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Abstract. The functions of long non-coding RNAs (lncRNAs) 
in myocardial infarction (MI) remain largely unknown. Thus, 
we used the subp athway-LINCE method to characterize the 
potential roles of lncRNAs in MI. Candidate lncRNA-mRNA 
interactions were obtained from miRNA-mRNA interactions 
and lncRNA-miRNA interactions. Then the lncRNA and 
mRNA co-expression relationship pairs (LncGenePairs) were 
screened from the lncRNAs and mRNA intersections, which 
were extracted through candidate lncRNA-mRNA interac-
tions and sample gene expression profiles. The lncRNAs in 
LncGenePairs were embedded into pathway graphs as nodes 
through linking to their regulated mRNAs, which resulted in 
obtaining condition-specific lncRNA competitively regulated 
signal pathways (csLncRPs). Finally, the csLncRPs were calcu-
lated using lenient distance similarity to obtain the lncRNA 
competitively regulated subpathways. Based on the statistical 
significance of signal subpathways, lncRNA-mRNA networks 
were constructed, in which hub lncRNAs were selected. A 
total of 65 lncRNAs competitively regulated subpathways and 
13 hub lncRNAs were obtained, which associated with a risk 
of MI. Identifying lncRNAs competitively regulated subpath-
ways not only provides potential lncRNA biomarkers for MI, 
but also helps the understanding of pathogenesis of MI.

Introduction

Myocardial infarction (MI), a common presentation for 
ischemic heart disease/coronary artery disease, is a major 
contributor to mortality rates worldwide (1). The major trigger 
of MI is generally owing to thrombus formation in a coronary 

artery. Accordingly, the current treatments mainly include 
medical therapy (e.g. anticoagulant medications, antiplatelets) 
and elective catheterization. However, some disadvantages 
can not be ignored, such as high risk of bleeding in medical 
therapy and high cost of treatment in elective catheteriza-
tion (2). In order to effectively prevent and treat MI, seeking 
the exact pathogenesis of MI at various aspects is necessary. 
Currently research directions mainly include improvement 
of coronary blood flow, inhibition of apoptosis, reduction of 
oxygen consumption, and revascularization procedures (3). 
However, few studies have been conducted in the pathogenesis 
of MI at the non-coding RNA (ncRNA) level.

ncRNAs, RNA molecules, are not translated into proteins, 
which mainly include ribosomal RNAs (rRNAs), transfer RNAs 
(tRNAs), short non-coding RNAs such as microRNAs (miRNAs) 
and the long non-coding RNAs (lncRNAs). lncRNAs are a set 
of RNAs longer than 200 nucleotides, and participate in many 
fundamental biological processes mainly including genomic 
imprinting and chromatin modification (4). Although the effects 
of lncRNAs on various cancers (5) and neuronal diseases (6,7) 
have been widely investigated, the study number of lncRNA 
function in cardiovascular diseases is very limited. Currently, 
some transcripts have been investigated for their potential role 
as biomarkers of cardiovascular diseases. The mitochondrial 
lncRNA LIPCAR, as a novel biomarker, can predict future death 
in heart failure patients (8). lncRNA CoroMarker is a diagnostic 
biomarker for coronary artery disease (9). In addition, lncRNA 
MIAT might regulate MI via functioning as a competing endog-
enous RNA for various targets (10,11).

miRNAs are short non-coding RNAs (approximately 
20 nucleotides) and negatively regulate target genes. Different 
from lncRNAs, miRNAs have been largely investigated in 
the context of MI (12). The relationship between miRNAs 
and lncRNAs has been extensively demonstrated, among 
which lncRNAs can indirectly compete with mRNAs through 
binding to miRNAs (13,14). For instance, lncRNA CHRF 
could regulate cardiac hypertrophy by targeting miR-489 (15). 
Recognizing lncRNA competitively regulated subpathway 
can reveal the pathogenesis of disease and the molecular 
mechanism of lncRNAs in the disease context. However, the 
relevant regulated mechanism of lncRNAs in MI remains 
unclear. Subpathway-LNCE, as a novel method, can effectively 
integrate lncRNA-mRNA expression profile and identify 
lncRNA competitively regulated subpathway (16). Moreover, 
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subpathway-LNCE method is more accurate, advanced and its 
calculation results are more relevant to disease. Accordingly, 
we used the subpathway-LNCE method to investigate patho-
genesis of MI at genetic level.

Materials and methods

Recruitment and pretreatment of gene expression data. Gene 
expression profiles with accession number (GSE34198) for MI 
were recruited from the Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) database. GEO is a public 
functional genomics data repository that freely distributes 
high throughput gene expression profiles and other functional 
genomics data sets. GSE34198 consists of 48 healthy controls 
and 49 patients with MI, and is deposited on GPL6102 data 
platform.

For purpose of controlling the quality of GSE34198, 
GSE34198 was pretreated as follows: Background correc-
tion was performed by Robust Multi-array Average (RMA) 
algorithm (17), the normalization was evaluated by quantiles 
algorithm (18), perfect match and mismatch was revised by 
Micro Array Suite (MAS) algorithm (19), and all expression 
values were summarized by medianpolish method (17). After 
removing invalid or duplicated probes, we converted them into 
gene symbols by the annotate package (20). Thus, 19,027 genes 
were obtained in the pretreated GSE34198 of MI for further 
application.

Constructing the candidate lncRNA-mRNA interactions. 
As far as we known, small non-coding RNAs target Base 
version 2.0 (starBase v2.0, http://starbase.sysu.edu.cn/) has 
been used to identify the RNA-RNA and protein-RNA inter-
action networks. Hence, miRNA-lncRNA interactions and 
miRNA-mRNA interactions were collected using StarBase 
v2.0. The miRNA-mRNA interactions were acquired based 
on miRecords (21), mir2Disease (22), mirTarBase (23) and 
TarBase (24). Then candidate lncRNA-mRNA competitively 
regulated relationships were constructed using their shared 
miRNAs between miRNA-mRNA and miRNA-lncRNA 
interactions. To ensure the data reliability, we used two criteria 
to identify the candidate competing miRNA of each lncRNA 
as follows: i) hypergeometric test of shared miRNAs under 
a threshold of P=0.05 and ii) Jaccard Coefficient of shared 
miRNAs rank at top 20%.

To make the candidate lncRNA-mRNA interactions 
involved in MI, all the genes in GSE34198 were mapped on 
them and the intersections were selected for further analysis.

Obtaining the lncRNA and mRNA co-expression rela-
tionship pairs. To screen the candidate lncRNA-mRNA 
interactions, we evaluated co-expression for any pair of 
relations in the candidate lncRNA-mRNA network using 
Pearson's correlation coefficient. Subsequently, the signifi-
cance of Pearson's correlation coefficient was evaluated 
by Fisher's Z-transform, which converts the values into 
the normally distributed variable Z. Then the Z-transform 
test utilizes the one-to-one mapping of the standard 
normal curve to the P-value of a one tailed test. When the 
calculation value exceeded a significant positive threshold 

(P<0.05), the lncRNA-mRNA co-expression relationship 
pairs (LncGenePairs) were retained.

Reconstructing condition-specific lncRNA competitively 
regulated signal pathways. We used Fisher's test to identify 
the gene enrichment pathways in the mRNA-gene expression 
profiles, and the pathways were obtained from KEGG data-
base. The gene enrichment pathways were collected when the 
P-value of gene enrichment pathway was no longer than 0.01, 
and considered as the candidate difference pathways. We put 
lncRNAs in the LncGenePairs into the candidate difference 
pathway graphs as nodes, then we acquired condition-specific 
lncRNA regulated signal pathways (csLncRPs). The lncRNA 
nodes were considered as signature nodes.

Located subpathways within pathways according to signa-
ture nodes. Signature nodes represent information on the 
competing regulation and genes of interest, which can help 
to efficiently locate subpathways through further considering 
their topologies within pathways. Moreover, distances are 
usually similar between certain nodes in a subpathway. We 
utilized ‘lenient distance’ similarity of signature nodes to 
locate subpathways competing for regulation by lncRNAs. 
We computed the shortest path between any two signature 
nodes as follows: If the molecule number between two  
signature nodes was less than n, they were combined into 
a single node. Finally, the node number in the molecule 
sets within pathway was longer than s, and defined as 
subpathway regions. The n parameter conducts the intensity 
of regulated signals, and the s parameter regulates the size 
of candidate subpathways. Thus, n=1 and s=8 were used as 
default parameters.

Statistical signif icance of candidate subpathways. 
Wallenius approximation methods were applied to evaluate 
the statistical significance of each subpathway. The needed 
values were shown as follows: i) the number of interesting 
mRNAs (x) submitted for analysis; ii) background mRNAs 
(n) number; iii) the number of background mRNAs (m1) 
annotated to each subpathway; iv) the number of interesting 
mRNAs (m2) annotated to each subpathway and v) the 
weight of each subpathway (w), which indicated the inten-
sity of competitively regulated lncRNAs involved in this 
subpathway. The formula of the subpathway weight is as 
follows:

According to the formula above, PG represents the number 
of mRNAs in the subpathways. GL represents the number of 
mRNAs competing regulation by lncRNAs in this subpathway. 
Moreover, β is the control parameter (β =1). The Wallenius 
approximation methods were carried out by R package 
BiasedUrn (25).

Identif ying hub lncRNAs. According to the values of 
the subpathways, the subpathways competing for regula-
tion by lncRNAs were obtained and constructed, that is, 
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lncRNA-mRNA networks were constructed. Then, we 
collected the hub lncRNAs when the lncRNA degree was 
longer than the average lncRNA degree in the lncRNA-mRNA 
networks.

Results

Identifying the relationship between lncRNAs and mRNAs for 
MI. In this study, 19,027 genes were selected from GSE34198 
of MI after standard corrections and normalizations. To 
understand the relationship between lncRNA and mRNA, we 
extracted lncRNA-mRNA interactions by their shared miRNAs 
based on mRNA-miRNA interactions and lncRNA-miRNA 
interactions. All genes in GSE34198 were mapped on these 
lncRNA-mRNA interactions and the intersections were 
selected. We then collected these intersections which satis-
fied P<0.05. The results revealed that 7,693 lncRNA-mRNA 
interactions were obtained, which included 835 lncRNAs and 
1,749 mRNAs. Next, 1,681 mRNAs and 112 lncRNAs were 
indentified for MI after taking intersections with 19,027 genes 
in gene expression data. Subsequently, Pearson's correlation 
coefficient was performed to evaluate co-expression for any 
pair of relations in the intersections. We obtained 300 lncRNA-
mRNA co-expression relationship pairs (LncGenePairs), 
among which include 58 lncRNAs, and 243 mRNAs. The 
top 6 LncGenePairs are illustrated in Table I.

Reconstruction of condition-specific lncRNA competitively 
regulated signal pathways. In order to obtain the lncRNA 
competitively regulated signal pathways (csLncRPs), we firstly 
annotated the mRNAs in the mRNAs-gene expression profiles 
into KEGG pathways. A total of 62 candidate difference 
pathways were obtained, among which the top 6 pathways were 
selected as shown in Table II. We then put lncRNAs based 

on the LncGenePairs in the candidate difference pathways 
as nodes through linking to their regulated mRNAs. Hence, 
a total of 1,241 csLncRPs were acquired, among which the 
top 14 pathways were selected as shown in Table III.

Identifying the signal subpathways competitively regulated by 
lncRNA for MI. The csLncRPs were calculated using lenient 
distance similarity to obtain the lncRNA competitively regulated 
subpathways. Then the Wallenius approximation methods were 
performed to evaluate the significance of signal subpathways. 
A total of 65 lncRNA competitively regulated subpathways 
were obtained, among which the top rank 6 subpathways are 
listed in Table IV. We illustrated the schematic diagram of 

Table III. The diagram of the top 14 csLncRPs.
 
path_name matched_lnc matched_gene

3008 DLEU2 BMS1
3008 C14orf169 BMS1
3008 ERVK13-1 RCL1
3008 PCBP1-AS1 POP1
3008 ERVK13-1 MDN1
3008 ERVK13-1 WDR75
3008 ERVK13-1 UTP15
3008 PDXDC2P HEATR1
3008 ERVK13-1 WDR43
3008 ERVK13-1 LSG1
3010 ERVK13-1 RPS6
3010 ERVK13-1 RPS27
3010 ERVK13-1 RPS25
3010 ERVK13-1 RPS3A
 

Table I. The diagram of the top 6 LncGenePairs.

Lnc Gene corValue P-value

TDRG1 HENMT1 0.220560501443871 0.0299373311676897
LIMD1-AS1 LRRC56 0.246484637523062 0.0149413386406672
LEF1-AS1 MAGEH1 0.454787669314928 2.87221540632211x10-6

SNHG11 MRPL53 0.680510717664986 1.75464015432401x10-14

LINC00485 NME7 0.249365243302853 0.0137715015048636
LEF1-AS1 SLC27A5 0.424727193889112 0.0000145102562949063

Table II. The diagram of the top 6 candidate different pathways.

Index Pathway_id Pathway_pvalue p.adjust (FDR)

05215 hsa05215: Prostate cancer 9.99732401124532x10-12 9.99732401124532x10-12

05200 hsa05200: Pathways in cancer 8.45066918278111x10-14 8.45066918278111x10-14

05220 hsa05220: Chronic myeloid leukemia 7.81664671803157x10-17 7.81664671803157x10-17

04910 hsa04910: Insulin signaling pathway 0.0000771758111031205 0.0000771758111031205
04510 hsa04510: Focal adhesion 6.65828057822821x10-06 6.65828057822821x10-06

05166 hsa05166: HTLV-I infection 6.59501272205171x10-07 6.59501272205171x10-07
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Table IV. The diagram of the top six of the lncRNA competitively regulated subpathways.

  Molecule
Pathway Id Pathway name ratio (m2/x) Bg ratio (m1/n) Weight P-value FDR

03010_1 Ribosome 13/264 13/26232 1.000000 <0.001 0.0000E+0000
03013_1 RNA transport 11/264 13/26232 1.241008 <0.001 0.0000E+0000
04010_1 MAPK signaling pathway 17/264 25/26232 1.556393 <0.001 0.0000E+0000
04012_1 ErbB signaling pathway 10/264 15/26232 1.736966 <0.001 0.0000E+0000
04062_1 Chemokine signaling pathway 14/264 20/26232 1.514573 <0.001 0.0000E+0000
04066_1 HIF-1 signaling pathway 11/264 16/26232 1.540568 <0.001 0.0000E+0000

lncRNAs, long non-coding RNA; MAPK, mitogen activated protein kinase.

Figure 1. The diagram of the top three subpathways: (A) the ribosome subpathways; (B) the MAPK signaling subpathways; (C) the RNA transport subpath-
ways. Green, mRNA; red, lncRNA. MAPK, mitogen activated protein kinase; lncRNA, long non-coding RNA.

Figure 2. The heatmap indicates the expression quantity of hub lncRNAs (rows) for two groups of patients (colums). The degree of expression is indicated by 
different colors, with expression increasing between white and red. White, low expression; red, high expression. lncRNA, long noncoding RNA.
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top rank 3 lncRNA competitively regulated subpathways, that 
is Ribosome, RNA transport and mitogen activated protein 
kinase (MAPK) subpathways (Fig. 1). According to the value, 
the signal subpathways were constructed into lncRNA-mRNA 
networks. Then 13 hub lncRNAs were collected from the 
lncRNA-mRNA networks (Fig. 2).

Discussion

In our study, the subpathway-LNCE method was first used to 
identify the lncRNAs competitively regulated subpathways 
for MI. Then the lncRNA-mRNA network was constructed 
according to these signal subpathways, in which the hub 
lncRNAs were detected.

Plenty of literature has reported that lncRNAs regulate 
many fundamental biological processes and play a key role in 
various diseases (4,5). Besides, lncRNAs competitively regu-
late mRNA expression levels through binding to miRNAs, 
so that lncRNAs can maintain normal biological func-
tions (13,14). Hence, identifying the functional relationships 
between lncRNA and disease relevant subpathways may help 
understand the pathogenesis of diseases. However, the relevant 
regulated mechanism of lncRNAs in MI remains unclear. 
Thus, it is very important to search for a suitable method to 
examine the functions of lncRNAs in MI.

Therefore, we applied subpathway-LINCE with GEO data 
set of MI and identified a total of 65 lncRNA competitively 
regulated subpathways under the condition of P<0.01. Of 
which, P-values of 36 subpathways were nearly zero, which 
showed the significant difference between MI group and 
control group, such as Ribosome, RNA transport and MAPK 
subpathways. Ribosome subpathways are critical to ribosome 
assembly and protein synthesis. When using some methods 
to regulate the ribosome biogenesis, the cell growth will be 
extensively affected. For example, mTOR signaling can regu-
late multiple steps in ribosome biogenesis, thus influencing 
the cell proliferation and survival (26,27). Moreover, mTOR 
is activated in MI and mTOR inhibition could reduce cardiac 
dilation and infract size and improve cardiac function (28). 
Hence, clarifying the effect of ribosome subpathways on MI 
may offer opportunities for new therapies. RNA transport is 
the process where specific RNA molecules are transported 
from one cellular region to another via different sorting and 
transport mechanisms (29). In the present study, RNA trans-
port subpathway in MI was associated with lncRNAs, which 
might assist in better understanding of the pathogenesis of MI. 
In particular, MAPK influences mitochondria mediated cell 
functions, mainly including proliferation, apoptosis and gene 
expression, because mitochondria are great power providers 
and gate-keepers of cell life and death. Moreover, MAPK 
can significantly affect cellular signaling underlying cardiac 
compensation and decompensation via interacting with the 
mitochondria (30). Our study showed that MAPK signaling 
subpathways participate in the pathological process of MI 
and are involved in lncRNAs. This could help to clarify the 
pathogenesis of MI.

In order to explore hub lncRNAs in the signal subpath-
ways, the lncRNA-mRNA network was constructed through 
selecting the high degree of the subpathways. Then, a total 
of 13 hub lncRNAs were collected from the lncRNA-mRNA 

networks. Among these hub lncRNAs, MI associated tran-
script (MIAT), as an lncRNA, has been associated with a risk 
of MI (10,31). It has been reported that MIAT expression levels 
are found to change in peripheral blood cells in patients who 
have suffered from MI, and smoking as a cardiovascular risk 
factor is found to be positively associated with MIAT (32). 
Apart from MIAT, other new hub lncRNAs for MI were found 
using subpathway-LINCE in this study. These hub lncRNAs 
could become potential diagnostic and therapeutic targets for 
MI.

In conclusion, using subpathway-LINCE to study MI 
lncRNA competitively regulated subpathways were gained, 
and the hub lncRNAs for MI in lncRNA-mRNA network were 
also obtained. Identifying the lncRNAs competitively regu-
lated subpathways could help us to understand the pathogenesis 
of MI. The hub lncRNAs might represent novel regulators of 
MI and become new diagnostic and therapeutic targets for MI. 
Although the results in this study still need to be verified by 
experiments, these findings can help understand the roles of 
lncRNAs in MI.
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