very
deep models with depths of 50 and 88 can still be improved. Additionally, overfitting might
occur in some of the aforementioned models. One possible reason causing the overfitting
is the size of the images which is small and the depth of the CNNs are too high leading to
very tightly adjusted training variables. This results in a dilemma because increasing the
image size will also adversely cause insufficient memory errors.

In application, farms and production sites can use the proposed technology in this
paper in either in-field or in-laboratory setups. For in-field utilization, the multimodal
imaging system can be assembled as portable equipment for real-time non-destructive
data collection and image analysis. On the other hand, the in-laboratory implementation
requires sampling of fruits from the field and transporting these samples to the laboratory
for analysis.

5. Conclusions

Multimodal techniques, particularly with imaging systems and deep learning, in agri-
cultural applications are very advantageous since abundant information is made available
to achieve highly sensitive analyses. Despite the high dimensionality of multimodal in-
put, deep learning capability reduces the complexity of extracting salient features and
accelerates associations of these features through its representation-learning networks.
The breakthroughs in deep learning have led to more advanced instruments that increased
productivity in various industries including agriculture.

In this study, we developed multimodal variants of deep learning models for a novel
non-destructive, refined fruit maturity stage classification. To build the database of multi-
modal input, hyperspectral imaging and visible-light imaging acquired the hyperspectral
data cubes and RGB images of papaya fruit samples, respectively, at six maturity stages
from unripe stage to overripe stage. In data preprocessing, we implemented subregion
extraction on the hyperspectral images to reduce their spatial dimension and increase
the samples in the dataset. Through feature concatenation, we fused the data cubes and
images to produce multimodal RGB+hyperspectral data cubes. Then, the models utilized
the multimodal input data cubes and exhibited very promising results in fruit maturity
estimation with up to 0.90 F1-score and as low as 1.45% top-2 error rate. Among the
seven architectures, MD-VGG16 obtained the best performance, while MD-AlexNet and
MD-VGG19 showed comparable outcomes. Overall, taking advantage of multimodal input
coupled with powerful deep CNN models can classify fruit maturity even at refined levels
of six stages. The results of this study offer great potential for multimodal deep learning
and multimodal imaging to estimate fruit maturity in real-time. This further strengthens
the foundation of deep learning in agricultural applications such as real-time in-field fruit
maturity estimation that can help estimate optimal harvest time.
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