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Moonlighting proteins (MPs) are a special type of protein with multiple independent

functions. MPs play vital roles in cellular regulation, diseases, and biological pathways.

At present, very few MPs have been discovered by biological experiments. Due to the

lack of data sample, computation-based methods to identify MPs are limited. Currently,

there is no de-novo prediction method for MPs. Therefore, systematic research and

identification of MPs are urgently required. In this paper, we propose a multimodal deep

ensemble learning architecture, named MEL-MP, which is the first de novo computation

model for predictingMPs. First, we extract four sequence-based features: primary protein

sequence information, evolutionary information, physical and chemical properties, and

secondary protein structure information. Second, we select specific classifiers for each

kind of feature. Finally, we apply the stacked ensemble to integrate the output of each

classifier. Through comprehensive model selection and cross-validation experiments,

it is shown that specific classifiers for specific feature types can achieve superior

performance. For validating the effectiveness of the fusion-based stacked ensemble,

different feature fusion strategies including direct combination and a multimodal deep

auto-encoder are used for comparative purposes. MEL-MP is shown to exhibit superior

prediction performance (F-score = 0.891), surpassing the existing machine learning

model, MPFit (F-score= 0.784). In addition, MEL-MP is leveraged to predict the potential

MPs among all human proteins. Furthermore, the distribution of predicted MPs on

different chromosomes, the evolution of MPs, the association of MPs with diseases, and

the functional enrichment of MPs are also explored. Finally, for maximum convenience,

a user-friendly web server is available at: http://ml.csbg-jlu.site/mel-mp/.

Keywords: protein moonlighting, ensemble learning, deep learning, multimodal, prediction model

1. INTRODUCTION

The study of protein functions is a central issue in the post-genomic era. The investigation of
protein functions helps elucidate the varying mechanisms of organisms under physiological or
pathological conditions, such as heart disease, autoimmune disease, and cancers. Yet, little is known
about the functions of proteins due to their high diversity. In recent years, a new type of protein
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with two or more distinct functions or subcellular locations,
called moonlighting proteins (MPs), has been found (Weaver,
1998; Jeffery, 2003, 2004; Jeffery and Wang, 2016). Research has
led to the detection of MPs in various species, including reptiles,
plants, andmammals. MPs contain enzymes that act as receptors,
DNA stabilizers, components of the backbone, transcription
factors, secreted cytokines, and proteasome semihydrolases
(Jeffery, 2018). Further, MPs appear to be very useful from
the perspective of biological research. Proteins with diversity
functions have research value from the perspective of organism
evolution. During genome reduction, organismsmay increase the
functional range of a limited set of genes since multifunctional
proteins will increase robustness (Ferla et al., 2017; Nishiyama
et al., 2019). Recent studies have also proved that multifunctional
proteins play an important role in virulence and diseases.
Research on MPs can help improve collective understandings
of the relationship between health systems and diseases
(Henderson and Martin, 2011; Jeffery, 2015; Franco-Serrano
et al., 2018). Given the vital role of MPs in biological fields, the
systematic study of MPs is an important task for understanding
protein functions.

Identifying MPs mainly relies on experimental methods,
which are time consuming and expensive. Currently,
computation-based method for predicting MPs are limited,
with relevant examples being MoonGO (Chapple et al., 2015),
MPFit (Khan and Daisuke, 2016), and DextMP (Khan et al.,
2017). MoonGO applies statistical methods and an overlapping
clustering algorithm based on annotated gene ontology (GO)
information. MPFit uses GO annotation (Gene Ontology
Consortium et al., 2013) or a combination of information
from six omic-based protein associations (protein–protein
interaction, gene expression, phylogenetic profiles, genetic
interactions, network-based graph properties, and disordered
protein regions) to predict MPs. DextMP relies on a natural
language processing method to predict MPs based on the
published literature, i.e., title, abstract, and function description
(Kim et al., 2014). However, not all proteins have the necessary
annotation and text information, which leads to a considerable
amount of proteins lacking feature representations in the above
two existing methods. Therefore, de novo computation methods
to comprehensively identify MPs are urgently required.

Here, we propose a de novo multimodal deep ensemble
learning method based on sequences to identify MPs,
named MEL-MP. To this end, four types of features are
extracted: primary protein sequence information, evolutionary
information, physical and chemical properties, and secondary

Abbreviations: AA-MLP, physical and chemical properties classing by multilayer

perceptron; Acf, autocorrelation coefficient function; BiLSTM, bidirectional

long short-term memory neural networks; BP, biological process; CC, cellular

components; GO, gene ontology; lnc, long noncoding RNAs; LR, logistic

regression; MF, molecular function; Mlnc, moonlighting long noncoding

RNAs; MLP, multilayer perceptron; MP, moonlighting protein; non-MP, non-

moonlighting proteins; PSSM-RF, PSSM applying random forest; rawpssm,

position-specific score matrix; RF, random forest; Seq-BiLSTM, sequence feature

applying bidirectional long short-termmemory neural networks; sequence, protein

sequence; SS-ARF, auto-encoder and RF corresponding to secondary structure;

SVM, support vector machine.

protein structure information. For each kind of feature, we select
the optimal classifier based on 10-fold cross validation. Then,
each kind of feature is classified by a base classifier, with the best
performance as a sub-model. Finally, a stacked ensemble strategy
is applied to integrate the outputs of each sub-model. Compared
with other feature fusion methods (i.e., direct combination and
multimodal deep auto-encoder), MEL-MP exhibits superior
performance. After that, MEL-MP is applied to the whole human
genome to predict potential MPs. We further explore predicted
MPs from four different perspectives: the distribution on human
chromosomes, the association with diseases, evolutionary history
and the functional analysis. The results reveal that the predicted
MPs are significantly related to diseases, and the ratio of MPs in
the Y chromosome is higher compared with other chromosomes.
Compared with non-MPs, MPs may have earlier origination and
show multifunctional nature. In order to facilitate the use of
MEL-MP, we have developed a web server with friendly interface.
MEL-MP not only contributes a novel de novo prediction tool
for predicting MPs with satisfactory accuracy to facilitate future
research but also provides an enhanced scheme for multimodal
feature fusion.

2. MATERIALS AND METHODS

2.1. Data Sets
Data sets, including positive and negative samples, are
determined as per MPFit. Note that 268 positive samples are
selected from the moonprot database released in 2015 (Mathew
et al., 2015). These data are verified by biological experiments.
However, negative samples are not directly discovered by
biological experiments and thus manual construction is required
in terms of annotation by GO information. In this task, a protein
is determined as non-MP according to the clustering results of
GO terms (Khan and Daisuke, 2016). The similarity score of
GO terms is calculated to measure the relationship between GO
terms using Rel’s method (Schlicker et al., 2006). To construct
the negative samples, the first step is to calculate the frequency of
a single GO term c as follows:

freq(c) = anno(c)+
∑

h∈children(c)

freq(h) (1)

where the anno(c) is the number of gene product annotated with
the GO term c in the database. children(c) is the child GO set of
the GO term c. The freq(c) refers to the frequency of the GO term
c. freq(c) is expressed recursively, which means when term c has
the child set, the frequency of the GO term c is the sum of the
annotation of GO term c itself and all frequency of the childs of
GO term c. When c does not has childs GO terms, the freq(c)
is equal to anno(c). Then the probability (p) of a GO term c is
defined as follows:

p(c) = freq(c)/freq(root) (2)

where root refers to the ancestor of GO term c. Finally, the
GO semantic similarity score between GO term c1 and c2 is

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 630379

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. De-novo Prediction of Moonlighting Proteins

defined as:

simRel(c1 ,c2) = max
c∈S(c1 ,c2)

(
2× log p(c)

log p(c1)+ log p(c2)
× (1− p(c))) (3)

where S(c1, c2) is the set of common ancestors of terms c1 and c2.
Thence, a protein can be determined as a negative sample is based
on three principles (Khan and Daisuke, 2016): (1) the protein has
at least eight GO terms; (2) the biological process (BP) terms
are in one cluster with a similarity score between 0.1 and 0.5;
(3) when molecular function (MF) terms are clustered, no more
than one cluster reaches a similarity score between 0.1 and 0.5.
Utilizing these three principles to screen proteins of four species
(human, yeast, Escherichia coli, and mouse). After removing the
negative samples with the same sequence as the positive samples,
162 proteins are defined as negative samples.

2.1.1. Primary Sequence Feature
We calculate the k − mer features of protein sequences, which
are defined as the numbers of occurrences of all k amino acids
arrangements in a protein sequence. A protein sequence has 20
different types of amino acid, so the length of the k−mer vector
is equal to 20k. That is, the length of k−mer vector is equal to 20k.
Here, we choose k = 3, 2, 1, respectively, and then, respectively,
concatenate the 3 − mer, 2 − mer, and 1 − mer features of a
sequence together as the rawkmers feature of a sequence:

rawkmers = (3−mer, 2−mer, 1−mer) (4)

Furthermore, to reduce the dimensions and extract informative
feature from rawkmers, the autocorrelation coefficient function
(Acf) is given as follows:

rj =

∑n−j
i=1 (Xi − Xmean)(Xi+j + Xmean)

∑n
i=1 (Xi − Xmean)2

, j = 1, ...m (5)

Seq = (r1, r2, ...rj, ...rm) (6)

where X is the rawkmers, n is the length of rawkmers, Xmean

represents the mean of X, and j is an integer ranging from [0,m].
Here we selectm = 400. After pre-processing rawkmers through
the Acf algorithm, Seq is used as the primary sequence feature
vector of a sequence.

2.1.2. Evolutionary Information
We extract the position-specific score matrix (rawpssm) as
evolutionary features through PSI-BLAST (Altschul et al., 1997).
A non-redundant protein sequence library, swiss-prot, is used
as the sequence alignment database. We run PSI-BLAST with
the commonly used hyperparameters (e-value is 0.001, and the
number of iterations is 3) (Taherzadeh et al., 2017; Le et al., 2019).
The generated rawpssm of a protein sequence is a L × 20 matrix
as follows:











x(1,1) x(1,2) · · · x(1,20)
x(2,1) x(2,2) · · · x(2,20)
...

...
. . .

...
x(L,1) x(L,2) · · · x(L,20)











(7)

where L is the length of a given protein sequence and x(i,j)
represents the position specific score. Due to different protein
sequences having different lengths, we then extract features with
a fixed length from rawpssm as the evolutionary feature through
Algorithm 1. For a given sample, the protein sequence (sequence)
and rawpssm are inputs, and the output PSSM by Algorithm 1 is
used as input to the classification model. PSSM is a feature vector
with 400 dimensions.

Algorithm 1

Require: rawpssm, sequence
Ensure: PSSM
1: tag ← [A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y]
2: Initialize index, PSSM
3: n ← length(tag)
4: l ← length(sequence)
5: for i=0→ n-1 do
6: Initialize num
7: for key=0→ n-1 do
8: index[tag[key]] = 0
9: end for

10: for j=0→ l-1 do
11: index[sequence[j]] += rawpssm[j, i]
12: end for

13: for k=0→ n-1 do
14: num[k]← index[tag[k]]
15: end for

16: PSSM[i]← num
17: end for

18: PSSM← PSSM / l

2.1.3. Physical and Chemical Properties Feature
We obtain physical and chemical information for proteins
through the AAindex database (Kawashima S, 2000), which
covers 566 physicochemical properties. Thirteen of these
physicochemical properties contain missing values. Therefore,
we select the other 553 types of amino acid properties to
transform the protein sequences into digital sequences:

Sub = (s1, s2, ......s553) (8)

where si, (i = 1, 2...553) is of a dimension L (L is sequence length),
and it represents the ith physicochemical property of a protein
sequence. Each protein can be expressed as a matrix with a size
of (553 × L). Given different lengths of protein sequences, we
extract the mean and variance of each sequence and concatenate
them together as the physical and chemical properties feature
vector AA:

AA = (mean1, var1,mean2, var2, ......mean553, var553) (9)

where meani, vari refer to the mean and variance of si,
respectively.
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2.1.4. Secondary Structure Feature
We compute the secondary structure of a protein by SSpro8
(Cheng et al., 2005), which can generate the 8-class secondary
structure sequences, including H (alpha helix), B (residue
in isolated beta-bridge), E (extended strand, participates in
beta ladder), G (3-helix—3/10 helix), I (5-helix—pi helix), T
(hydrogen bonded turn), S (bend), and C (loop or irregular,
coil). We then compute k − mers, (k = 3, 2, 1) of the secondary
structure sequence and obtain the feature vector of the secondary
structure as follows:

SS = (3−mer, 2−mer, 1−mer) (10)

2.2. Selection of Each Sub-Model
In what follows, we select the appropriate machine learning
model to select sub-models for each kind of feature.

2.2.1. Bidirectional Long Short-Term Memory Neural

Networks for Primary Protein Sequence Information
Bidirectional long short-term memory neural networks
(BiLSTMs) (Hochreiter and Schmidhuber, 1997) is selected to
train the feature vector of primary sequence information Seq.
BiLSTM contains two opposite LSTMs. In the BiLSTM layer,
the forward LSTMs generate hidden vectors hf according to the
sequence from left to right for every segment, and the backward
LSTM generates hidden vectors hb according to the sequence
from right to left. The h(f ,t) and h(b,t) represent the output at
each time step t(t = 1, 2, ...n) for forward LSTM and backward
LSTM, respectively. Then, the joint representation [h(f ,t), h(b,t)]
refers to the hidden state of BiLSTM. Finally, the joint vector
h = [h1, h2, ...ht , ...hn] is the output of BiLSTM.

2.2.2. Random Forest for Evolutionary Information
We use random forest (RF) (Breiman, 2001) as our base classifier
for PSSM features. RF contains multiple decision trees, and its
output is determined by the outputs of individual trees. The grid
search method is used to determine the hyperparameters of RF.

2.2.3. Multilayer Perceptron for Physical and

Chemical Properties
The multilayer perceptron (MLP) is applied to train physical
and chemical properties feature vector AA. In the MLP, layers
are fully connected, and parameters can be optimized with
gradient descent. The relationship between two connected layers
is as follows:

hi+1 = σ (
∑

wi × hi + bi) (11)

where hi represents the previous layer, h(i + 1) refers to the next
layer, wi and bi represent the weight and bias between hi and
h(i+ 1), respectively, and σ is a nonlinear activation.

2.2.4. Auto-Encoder and RF for Secondary Protein

Structure Information
The secondary structure feature is pre-processed by a deep auto-
encoder (Vincent et al., 2010; Vladimir et al., 2018) for high-
level feature representation. The auto-encoder is an unsupervised
neural network. The middle layer is the encoded data, which

extracts the high-dimensional representation of raw data. The
architecture of the deep auto-encoder is shown as follows:

m = σ (
∑

wm × x+ bm) (12)

z = σ (
∑

wz ×m+ bz) (13)

where m, z represent the middle layer and output layer of the
auto-encoder, respectively, wm, wz represent the weight of m
and z, respectively, bm and bz represent the bias of m and z,
respectively. The low-dimensional embedding m is the input
of RF.

2.3. Stacked Ensemble
By comparison with other feature fusion methods including
direct combination and multimodal deep auto-encoder (Vincent
et al., 2010; Vladimir et al., 2018), a stacked ensemble is used. The
stacked ensemble strategy can automatically integrate different
results of different models. The structure of the stacked ensemble
approach contains multiple layers, and the output results of the
previous layer will be used as the training data of the next layer.
In this way, the next layer will find a suitable combination of
individual results from the previous layer. Herein, the output of
the first layer is the output prediction label of our four models
(Seq − BiLSTM, PSSM − RF, AA − MLP, and SS − ARF).
The second layer is logistic regression (LR), which is applied to
integrate the output of the first layer.

φ(z) =
1

1+ exp(
∑n

i=0 wi × xi
) (14)

where x represents the output of each sub-model, w is the weight
of LR, and n is the number of input samples. The MEL-MP
framework is shown in Figure 1.

2.4. 10-Fold Cross-Validation Evaluation
We apply 10-fold cross-validation on the benchmark data set.
Note that 90% of samples are used for training and the remaining
10% are used for testing. After the four sub-models are trained,
the output of each sub-model is integrated by stacked ensemble
in terms of LR. Finally, the test set is applied to quantify the
performance of MEL-MP.

The performance of our method is evaluated by Precision,
Recall, and F-score. To deal with the problem of the imbalance
between positive and negative samples, we use the average weight
of the class for every criterion. F-scores combine precision and
recall. Therefore, we mainly focus on that particular metric.
In addition, the (Bradley, 1997) curve and the coordinate axis
(AUC) are provided. For 10-fold cross-validation, all evaluation
criteria values are generated by calculating themean value of each
fold. We ensure that there is no repeat of the training and test sets
for each fold.
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FIGURE 1 | The MEL-MP workflow. The four sub-models correspond to four types of extracted features. Seq−BiLSTM denotes that the bidirectional long short-term

memory neural network (BiLSTM) model is selected for primary sequence features. PSSM− RF means that the random forest (RF) classifier is used for PSSM

evolution information. SS− ARF denotes that the classifier based on an auto-encoder and RF is applied for secondary structure features. AA−MLP means that the

multilayer perceptron (MLP) model is applied for physical and chemical features. Finally, logistic regression (LR) integrates the outputs of all models.

3. RESULTS

3.1. Sub-Model Selection for Each Feature
Type
Various traditional machine learning models and deep learning
models are applied to select the suitable sub-model classifier for
each kind of feature. Through multiple experiments, sub-models
are selected based on 10-fold cross-validation. The results are
shown inTable 1. Three single sub-models,AA−MLP, SS−ARF,
and Seq − BiLSTM, applied deep learning strategies, and we

conducted experiments to select suitable hyperparameters for the
neural network models (Supplementary Tables 1–3).
(1) Primary protein sequence information
When applying Acf on rawkmers and generating the Seq, the
accuracy of rawkmers improves. Then LR, RF, support vector
machine (SVM) (Khan et al., 2012), 1-dimension convolutional
neural network (1DCNN), MLP, and BiLSTM were compared.
The BiLSTM classifier has the highest precision, recall, and F-
score among the classifiers.
(2) Evolution information
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TABLE 1 | The performance of all features tested by diverse of methods and

ensemble leaning.

Feature Method Precision Recall F-score

Sequence k-mer + LR 0.792 0.743 0.746

k-mer + RF 0.779 0.773 0.758

k-mer + SVM 0.767 0.748 0.740

Acf(k-mer) + LR 0.766 0.755 0.755

Acf(k-mer) + RF 0.819 0.813 0.812

Acf(k-mer) + SVM 0.809 0.806 0.803

Acf(k-mer) + BiLSTM 0.851 0.844 0.851

Acf(k-mer) + MLP 0.827 0.835 0.827

Acf(k-mer) + 1DCNN 0.822 0.818 0.814

PSSM LR 0.829 0.818 0.819

RF 0.889 0.881 0.881

SVM 0.866 0.862 0.862

BiLSTM 0.830 0.827 0.824

MLP 0.866 0.862 0.862

2DCNN 0.865 0.848 0.850

Physical LR 0.796 0.792 0.789

chemical RF 0.843 0.839 0.837

property SVM 0.843 0.841 0.840

1DCNN 0.833 0.827 0.824

BiLSTM 0.837 0.825 0.822

MLP 0.861 0.853 0.853

Secondary kmer + LR 0.769 0.752 0.755

Structure kmer + RF 0.797 0.794 0.792

kmer + SVM 0.806 0.801 0.798

Autoencoder(kmer) + LR 0.749 0.738 0.738

Autoencoder(kmer)+ RF 0.839 0.837 0.833

Autoencoder(kmer) + SVM 0.797 0.792 0.787

The bold part represents the best classification model for each feature.

Evolutionary information is represented as 400-dimension
vectors. The performance of three traditional machine learning
classifiers (LR, RF, and SVM) and three deep learning
classifiers (BiLSTM, 2-dimension CNN (2DCNN), and MLP) are
compared. Results show that the RF model exhibits superior
performance. The precision, recall, and F-score associated with
this model were 0.889, 0.881, and 0.881, respectively. Thus, RF is
used as the sub-model for evolutionary information.
(3) Physical and chemical properties
For extracted physical and chemical properties, three traditional
machine learning classifiers (LR, RF, and SVM) and three deep
learning classifiers (1DCNN, BiLSTM, and MLP) are compared.
Results show that MLP is the best classifier among them. The
precision, recall, and F-score of MLP are 0.861, 0.853, and 0.853,
respectively.

(4) The classifier based on the integration of a deep
auto-encoder and RF exhibits better performance (precision
= 0.839, recall = 0.837, and F-score = 0.833) compared
to LR and SVM. In addition, from the results, the auto-
encoder used for extracting high-level secondary structure
features is effective at learning the informative features and thus
improving performance.

TABLE 2 | Comparison with other feature fusion method and MEL-MP.

Method Precision Recall F-score

Direct combination

LR 0.836 0.822 0.823

RF 0.869 0.865 0.865

SVM 0.833 0.830 0.827

Auto-encoder + LR 0.664 0.650 0.651

Auto-encoder + RF 0.787 0.783 0.777

Auto-encoder + SVM 0.767 0.767 0.757

Multimodal deep auto-encoder

Multimodal auto-encoder + LR 0.841 0.832 0.831

Multimodal auto-encoder + RF 0.883 0.881 0.879

Multimodal auto-encoder + SVM 0.860 0.857 0.854

Stacked ensemble

MEL-MP 0.895 0.893 0.892

Each feature fusion method is shown in bold, and the experimental results of MEL-MP are

also shown in bold.

3.2. Stacked Ensemble Improves the
Performance
We analyzed the performance of four sub-models and MEL-MP
by 10-fold cross-validation (Tables 1 and 2). The PSSM-RF sub-
model achieved the best performance. While using the stacked
ensemble strategy, MEL-MP achieved an F-score of 0.892, which
is higher than any sub-model. Figure 2 shows ROC curves and
AUC values for each sub-model and MEL-MP; the latter is
superior.

3.3. Comparison With Other Feature Fusion
Methods
We compared stacked ensemble with other feature fusion
strategies, including direct combination and multimodal
deep auto-encoder. The stacked ensemble exhibited superior
performance based on sequence-based features (Table 2). The
architecture and results of other strategies are as follows.

3.3.1. Direct Combination Method
The direct combination method joins the four feature vector
types into a new vector for classification.We use the concatenated
Seq, PSSM, SS, and AA vector to select models in two ways:

(1) Using the joint vectors directly as input to the three
traditional classifiers, LR, RF, and SVM. Results showed that RF
performed best (F-score= 0.865). Use the joint vectors directly as
input to the three traditional classifiers, LR, RF, and SVM. Results
again showed that RF exhibited the best performance (F-score =
0.865).

(2)Using an auto-encoder to train the joint vector and extract
the middle layer of the encoder as input to LR, RF, and SVM.
The RF performed best (F-score = 0.777), which means that
the auto-encoder cannot effectively extract high-level embedding
information from combining features.

3.3.2. Multimodal Deep Auto-Encoder
Amultimodal deep auto-encoder is designed to train each feature
by a specific auto-encoder, and extract the embedding as the
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FIGURE 2 | Roc curves of four single model and stacking method.

corresponding representations. The input of each auto-encoder
is the feature vectors Seq, PSSM, SS, and AA. The neurons of the
corresponding auto-encoder for each feature are Seq: 256–128–
256, PSSM: 256–128–256, AA: 512–128–512, and SS: 256– 128–
256. After training layer by layer, we concatenate the middle layer
of each auto-encoder as the input training vector of the classifiers.
We tested LR, RF, and SVM on the concatenated middle layer.
The performance of RF was better (F-score = 0.879) than the
other two machine learning classifiers.

3.4. Comparison With Other Existing Tools
for Predicting MPs
MoonGO (Chapple et al., 2015), MPFit (Khan and Daisuke,
2016), and DextMP (Khan et al., 2017) are existing computation
methods for predicting MPs. For the purpose of comprehensive
evaluation, MPFit is compared with MEL-MP. MPFit is a
machine learning based model for predicting MPs. MPFit
compiled six omic-based features from protein association
information and tested the random combination of those six
features. Because a single feature cannot cover all of the
sample, MPFit used the RF to fix the missing data problem
based on randomly combining the different association features.
Among the single omic features tested, the highest F-score
of MPFit is 0.710 obtained by gene expression (GE). When
using the combined features to train the prediction model, F-
scores were within a range from 0.571 to 0.784. For MPFit, the
missing association annotation information is inevitable. With
our proposed de novo prediction model, MEL-MP, the data
coverage can reach 100%, which is more practical. Moreover,
the F-score of MEL-MP is 0.892, which is nearly 10% higher

than the omic data-based prediction of MPFit, with an F-
score of 0.784. MoonGO and DextMP are entirely different
types of methods compared to MEL-MP. While MoonGO is
an unsupervised method based on GO annotation. MoonGO
does not provide reference predictive performance. So it is not
practical and meaningless to compare MEL-MP with DextMP
and MoonGO.

3.5. Case Study
MEL-MP is conducted on 20,354 proteins. Among them, 7,250
are predicted as MPs. All the predicted MPs can be downloaded
from the web server. For further explanation of the mechanisms
of MPs, their distribution on chromosomes, evolution, and
disease association are discussed.

3.5.1. Distribution of Predicted MPs on

Chromosomes
The ratio of predicted MPs is shown for each human
chromosome pair (Figure 3). The ratio of MPs on the Y
chromosome is the highest (48.97%) compared to other
chromosomes. In recent years, an increasing amount of research
in this domain has focused on the Y chromosome. This
chromosome not only determines gender, but is also used to
study many facets of biology, including the evolution, migration,
and scope for expansion of modern human (Quintana-Murci
et al., 2001). We argue that the study of multitasking proteins
is an important new area for Y chromosome research. The
numbers of the Uniprot proteome, predicted MPs, and the
ratio of predicted MPs in each chromosome are shown in
Supplementary Table 4.
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FIGURE 3 | Distribution of potential moonlighting proteins (MPs) in human chromosomes. The x-axis corresponds to chromosome pairs and sex chromosomes (x

and y). The y-axis measures the ratio of predicted MPs on single chromosome pairs.

3.5.2. Biological Evolution of Predicted MPs
We discuss the predicted MPs from the perspective of biological
evolution using phylostratum (Domazet Loso and Tautz, 2010).
Phylostratum is the study of classifying genes according to
their ages, which represent the time since the original ancestor
of the specific gene family appeared. The phylostratum is
correlated with the complexity of organisms. The larger the
phylostratum of a species, the more advanced the species is.
Domazet Loso and Tautz (2010) generated a generate a database
of phylostrata corresponding to the evolutionary relationships
of the phylogenetic based on phylogenomic analyses. Cellular
orgs, which is the lowest phylogenetic, have a phylostratum of
1; in opposite, the primates have a phylostratum of 19. There
are 20,259 genes corresponding to these organisms. Here, we
map these genes to proteins through the Uniprot database.
The predicted MPs are mapped to 5,849 genes, while the
predicted non-MPs (the proteins that were predicted as non-MP
through MEL-MP) are mapped to 10,597 genes. We calculated
the phylostratum of proteins according to the phylostratum of
corresponding genes. The median and mean of the phylostratum
of predicted MPs mapped genes are 1 and 2.802, respectively,
whereas the median and mean of the phylostratum of predicted
non-MPs are 2 and 3.822, respectively.

In addition, the hypergeometric test (HGT) is applied to
analysis of the predicted MPs and non-MPs belonging to each
phylostratum, respectively (shown in Supplementary Material,
section 1.3). The predicted MPs is only significantly enriched
in the phylostratum of 1. The archea, bacteria, etc., are the
phylogenetic of cellular org. Compared with other proteins,
significantly enriched in many of phylostratum except 1.
Therefore, we can infer that the older the species from which
a protein originates, the more functions the protein will have.
A recent study found that genes with an older genetic age

tend to have more functional domains (Choi et al., 2018).
Therefore, our experiments further verify this view. Figure 4
shows the box plot of phylostratum of predicted MPs and
predicted non-MPs.

3.5.3. Diseases Association of Predicted MPs
For the purpose of studying MP disease associations, we
introduce the relationships between predicted MPs and 114
diseases in the OMIM database (Amberger et al., 2015). We
downloaded the protein accession of each disease in the OMIM
database from the Uniprot database. The proteins corresponding
to each disease are presented in Supplementary Table 5. An
HGT is applied to evaluate the relationship between predicted
MPs and diseases:

P − value = 1−

m−1
∑

i = 0

(M
i

)(N−M
n−i

)

(N
n

)
(15)

where N is the total number of Uniprot reviewed proteins, n
is the number of proteins correlated to diseases in the OMIM
database, M is total the number of predicted MPs, and m refers
to the number of predicted MPs correlated to these diseases.
With respect to other proteins, M is the number of those other
proteins and m refers to those other proteins in diseases. There
are 20,354 human proteins reviewed in the Uniprot database,
7,250 proteins are predicted as MPs, and 1,112 of the predicted
MPs are mapped to diseases. The P − value is 0.00033 (P <

0.05), which means these diseases are significantly enriched in
predicted MPs. With respect to other proteins, 1,782 are mapped
to these diseases. The P − value is 0.99962 (P > 0.05). The
significance of MPs related to disease has thus been reflected.
Furthermore, the enrichment analysis process of MPs for all
diseases is presented in Supplementary Material, section 1.4.
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FIGURE 4 | Phylostrata for predicted moonlighting proteins (MPs) and other proteins.

FIGURE 5 | The top 13 diseases enriched by moonlighting proteins (MPs).

Supplementary Table 7 shows the enrichment analysis of MPs
for each disease. The disease with P < 0.05 is significant.
Among 114 of OMIM diseases, MPs are enriched to 21 of
OMIM diseases. The top 13 enriched diseases of MPs are shown
in Figure 5, and these diseases are all correlated less than five
proteins, which are all predicted as MPs. For non-MPs, 1,782
are mapped to OMIM diseases. The P − value are larger than
0.05. Therefore, the predicted MPs are significantly related to
diseases.

3.5.4. Functional Inference of Predicted MPs and

Non-MPs
MPs have two or more different functions. We conduct
functional inference on MPs and non-MPs using Toppcluster
(Kaimal et al., 2010), which is an efficient and convenient
enrichment analysis tool. Here, we perform the functional
inference from two perspectives: biological pathways and protein
families. The cutoff of P − value is set as 0.05. The detailed
experiment results are shown in Supplementary Tables 8, 9. For
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FIGURE 6 | Pathway diagram of predicted moonlighting proteins (MPs) and other proteins.

FIGURE 7 | The cluster of gene family of predicted moonlighting proteins (MPs) and other proteins.

predicted MPs, the number of the enriched pathways are 313,
which is significantly higher than non-MPs with only 16 enriched
pathways. The enrichment of biological pathways intuitively
reflect the functional versatility of predicted MPs, which further
verify the efficiency of our MEL-MP tool. The pathway diagram
of MPs and non-MP is shown in Figure 6. In addition, the
proteins in the same protein usually have similar function
and evolutionary history. For further exploring the predicted

MPs and non-MPs, the enriched protein families are analyzed.
The protein family diagram of predicted MPs and non-MPs is
shown in Figure 7. From Figure 7, the enriched protein families
between predicted MPs and non-MPs are significantly different.

3.6. Web Server
For ease of use, we provide an MEL-MP web server, which can
be accessed at: http://bmbl.sdstate.edu/mel-mp/. The source code
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and our results of four case studies can be downloaded from this
website. The “help” interface provides the guidance for the use
of MEL-MP web server. Users can input the protein name and
protein sequence in fasta format. The unique job id is provided
to users for downloading and recovering the prediction results.

4. DISCUSSION

In this paper, we proposed a de novo prediction tool, MEL-
MP, to identify MPs based on protein sequences. MEL-
MP is the first de novo prediction method for MPs. It
is both concise and effective. Indeed, compared with other
machine learning methods, our sequence-based method is more
comprehensive and universal because it can cover more MPs
without missing data. It is suitable for protein-related machine
learning applications and cognate studies. Further, ensemble
learning has advantages in the sense that the greater the
diversity of features, the better the performance of the classifiers
(Kuncheva and Whitaker, 2003).

Through comparative experiments, the stacked ensemble
architecture performed better than other feature fusion
methods. In addition to researching proteins, the study
of long non-coding RNAs (lncs) is another hot topic
in bioinformatics. Moonlighting long noncoding RNAs
(Mlncs) are particular lncs with two or more distinctive
functions, which have significant potential in terms of
application-oriented research. Currently, computing methods
associated with the identification of Mlncs are based on
network analysis (Lixin and Kwong-Sak, 2018). It would be
prudent and useful for future research to extend the machine
learning method put forward in this paper to the prediction
of Mlncs.

5. CONCLUSIONS

In this study, we proposed a de novo machine learning method
based on sequence for MPs prediction, named MEL-MP. We

use the ensemble learning strategy to integrate the models
corresponding to the four sequence features and achieve good
accuracy. Moreover, our case study includes four popular
perspectives, chromosome research, protein–disease correlation,
biological evolution, and functional description. It also promotes
the research of MPs. In addition, studying MPs will also provide
some motivation for the research of Mlncs.
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