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Aim: Trans-arterial chemoembolization (TACE) in combination with tyrosine kinase
inhibitor (TKI) has been evidenced to improve outcomes in a portion of patients with
hepatocellular carcinoma (HCC). Developing biomarkers to identify patients who might
benefit from the combined treatment is needed. This study aims to investigate the efficacy
of radiomics/deep learning features-basedmodels in predicting short-term disease control
and overall survival (OS) in HCC patients who received the combined treatment.

Materials and Methods: A total of 103 HCC patients who received the combined
treatment from Sep. 2015 to Dec. 2019 were enrolled in the study. We exacted radiomics
features and deep learning features of six pre-trained convolutional neural networks
(CNNs) from pretreatment computed tomography (CT) images. The robustness of
features was evaluated, and those with excellent stability were used to construct
predictive models by combining each of the seven feature exactors, 13 feature
selection methods and 12 classifiers. The models were evaluated for predicting short-
term disease by using the area under the receiver operating characteristics curve (AUC)
and relative standard deviation (RSD). The optimal models were further analyzed for
predictive performance on overall survival.

Results: A total of the 1,092 models (156 with radiomics features and 936 with deep
learning features) were constructed. Radiomics_GINI_Nearest Neighbors (RGNN) and
Resnet50_MIM_Nearest Neighbors (RMNN) were identified as optimal models, with the
AUC of 0.87 and 0.94, accuracy of 0.89 and 0.92, sensitivity of 0.88 and 0.97, specificity of
0.90 and 0.90, precision of 0.87 and 0.83, F1 score of 0.89 and 0.92, and RSD of 1.30 and
0.26, respectively. Kaplan-Meier survival analysis showed that RGNN and RMNN were
associated with better OS (p = 0.006 for RGNN and p = 0.033 for RMNN).
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Conclusion: Pretreatment CT-based radiomics/deep learning models could non-
invasively and efficiently predict outcomes in HCC patients who received combined
therapy of TACE and TKI.

Keywords: radiomics, deep learning, feature robustness, trans-arterial chemoembolization, tyrosine kinase
inhibitor, hepatocellular carcinoma

INTRODUCTION

In recent years, many novel therapies have modified the therapeutic
landscape of hepatocellular carcinoma (HCC) (A. Rizzo et al., 2021; S.
De Lorenzo et al., 2018). Furthermore, predictive biomarkers to guide
treatment choice were explored extensively (A. Rizzo and G. Rizzo
and Brandi, 2021). In particular, trans-arterial chemoembolization
(TACE) combined with tyrosine kinase inhibitor molecular targeted
therapy has been shown to significantly improve outcomes over
TACE alone in patients with HCC (M. Kudo et al., 2020; Z. Peng
et al., 2019). Due to tumor heterogeneity, patients’ responses to the
combined treatmentmay vary, indicating exploration of predictors to
identify patients who might benefit from the combined treatment is
urgently needed (M. Kudo et al., 2020; T. Meyer et al., 2017).
Microvascular invasion (MVI) has been proven effective in
predicting response to TACE combined with Sorafenib in patients
with recurrent intermediate stage HCC (Z. Peng et al., 2019).
However, MVI is detected at the resection. Furthermore, tissue-
based biomarkers can only reflect the local but not the general
characteristics of the heterogeneous nature of the tumor since
they mostly rely on a single tumor sample from an approachable
lesion in practice. In addition, it is difficult to identify the patient’s
current status from an archival sample due to the evolution of the
tumor and the tumor microenvironment during anti-cancer
treatment. The biomarker to identify patients most likely to
benefit from this combined treatment is limited.

Radiomics has been used to evaluate the severity of chronic liver
disease and assess the prognosis of malignant liver tumors (S. Chen
et al., 2019; G. W. Ji et al., 2019; S. Kim et al., 2019; F. Liu et al., 2018;
H. J. Park et al., 2019; X. Xu et al., 2019). Deep learning (DL) has been
widely applied to liver imaging for various tasks, including organ
segmentation, staging liver fibrosis, tumor detection or classification,
and improving image quality (C. A. Hamm et al., 2019; F. Liu F et al.,
2019; D. Tamada et al., 2020; K.Wang et al., 2019a and X. Liu Z et al.,
2019; K.Wang et al., 2019b andA.Mamidipalli et al., 2019; K. Yasaka
et al., 2018a, H. Akai, and O. Abe et al., 2018; K. Yasaka et al., 2018b,
H. Akai, andA. Kunimatsu et al., 2018). Because training aDLmodel
with a small sample size for one specific clinical question often does
not yield satisfactory results, a machine learning framework that
combines radiomics features and deep learning features from pre-
trained networks with conventional machine learning methods has
satisfying predictive performance accuracy and computational costs
for some tasks (S. Raghu et al., 2020).

However, the clinical interpretability and reproducibility of
clinical-decision support algorithms remain challenging. The
robustness of a radiomics/deep-learning-based prediction
model refers to its ability to tolerate perturbation to the image
input. Recent studies in natural image processing have revealed
that the output of DL models can be easily affected by small-scale

perturbations added to the input (P. Malhotra et al., 2021; X.
Yuan et al., 2019). Correspondingly, many factors are known to
induce variability in radiomics features, including noise (D.
Mackin et al., 2018), heterogeneous voxel size (M. Shafiq-Ul-
Hassan et al., 2018), variability in imaging protocols, different
vendors, image reconstruction processes (M. Meyer et al., 2019),
Region of Interest (ROI) segmentation (I. Fotina et al., 2012; C.
Haarburger et al., 2020; J. Kalpathy-Cramer et al., 2016; Q. Qiu
et al., 2019), patient motion, overall image quality as well as tumor
phenotype (J. E. van Timmeren et al., 2016).

To the best of our knowledge, this is the first work performing
a high-throughput benchmark analysis, along with a feature
robustness analysis, to predict short-term tumor response and
overall survival in patients with HCC who treated with TACE in
combination with targeted molecular therapy.

MATERIALS AND METHODS

Data/Population and Data Acquisition
The ethics committee of our institute approved the study and
waived written informed consent due to the retrospective design.

We reviewed the electronic medical records of HCC patients who
received combined treatment of TACE and TKI from Sep. 2015 to
Dec. 2019 at our institute (Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology). The inclusion
criteria were as follows: 1) age, ≥ 20 years; 2) tumors confined to the
liver without macro-vascular invasion or extra-hepatic metastasis; 3)
tumors are measurable by the modified Response Evaluation Criteria
in Solid Tumours (mRECIST); 4) Eastern Cooperative Oncology
Group (ECOG) performance status of 0 or 1, Child-Pugh scores ≤7
points and adequate organ function. Those without complete medical
records or high-quality CT images in electronic format were excluded.

Two radiologists reviewed pre-treatment and post-treatment CT
images to evaluate short-term tumor response according to the
mRECIST. Any inconsistency of assessment results was resolved
by consensus. Tumor response was evaluated every 8 weeks. Overall
survival (OS) was defined as the time from the date of treatment to
the date of death without regarding the cause of death, and censored
at the date of last follow-up for survivors. The regimen of TACE plus
TKI, response evaluation, clinical data and CT data acquisition are
detailed in Supplementary Material.

Tumor Segmentation and Imaging
Pre-Processing
The Region of interest (ROI) of primary tumor, defined as
enhanced area in arterial phase CT images in accordance with
mRECIST, was manually delineated by two experienced
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radiologists (XW X and QQ R) using a 3D Slicer software (A.
Fedorov et al., 2012). To be consistent with deep learning features,
three consecutive slices with the maximum cross-sectional area of
the tumor lesion were selected. The two observers repeated the
same procedures 2 weeks later and any disagreement was resolved
through consultation. The brightness, the size and of the image
were standardized and the noise in the image was removed using
the methods reported in literature (H. Koyuncu and Ceylan,
2018). In brief, resegmentation refers to the process whereby only
pixels within a specified grey value range (−1,000, 400) are
retained to exclude irrelevant organs and objects. The CT
images’ appropriate window wide and center were adaptively
adjusted based on the tumor region’s Hounsfield unit values. The
images were then subjected to imaging normalization (the
intensity of the image was scaled to 0–255) to avoid data
heterogeneity bias. Histogram equalization was used to
improve the brightness and contrast of the image for
practitioners to analyze. CT images are mainly affected by
quantum noise, arising from the variability of the electronic
density of tissue voxels, statistically represented by a random
Gaussian process. We used Gaussian filter to remove the noise in
the image. The images with informative slices (three consecutive
axial slices with maximum tumor area) corresponding to the
segmented tumor region were cropped to 224 mm × 224 mm
using a bounding box spanning the whole tumor area.

Feature Extraction
Six commonly used pre-trained convolutional neural networks
(CNNs) (Y. Hu et al., 2021; T. N. Sainath et al., 2015), including
InceptionResNetV2, InceptionV3, Resnet50, VGG16, VGG19,
and Xception, were pretrained on ImageNet, which contains a
large number of object categories and manually annotated
training images. When performing deep learning feature
extraction, we treated the pre-trained network as an arbitrary
feature extractor, allowing the input image to propagate forward,
stopping at the pre-specified layer, and taking the outputs of that
layer as our features. After removing the last fully connected layer,
we got feature maps of CT images with the maximum area of the
tumor lesion, which corresponded to location invariance in the
input layer. After global pooling, each feature map vector was
transformed to a maximal raw value. The representational deep
learning features refer to a total of 2048 (Resnet50, InceptionV3,
and Xception), 1,536 (InceptionResNetV2) or 512 (VGG16,
VGG19) features were converted from feature maps to
numeric values.

Handcrafted radiomics features were automatically computed
from the radiologist-drawn ROIs using the Pyradiomics package
implemented in Python. Defined radiomics features with or
without wavelet filtration were extracted in accordance with
feature definitions described by the image biomarker
standardization initiative (IBSI) reporting guidelines (A.
Zwanenburg et al., 2020). Features were divided into three
groups: (I) first-order statistics; (II) shape features; and (III)
second-order features: gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), gray level
size zone matrix (GLSZM), gray level dependence matrix
(GLDM), neighborhood gray tone difference matrix (NGTDM).

Feature Robustness Evaluation
The ROI images were adjusted to evaluate the impact of
perturbations on feature robustness. We tested three
perturbations as follows: 1) slice thickness (S): CT images were
reconstructed contiguously at 1, 2, 3 and 5 mm section
thicknesses; 2) rotation (R): The image and mask were rotated
in the axial (x, y) plane, over a set angle θ [−30°, −15°, 15°, and 30°];
3) segmentation (Seg): ROIs were automatically expanded or
shrinked by 20% (A. Zwanenburg et al., 2019).

The Intra-class Correlation Coefficient ICC was chosen to
ensure absolute agreement and not only consistency across
perturbations. According to the guidelines (T. K. Koo and Li,
2016), all the features with an ICC of more than 0.85 for all tested
perturbations were selected for further study analysis. Raw feature
vectors were further standardized by centering on the mean and
scaling to unit variance.

Feature Selection of Informative Features
and Predictive Model Construction
To further reduce feature dimension, the following steps were
performed: 1) removing robust features with zero median
absolute deviation (MAD); 2) only considering the top 20%
features selected by univariate analysis; 3) algorithm-based
feature selection; 4) the wrapper feature selection method
based on the recursive feature addition algorithm to select the
most predictive features. The features were fed to machine
learning classifiers and the performance was evaluated by the
area under the receiver operating characteristic curve (AUC).
A 10-fold cross validation was used in the
feature dimension step to avoid data leakage and
overestimation.

The algorithm-based feature selectors included ReliefF
(RELF), Fischer Score (FSCR), Gini index (GINI), Chisquare
score (CHSQ), joint mutual information (JMI), conditional
infomax feature extraction (CIFE), double input symmetric
relevance (DISR), mutual information maximization (MIM),
conditional mutual information maximization (CMIM),
interaction capping (ICAP), t-test score (TSCR, only for
binary classification), minimum redundancy maximum
relevance (MRMR), and mutual information feature selection
(MIFS). These selectors take a filter-method approach for feature
selection. The filter method filters out the irrelevant feature and
redundant columns from the model by using different metrics
through ranking.

Twelve supervised machine learning classifiers, including
Nearest Neighbors, Support Vector Classifiers (SVC) with
linear or radial basis function (RBF) kernels, Gaussian
processes, decision trees, random forests, multilayer
perceptrons, AdaBoost, naïve Bayes, quadratic discriminant
analysis (QDA), XGBoost, and logistic regression, were then
used to train models for predicting short-term disease control.
These classifiers were all imported from scikit-learn implemented
in Python (version 3.6.4) (A. Abraham et al., 2014). During the
model debugging, samples were shuffled to ensure data
randomization. We adopted the Synthetic minority over-
sampling technique (SMOTE) (N. V. Chawla et al., 2002), one
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of the commonly-used oversampling algorithms, to achieve class
balance during the cross-validation step.

The terminology of each predictive model was consistent with its
feature exactor, selector, and classifier. For example,
VGG19_FSCR_QDA was a model trained by the QDA classifier,
with features selected by FSCR and exacted by VGG19. The
predictive performance of the models and their stability was
evaluated by the AUC and relative standard deviation (RSD),
respectively. RSD was calculated according to the formula: RSD =
(sdAUC/meanAUC) × 100, where sdAUC and meanAUC were the
standard deviation and mean of the ten cross-validated AUC
values, respectively. Accuracy, sensitivity, specificity, precision,
and F1 score were also calculated to further evaluate the selected
model (Sokolova and Japkowicz, 2006).

Statistical Analysis
Continuous variables with normal distribution were presented as
mean ± SD (standard deviation) and those with abnormal
distribution were presented as median (range). The continuous
variables were compared using the t test or Kruskal-Wallis tests.
Non-continuous variables were compared using the Pearson X2

test or Fisher’s exact test.
Survival curves were plotted using the Kaplan-Meier method

and compared using the log-rank test. Cox proportional hazard
analysis was used to identify factors associated with survival. A
p-value of less than 0.05 was considered statistically significant.

RESULTS

Patient Demographics
A total of 103HCCpatients (92males and 11 females; age (mean ± SD):
52 ± 9 years) who received combined treatment of TACE and TKI were
enrolled in this study. Of these, 72 were identified as disease control

(1complete tumor response, 54 partial tumor response, and 17 stable
diseases) based on mRECIST, yielding a disease control rate (DCR) of
69.9%. The rest were identified as progressed disease (PD, 30.1%).
Clinical and tumor characteristics for all patients are listed in
Table 1. The clinical and tumor characteristics differences between
PD and non-PD groups are statistically insignificant.

Our study setup consists of three parts: 1) feature extraction and
robustness analysis; 2) constructing models for predicting disease
control, performance analysis, and identification of optimal
models; 3) OS prediction performance analysis using the
optimal models. Figure 1 shows the workflow of the study.

Feature Robustness Evaluation
A consistency test was applied to evaluate feature robustness.
Imaging perturbations produced a slight impact on the stability
of radiomics features, with ICC of 0.93 ± 0.11 for S, 0.94 ± 0.15 for R,
and 0.96 ± 0.22 for Seg, respectively. High stability was also observed
in S and R perturbations for deep learning features extracted with
Rnest50, with ICC of 0.89 ± 0.09 and 0.86 ± 0.12, respectively.
However, Seg perturbations had moderate impact on the stability of
deep learning features extracted fromRnest50, with an ICC of 0.80 ±
0.14. The results of robustness evaluation for features from all
extractors were summarized in Supplementary Table S1.

Figure 2 shows the results of feature robustness analysis with ICC
cutoff value of 0.85. There were 718/851 (84.37%) robust features in
radiomics group. In deep learning group, the highest percentage
robust features is 38.87% (199/512) from VGG19 by using the same
cutoff value of ICC, followed by 35.11% (719/2048) from Resnet50,
34.38% (176/512) from VGG16, 30.62% (627/2048) from Xception,
13.61% (209/1,536) from InceptionResNetV2, and 7.57% (155/2048)
from InceptionV3. The results of features robustness analysis with
other ICCs were presented in Supplementary Figure S1. These
results indicated that radiomics features were more stable than deep

TABLE 1 | Baseline demographic and clinical characteristics of patients.

Characteristic Total (n = 103) PD (n = 31) Non PD (n = 72) p Value

Age (year), (mean ± SD) 52 ± 9 52 ± 8 52 ± 10 0.732
Sex 0.730
Male, n (%) 92 (89.3%) 27 (87.1%) 65 (90.3%)
Female, n (%) 11 (10.7%) 4 (12.9%) 7 (9.7%)

ECOG score 0.375
0, n (%) 88 (85.4%) 25 (80.6%) 63 (87.5%)
1, n (%) 15 (14.6%) 6 (19.4%) 9 (12.5%)

Aetiology 0.978
Hepatitis B, n (%) 83 (80.6%) 25 (80.6%) 58 (80.6%)
Hepatitis C, n (%) 14 (13.6%) 4 (12.9%) 10 (13.9%)
Nonviral hepatitis, n (%) 6 (5.8%) 2 (6.5%) 4 (5.6%)

Child-Pugh classification 1.000
Child-Pugh A, n (%) 92 (89.3%) 28 (90.3%) 64 (88.9%)
Child-Pugh B ≤ 7, n (%) 11 (10.7%) 3 (9.7%) 8 (11.1%)

BCLC stage 0.720
B, n (%) 94 (91.3%) 29 (93.5%) 65 (90.3%)
C, n (%) 9 (8.7%) 2 (6.5%) 7 (9.7%)

Maximum tumor diameter(mm), median (range) 59.68 (10.40–153.33) 70.26 (10.40–153.33) 56.10 (13.34–144.21) 0.081
AFP 0.983
≤400 ng/ml, n (%) 53 (51.5%) 16 (51.6%) 37 (51.4%)
>400 ng/ml, n (%) 50 (48.5%) 15 (48.4%) 35 (48.6%)
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learning features; in addition, segmentation perturbation (Seg)
seemed produce greater impact on stability in deep learning features.

Predictive Performance of Radiomics/Deep
Learning Models on Short-Term Disease
Control
A total of 156 radiomics features-based models and 936 deep
learning features-based models were constructed, and those
classified by the k Nearest Neighbors have excellent
performance for predicting short-term disease control, reached
a median value of AUC of 0.85 (range: 0.64–0.94)

(Supplementary Figure S2) and median RSD of 1.87 (range:
0.26–11.31).

The Radiomics_GINI_Nearest Neighbors (RGNN) was
identified as optimal model in radiomics group, with a cross-
validated AUC of 0.87, RSD 1.30, accuracy 0.89, sensitivity 0.88,
specificity 0.90, precision 0.87, and F1 score 0.89. (Figures 3A,B).
Radiomics_JMI_Nearest Neighbors had a better AUC value of
0.88, but a higher RSD value of 3.59. The Resnet50_MIM_Nearest
Neighbors (RMNN) was identified as the optimal model in deep
learning group, with a cross-validated AUC of 0.94, RSD 0.26,
accuracy 0.92, sensitivity 0.97, specificity 0.90, precision 0.83, and
F1score 0.92 (Figures 3C,D). The Resnet50_JMI_Nearest

FIGURE 1 |Workflow of major steps in the current work. Tumors are segmented manually and pre-processed. Features are extracted with handcrafted radiomics
and six popularly used pre-trained deep learning CNNs, respectively. ICC meters the robustness of features for each perturbation type (segmentation, thickness, and
rotation). Robust features are then used to construct models for predicting short-term disease control of tumors by combining each of 13 feature selectors and 12
machine learning classifiers. The best-performing model is evaluated for predicting overall survival.

FIGURE 2 | The percentage of robust features against image perturbation.
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FIGURE 3 | Performance of different combinations of feature selectors (rows) and ML classifiers (columns) for predicting short-term disease control. 10-fold cross-
validated AUC values (A) and RSD values (B) of 156 models with Radiomics features. 10-fold cross-validated AUC values (C) and RSD values (D) of 156 models with
deep learning features extracted from Resnet50.
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Neighbors had a comparable AUC value 0.94, but a higher RSD
value of 0.86.

The list of all feature selectors was in Supplementary Table
S2; the ML methods’ parameter settings and tuning range were
presented in Supplementary Material. The predictive
performance of models constructed by other combinations of
CNNs, selectors, and classifiers was Supplementary Figure S3.

Predictive Performance of
Radiomics_GINI_Nearest Neighbors and
Resnet50_MIM_Nearest Neighbors on
Overall Survival
For 99 patients with survival data, the median follow-up time was
15months (range: 10–24months). The results of the Kaplan-Meier
survival analysis are presented in Figures 4A,B. There was a
statistically significant survival advantage for
Radiomics_GINI_Nearest Neighbors (p = 0.006) and
Resnet50_MIM_ Nearest Neighbors (p = 0.033). Cox
proportional hazard analysis showed that
Radiomics_GINI_Nearest Neighbors (HR, 2.49; 95% CI,
1.36–4.55; p = 0.003) and Resnet50_MIM_Nearest Neighbors
(HR, 1.83; 95% CI, 1.05–3.17; p = 0.032) was independently
associated with overall survival (Supplementary Table S3).

DISCUSSION

This study constructed stable radiomics/deep learning models
based on a high-throughput analysis for predicting outcomes in
HCC patients who received combined treatment of TACE and
TKI. We evaluated the robustness of radiomics/deep learning
features against multiple perturbations and further evaluated
1,092 combinations of varied feature extractors, selectors, and
machine learning techniques. Radiomics_GINI_Nearest
Neighbors and Resnet50_MIM_ Nearest Neighbors were
identified as the optimal models to predict short-term tumor
response and overall survival in two groups (radiomics and deep
learning), respectively. Since CT imaging is non-invasive and
time-saving, this technique provided us with a fast and auxiliary
approach to predict outcomes, thus helping to initially screen
patients who might benefit from the combined treatment.

The main idea of deep learning is to employ a deep neural
network (DNN) model. To effectively construct deep learning
models, we need much more data for training to identify optimal
models than prevalent statistical machine learning models. The
success of transfer learning schemas, which is frequently used to
overcome the limitation of small data sets is clearly contributing
to approach DL models as powerful extractors of useful feature
sets (H. C. Shin et al., 2016).

Feature robustness depends on the tumor phenotype and is
not generalizable (J. E. van Timmeren et al., 2016). In this study,
we evaluated the robustness of radiomics and deep learning
features by addressing three types of common perturbations,
including slice thickness (S), rotation (R), and ROI segmentation
(Seg). Our results indicated that Radiomics features seemed more
stable than deep learning features in general. To the best of our
knowledge, this was the first work to assess the impact of these
perturbations on feature stability. The stability of radiomics/deep
learning features was more susceptible to Seg. So it is always better
performing a “safe” contouring when segmenting, that is,
underestimating rather than overestimating the ROI (M.
Mottola et al., 2021). These processes can minimize possible
variations between centers, machines, image reconstruction
methods, and delineation uncertainties. Conducting from these

FIGURE 4 | Best-performing model predicting overall survival.
Kaplan–Meier survival analysis shows a statistically significant survival
advantage for the Radiomics_GINI_Nearest Neighbors (A) and
Resnet50_MIM_ Nearest Neighbors (B), respectively.
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features, our models can be widely applied for CT data obtained
in various institutions.

We further investigated 1,092 combinations of feature
exactors, feature selectors, and machine learning techniques to
construct predictive models. The DL-based model’s prediction
ability seemed better than the radiomics-based model. The
radiomics-based model with features selected by GINI and
classified with Nearest Neighbors was identified to be the
optimal model that could effectively predict patients’
outcomes. For deep learning-based models, the combination of
Resnet50, MIN, and Nearest Neighbors exhibited high predictive
power. These results may be helpful for guidance in choosing a
better combination of methods. However, which model is better
and more practical still needs further studies to verify.

There are several limitations. First, this study was conducted
in a single tertiary hospital; limitations inherent to a
retrospective design, including small sample size and
selection bias, may have influenced the findings.
Furthermore, because of the retrospective character of this
work, we used perturbation methods rather than test-retest
imaging to evaluate feature robustness. In the future, a
prospective test-retest study should be conducted. Secondly,
there was no external validation cohort to verify the efficacy of
our predictive models. Thirdly, three consecutive sections of the
tumor were sampled for analysis, and no volume assessment
was performed. In a previous study, it was found that data from
a single slice was sufficient for this type of analysis (F. Ng et al.,
2013). Apart from that, we only investigated some of the
influencing factors affecting the image features. Other
factors, such as image reconstruction methods, noise removal
methods, and histogram equalization approaches, need further
studies. Fifthly, although our results demonstrated strong
prediction performance, implying that transfer learning
might address domain differences, there was heterogeneity
across the source and destination databases. Deep learning
models explicitly developed for HCC were required.
Additionally, the findings’ interpretability is a ubiquitous
limitation when developing any artificial intelligence or
machine learning model applied to medical imaging (F.
Cabitza et al., 2017; Z. Liu Z et al., 2019; R. Sun et al., 2018).
The issue of findings’ interpretability should be improved and
solved in further studies.

We believe that the proposed radiomic/deep learning based
machine learning model is applicable to other modalities,
outcomes, and diseases, with certain modality-specific
perturbations. Further research involving standardization
across various scanner parameters could aid in harmonizing
image attributes in advance. Another major obstacle in this
research area is the development of an extensive public
database with sufficient annotated medical imaging data to
train plenty of parameters in the neural network. Such a
database will dramatically help provide more clinically relevant
features to train models with better performance.

CONCLUSION

This study constructed stable predictive models from radiomics/
deep learning features based on pre-treatment CT imaging using
high-throughput analysis. These models could effectively predict
short-term tumor response and overall survival in HCC patients
who received combined treatment of TACE and targeted
molecular therapy. Since CT imaging is non-invasive and
time-saving, this technique provided us with a fast and
auxiliary approach to identify patients who might benefit from
the combined treatment and have the potential to improve
precision oncology.
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GLOSSARY

AUC area under the curve

CHSQ Chisquare score

CIFE conditional infomax feature extraction

CMIM conditional mutual information maximization

DISR double input symmetric relevance

DL deep learning

FSCR Fischer Score

GINI Gini index

GLCM gray level co-occurrence matrix

GLDM gray level dependence matrix

GLRLM gray level run length matrix

GLSZM gray level size zone matrix

HCC hepatocellular carcinoma

IBSI image biomarker standardization initiative

ICAP interaction capping

JMI joint mutual information

MAD median absolute deviation

MIFS mutual information feature selection

MIM mutual information maximization

mRECIST modified Response Evaluation Criteria in Solid Tumours

MRMR minimum redundancy maximum relevance

NGTDM neighborhood gray tone difference matrix

QDA quadratic discriminant analysis

RBF radial basis function

RELF ReliefF

RGNN Radiomics_GINI_Nearest Neighbors

RMNN Resnet50_MIM_Nearest Neighbors

ROI Regions of interest

RSD relative standard deviation in percentile

SVC support Vector Classifiers

TACE Trans-arterial chemoembolization

TKI tyrosinekinase inhibitor

TSCR t-test score
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