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Abstract

Here we describe Protein Interaction Quantitation (PIQ), a computational method that models the 

magnitude and shape of genome-wide DNase profiles to facilitate the identification of 

transcription factor (TF) binding sites. Through the use of machine learning techniques, PIQ 

identified binding sites for >700 TFs from one DNase-seq experiment with accuracy comparable 

to ChIP-seq for motif-associated TFs (median AUC=0.93 across 303 TFs). We applied PIQ to 

analyze DNase-seq data from mouse embryonic stem cells differentiating into pre-pancreatic and 

intestinal endoderm. We identified (n=120) and experimentally validated eight ‘pioneer’ TF 

families that dynamically open chromatin, enabling other TFs to bind to adjacent DNA. Four 

pioneer TF families only open chromatin in one direction from their motifs. Furthermore, we 

identified a class of ‘settler’ TFs whose genomic binding is principally governed by proximity to 

open chromatin. Our results support a model of hierarchical TF binding in which directional and 

non-directional pioneer activity shapes the chromatin landscape for population by settler TFs.

Manipulation of TFs can reprogram cellular identity1, 2 and re-wire intercellular signaling 

pathways3, 4. Efforts to predict TF binding patterns have been hampered by incomplete 

understanding of the rules governing TF binding site choice. Highly accurate genome-wide 
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methods have been developed to localize the condition-specific binding of TFs to the 

genome, facilitating the elucidation of genome regulatory elements and gene regulatory 

networks5, 6. Chromatin immunoprecipitation of selected protein-DNA complexes followed 

by high-throughput sequencing and mapping of the immunoprecipitated DNA (ChIP-seq)7 

has become a valued method for TF location analysis and can reliably identify where TFs 

bind genome-wide within 10 bp8, 9. Each ChIP-seq experiment profiles a single TF and 

requires either an antibody specific to the TF or the incorporation of a tag into the TF being 

profiled. DNase-seq10 is an assay that takes advantage of the preferential cutting of DNase I 

in open chromatin11 and the steric blockage of DNase I by tightly-bound TFs that protect 

associated genomic DNA sequences12. After deep sequencing of DNase-digested genomic 

DNA from intact nuclei, genome-wide data on chromatin accessibility as well as TF-specific 

DNase-protection profiles revealing the genomic binding locations of a majority of TFs are 

obtained13-16. These TF signature “DNase profiles” reflect the TF's effect on DNA shape 

and local chromatin architecture, extending hundreds of base pairs from a TF binding site, 

and they are centered on “DNase footprints” at the binding motif itself that reflect the 

biophysics of protein-DNA binding15, 17, 18. As DNase-seq experiments are TF-independent 

and do not require antibodies, it is possible to predict the binding of hundreds of different 

TFs to their genomic motifs from a single DNase-seq experiment. Several groups have 

developed algorithms to infer TF binding from DNase-seq data13, 15, 17-19, but these existing 

methods do not model TF-dependent chromatin accessibility well.

Here we aimed to improve upon these methods conceptually in two ways. First, we take into 

account how individual TFs contribute to both the magnitude and spatial pattern of DNase 

hypersensitivity. Not only does this improve our ability to identify binding of all TFs 

regardless of their DNase profiles, it also allows us to probe whether a factor increases local 

hypersensitivity. Second, we carefully integrate prior information, such as the quality of a 

motif match, so that the method behaves robustly even with weak motifs or low coverage 

data.

RESULTS

Protein Interaction Quantitation

PIQ is a method for analyzing genome-wide DNaseI hypersensitivity data. The input of PIQ 

is one or more DNase-seq experiments, the genome sequence of the organism assayed and a 

list of motifs represented as position weight matrices (PWMs) that describe candidate TF 

binding sites. PIQ uses machine learning methods to normalize input DNase-seq data and 

then predicts TF binding by detecting both the shape and magnitude of DNase profiles15 

specific to each TF (Fig. 1). The output of PIQ is the probability of occupancy for each 

candidate binding site in the genome, along with aggregate TF-specific scores (e.g. metrics 

for TF-specific chromatin opening). For the results in this paper, PIQ outputs protein 

binding at the locations of 733 TF motifs.

The PIQ algorithm consists of three steps: candidate site identification, background model 

computation and TF binding estimation (Fig. 1).
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In the first step, PIQ scans for DNase profiles at PWM motifs for 1,331 TFs derived from 

the JASPAR, UniPROBE and TRANSFAC databases9-11 (see Supplementary Information 

for further explanation of motif choice). We choose to scan potentially bound motifs from 

databases and subsequently determine whether each site has a profile8, instead of detecting 

genome-wide footprints de novo and subsequently matching them to underlying motifs4-7, 

because motif-centered searching can take into account each TF's unique signature DNase 

profile information that is learned in subsequent steps of PIQ (Supplementary Fig. 1). This 

motif-specific information about the expected hypersensitivity profile surrounding a bound 

site improves individual binding prediction and allows complex enhancer and promoter 

profile clusters to more easily be deconvolved into a set of bound motifs each imparting its 

signature profile on the chromatin.

In the second step, PIQ smooths the raw reads from each DNase-seq experiment to produce 

a robust foundation for profile detection. PIQ models raw DNase-seq reads as arising from a 

Gaussian process, which is a statistical model that removes noise by adaptively smoothing 

the reads from neighboring bases (see Supplementary Information for details on how reads 

are combined). Optionally, reads from multiple experiments, whether replicates or time-

series data, are integrated and collectively smoothed using the same Gaussian process 

framework, which serves to maximize consistent signal while minimizing stochastic noise.

In the final step, PIQ identifies binding sites of each TF in each experiment by iteratively 

combining direct evidence of binding with indirect analysis of whether the observed DNase-

seq data is consistent with a computer-generated model of DNase hypersensitivity that 

includes that binding event. First, PIQ preliminarily assigns genomic binding events for each 

TF motif on the basis of whether a profile exists at each putative binding site. Then, PIQ 

uses TF-signature profile shapes and magnitudes for each TF to build a model of the 

expected genomic DNase hypersensitivity given the assigned binding events. These TF 

binding estimation and DNase hypersensitivity model building steps are iteratively 

performed using a fast approximate machine learning method called expectation 

propagation20 to arrive at the final binding calls for each motif. PIQ is implemented on the 

Amazon EC2 cloud server, exploiting parallel computation to substantially speed up run 

time (see Supplementary Information for a more detailed description). Post-processing to 

cull motifs without significant binding and merging sets of motifs with >90% overlapping 

binding sites reduces the number of informative TF motifs in the cell types we examine in 

this work to 733.

Benchmarking PIQ against DGF, CENTIPEDE and ChIP-seq data

We applied PIQ, as well as two published DNase-seq–based TF binding detection methods, 

DGF (which uses only DNase-seq data)15 and CENTIPEDE (which, like PIQ, incorporates 

DNase-seq and motif data)14, to published DNase-seq data from K562 cells and validated 

these predictions against 303 matched ChIP-seq experiments15 (Supplementary Table 1 and 

available online, see Supplementary Information). Compared with other methods, PIQ 

exhibited higher accuracy in the prediction of sequence-specific TF binding events, as 

determined by ChIP-seq peaks covering factor motifs, while displaying comparable overall 

coverage of all ChIP-seq peaks (Supplementary Fig. 2 and Supplementary Table 1).
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To summarize these accuracy numbers, we used a standard statistical technique to gauge 

predictive accuracy, the area under the receiver operating characteristic curve (AUC, 

Supplementary Methods), which represents the probability of correctly ranking a ChIP-seq 

bound motif above an unbound motif for each method. Corresponding AUC scores revealed 

that PIQ's predictions were more accurate than those of both other methods at every one of 

the 303 ChIP-seq experiments (PIQ mean AUC of 0.93, CENTIPEDE AUC of 0.87, and 

DGF AUC of 0.65 (Fig. 2a and Supplementary Table 1)). A similar comparison on six 

mouse embryonic stem cell ChIP-seq profiles21 that matched known motifs also finds PIQ 

highly concordant (AUC minimum 0.86, mean 0.92; Fig. 2b). The median fraction of total 

ChIP-seq binding sites recapitulated by PIQ predictions was 66% for the 200/303 sequence-

specific ChIP-seq experiments with more than half of their sites backed by motifs, and 50% 

over all 303 experiments (Supplementary Table 1 and Supplementary Fig. 2). Similarly, 

median positive predicting value (PPV, Supplementary Methods) scores, which reveal the 

precision of PIQ predictions over the top 500 predictions, were 76% for the top quarter of 

ChIP-seq experiments, 32% for the 200 motif-enriched experiments noted above and 39.4% 

over 194 experiments for which any DNase-Seq method achieved >0% PPV, substantially 

outperforming CENTIPEDE and DGF. Thus, PIQ is consistently highly concordant with 

ChIP-seq (median AUC of 0.93 over 303 ChIP-seq comparison datasets) and thus is a highly 

accurate tool to uncover TF-DNA binding.

The high correspondence of PIQ output with ChIP-seq results suggests that PIQ provides a 

valuable tool for predicting protein regulatory interactions for hundreds of TFs genome 

wide. PIQ allows TF binding site prediction with similar accuracy to ChIP-seq for motif-

supported direct protein-DNA binding events, with a median AUC of 0.93. With a small 

number of replicate experiments PIQ is able to predict the binding of over 733 factors 

(Supplementary Information), and can do so in the absence of specific TF antibodies or 

tagged TFs. However, PIQ cannot detect TF motif-free binding events which are observed in 

ChIP-seq for certain TFs. Some motif-free ChIP-seq events may be mediated by cofactor 

proteins with diverse sequence specificities, and PIQ would miss these regulatory 

interactions, although some motif-free events may also be artifacts.

PIQ identifies pioneer and settler transcription factors

We next used PIQ to explore why ChIP-seq experiments have consistently shown that 

transcription factors bind to fewer than 5% of their 5–15 base pair thermodynamic high-

affinity genomic motifs 22, 23. To explain this disparity, we sought to test the hypothesis that 

TFs, rather than interacting with the epigenetic environment uniformly, act hierarchically, 

with some TFs actively manipulating chromatin state and others passively responding to 

local chromatin architecture. The idea that a subset of TFs, defined as pioneer factors, 

occupy previously closed chromatin and, once bound, allow other TFs to bind nearby has 

been proposed previously24-26 but not systematically explored. We decided to test whether 

PIQ, which directly models TF-dependent chromatin accessibility, could discover pioneer 

factors de novo and characterize TFs into classes based upon their behavior with respect to 

chromatin accessibility.
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We applied PIQ to data from a developmental lineage paradigm that involves the stepwise 

differentiation of mouse embryonic stem cells (mESC) to pre-pancreatic and intestinal 

endoderm (PancE and IntE)27. We induced PancE and IntE differentiation by treating mESC 

for six days with an in vitro growth factor and small molecule treatment protocol (Fig. 3a). 

We collected DNase-seq data at two intermediate stages along this stepwise differentiation 

pathway, mesendoderm (day 3) and endoderm (day 5), as well as from lateral plate 

mesoderm, which we derived by treating mesendoderm cells with distinct growth factors. 

This experimental structure yielded a total of six cell states (Fig. 3a) all of which were 

generated with >90% efficiency (Supplementary Fig. 3), providing relatively homogenous 

populations. We found that PIQ identifies extensive changes in TF occupancy through 

differentiation. TFs most strongly expressed in the mESC state such as Pou5f1, Sox2 and 

Esrrb also bind most often in mESC, and likewise for mesendoderm-enriched TFs, Eomes 

and Irf1, and PancE-enriched TFs Sox17, Foxa2 and Hoxa1 (Fig. 3b).

We asked whether PIQ could provide an initial understanding of the rules governing TF 

binding site choice. We focused first on whether some TFs act as “pioneers24,” shaping the 

chromatin landscape and the binding of other TFs. Several reports of TFs possessing pioneer 

activity exist in the literature24, 26, 28-33, but these reports are empirical experimental studies 

that do not use standard criteria to define pioneer TF activity, are often unconfirmed 

functionally and to date no systematic attempts have been taken to categorize pioneer TFs. 

Although pioneer TFs have been defined in various ways, we chose to probe the existence of 

pioneer TFs capable of binding to closed chromatin and opening nearby chromatin for future 

occupancy by other TFs. Utilizing our time series, we designed a pioneer index to measure 

the expected motif-specific local increase in DNase accessibility with respect to baseline at 

sites whose binding changes between successive timepoints according to PIQ for each of our 

733 motifs (Supplementary Information). A higher pioneer index corresponds to higher 

chromatin opening activity from one timepoint to the next in our developmental timecourse.

We found that most motifs show little appreciable pioneer activity, whereas a small number 

of motifs appear to open chromatin substantially upon binding (Fig. 3c and Supplementary 

Table 2). Although there is no clear division between weak pioneers and non-pioneers, a 

stringent cutoff gives an estimate that 120 of the 733 motifs (16%) show pioneer activity, 

and the motifs with strongest pioneer activity can be classified into ten TF families (Klf/Sp, 

NFYA, Nrf, ETS, Creb/ATF, Zfp161, KAISO, Zinc Finger, E2F and CTCF, Supplementary 

Tables 3 and 4). Of note, previously identified pioneer TFs in the GATA28, Klf26 and 

NFYA29 families are found to display high pioneer indices whereas FoxA1 (ref. 28), the 

first identified pioneer, has a low pioneer index.

As binding sites that vary across our observations do not represent a majority of all binding 

events and are influenced by dynamic TF expression profiles in the particular cell types 

analyzed, we devised a second metric, the chromatin opening index, to measure the expected 

static local increase in DNase accessibility attributed to each motif (Supplementary 

Information). The chromatin opening index is highly concordant with the pioneer index 

(r2=0.98, Fig. 3d, Supplementary Fig. 4 and Supplementary Table 2), indicating that 

pioneers can be identified through their static association with open chromatin, thus 

providing an alternative metric for pioneer TFs that does not require temporal DNase-seq 
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data. TF families with high chromatin opening index scores are conserved in K562 cells 

(r2=0.84, Supplementary Fig. 4), indicating that chromatin opening is a TF-intrinsic activity 

consistent across cell type and species.

To determine whether pioneer motifs facilitate binding of other TFs in addition to governing 

chromatin structure, we devised the social index, the mean number of PIQ-identified binding 

sites within 200 bp of PIQ-called binding events for a given TF (Supplementary 

Information) and found that pioneer TFs tend to have more neighbors than non-pioneer TFs 

(Fig. 3e and Supplementary Table 2). In all analyses, sites adjacent to annotated TSS were 

excluded to avoid artifacts associated with the strong nucleosome depletion at 

promoters15, 16, and the results remained consistent after a more stringent removal of 

unannotated promoters detected through GRO-seq, RNA-seq and histone marks 

characteristic of promoters (Supplementary Fig. 4).

We experimentally tested the ability of a variety of predicted pioneer and control motifs to 

open up surrounding chromatin and allow other TFs to bind. To evaluate these criteria in a 

high-throughput, functional assay, we designed 18 versions of a reporter vector driven by a 

strong RXR:RAR motif directly adjacent to a pioneer or non-pioneer motif at a locus >1 kb 

from a minimal promoter and GFP reporter gene (Fig. 3f). We chose the RXR:RAR motif 

for three reasons. First, RXR:RAR binding shows no effect on surrounding chromatin in the 

computational analysis (Supplementary Table 2). Second, nuclear hormone receptors, which 

bind the RXR:RAR motif, respond primarily to surrounding chromatin state rather than 

specific cofactor interactions34 (also see later text). Third, the RXR:RAR motif allows 

strong inducible expression of GFP upon addition of retinoic acid (RA), allowing a 

straightforward quantitative readout of cellular fluorescence intensity. We inserted this 

vector into the genome of mESC by means of Tol2 transposition35 followed by antibiotic 

selection, allowing for random genomic integration in a highly polyclonal fashion (>1,000 

distinct clones per reporter line), thus controlling for site-specific effects. Consistent with 

this idea, biological replicates of several lines produced from distinct rounds of Tol2 

transposition yielded highly reproducible results (Supplementary Fig. 5). We then used flow 

cytometry to measure cellular GFP levels in mESC after 24 hours in the presence or absence 

of RA, interpreting the RA-induced increase in GFP as a correlate of the accessibility of the 

RXR:RAR site (Fig. 3g).

The pioneer reporter assay data support the computational pioneer TF predictions. Eight of 

nine predicted pioneer motifs showed significantly above-control RA-induced GFP as 

compared with only one of eight non-pioneer motifs (Fig. 3g), and pioneer TFs on average 

promoted significantly higher RA-induced GFP than did controls (P<0.01 in t-test). None of 

the 18 tested motifs showed significant GFP induction in the absence of RA as compared to 

the control line (Supplementary Fig. 5), indicating that pioneer and non-pioneer motifs alike 

do not activate significant gene expression on their own. RT-qPCR analyses also confirmed 

that RA-induced transcripts do not span the promoter region and pioneer sequences still 

increase RA-induced GFP when the enhancer is 3 kb from the minimal promoter, 

confirming that the reporter constructs act as distal enhancers (Supplementary Fig. 5). 

Lastly, to control for the relative expression of TFs, we performed the reporter assays in 
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mesendoderm and in the presence of ectopically expressed pioneer and non-pioneer TFs, 

obtaining consistent results (Supplementary Fig. 5).

Asymmetrical opening of chromatin by directional pioneer TFs

Evidence exists that TFs deposit histone marks asymmetrically36. We identified a subset of 

pioneer TF families that open chromatin more significantly on one side of their motif than 

on the other (Supplementary Fig. 6 and Fig. 4a). We call factors that possess this novel 

asymmetrical chromatin opening ability ‘directional pioneers.’ To quantify directional 

pioneer activity, we measured the expected difference in chromatin opening on either side of 

each pioneer motif (Supplementary Table 3), identifying strong directional pioneer activity 

in the Klf/Sp, NFYA, Creb/ATF and Zfp161 pioneer TF families. As we cannot observe 

directional pioneer activity at palindromic motifs because PIQ cannot orient them, we note 

that the directional pioneer TF Creb/ATF has multiple PWMs, one of which is non-

palindromic. Although directional motifs are known to be important at promoters37, our 

analyses exclude TSS-adjacent regions and we do not find appreciable transcript production 

or promoter-characteristic histone marks at distal pioneer sites (Supplementary Fig. 4). 

Thus, the unidirectional opening of chromatin relative to pioneer TF motif appears to 

represent a property of certain TFs that to our knowledge has not been described.

To experimentally assess directional pioneer activity, we performed reporter analysis on 

four motifs displaying strongly directional pioneer activity (Fig. 4b), placing both motif 

orientations relative to the RXR:RAR site. In all four cases, RA-induced GFP was 

significantly stronger in the direction predicted to have higher pioneer activity (Fig. 4b), and 

as predicted, NFYA, Creb and Zfp161 only open chromatin in a single direction from their 

motif. Directional pioneer activity does not occur during transient transfection 

(Supplementary Fig. 5), suggesting that this activity occurs through interaction with the 

local chromatin state.

Settler TFs depend on open chromatin for binding

Next we reasoned that classifying TFs by their interactions with chromatin might reveal 

distinctions in how TFs choose binding sites. As pioneers have been shown to scan 

nucleosomal DNA for their motifs38, we reasoned that they may be more likely than other 

TFs to bind to their motif wherever it occurs. To assess this idea, we devised a metric to 

indicate the likelihood of a TF to bind to an instance of its motif, the correlation of PWM 

score and binding probability (referred to hereafter as motif dependence). Plotting motif 

dependence against the chromatin opening index, we find a statistically significant (P<0.01 

in t-test) but imperfect positive correlation between motif dependence and chromatin 

opening (Fig. 5a and Supplementary Table 4), suggesting that pioneer TFs generally do not 

bind to a high fraction of their genomic motif candidates. Several non-pioneer TFs, 

including REST, also display strong motif dependence (Fig. 5a and Supplementary Table 4). 

Motif dependence is uncorrelated with motif information content, suggesting that it is not an 

artifact of database PWM quality (Supplementary Fig. 7). Thus, although pioneers TFs are 

more likely to bind their motifs than are non-pioneers, they still rely on facets other than 

their motif in a majority of their binding decisions.
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Among non-pioneer TFs, we reasoned that some TFs might be disproportionately dependent 

on the pre-existing chromatin state as established by pioneer TFs. We explored this 

possibility computationally by measuring the correlation between DNase accessibility 

surrounding high-confidence TF motifs and binding probability (Supplementary Table 4). 

Plotting this metric against the chromatin opening index, which controls for TF-intrinsic 

chromatin opening, we found that TFs vary substantially in their dependence on chromatin 

openness in order to bind genomic DNA (Fig. 5b). A subset of TFs were highly likely to 

bind wherever their motif occurs in an open chromatin landscape but do not open chromatin 

themselves.

We coin the term “settler” TFs to define the set of TFs whose binding is predominantly 

dependent on the openness of chromatin at their motifs. Chromatin dependence of TFs is 

graded, but a stringent cutoff gives an estimate that 131 of the 733 motifs (18%) act as 

settler TFs (Supplementary Table 4). The majority of non-pioneer TFs, which we term 

“migrant” TFs, bind only sporadically even when chromatin at their motifs is open and are 

presumably more heavily dependent on specific cofactor interactions (see Supplementary 

Table 4 for factor-specific classifications in the mESC pancreatic lineage). Accurate a priori 

prediction (AUC>0.9) of ChIP-seq genomic binding of “settler” TFs, such as members of 

the Myc/MAX, nuclear hormone receptor (i.e. RXR:RAR), Ap-2 and NF-κB families, can 

be obtained simply by measuring DNase accessibility surrounding their motifs (Figs. 2b, 

5c), so settler TF binding can be accurately determined solely based on chromatin 

accessibility in the absence of ChIP or DNase profile information. Pioneer TF binding can 

also be predicted a priori by local DNase accessibility (Fig. 5c), presumably a result of 

pioneer-induced chromatin opening at binding sites either in the profiled developmental 

stage or at a prior timepoint. Thus, we have identified a class of settler TFs that to our 

knowledge has not been described that obey one simple rule, binding DNA when chromatin 

is open, establishing settler TFs as a class whose binding is directly dependent on the 

chromatin opening ability of pioneer TFs.

Although pioneers and settlers typify chromatin opening and chromatin dependence, 

respectively, we reasoned that the motif-dependence and chromatin-dependence properties 

of migrants might also contribute to their binding decisions. To test this hypothesis, we 

clustered TFs possessing matched ChIP-seq and DNase-seq experiments in K562 cells39 by 

their combination of motif-dependence and chromatin-dependence. We found that TFs 

broadly fall into two categories: those in which ChIP-seq binding probability increases only 

with chromatin openness, and those in which binding probability is combinatorially linked 

to motif score and chromatin openness (Fig. 5d and Supplementary Fig. 7). Modifying PIQ 

to incorporate these TF-intrinsic binding dependencies into its binding calls improves 

predictive accuracy for a majority of TFs with matched ChIP-seq data (Fig. 5e), indicating 

that TF-intrinsic chromatin interaction can be exploited to improve binding prediction. 

Although we have not included data on histone modification or DNA methylation status in 

PIQ, we find that DNase hypersensitive regions and PIQ-identified TF binding sites have 

low levels of DNA methylation in mESC (Supplementary Fig. 7). This suggests that future 

addition of data types may further improve binding prediction.
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Hierarchical binding of pioneer and settler TFs

Our hierarchical binding model predicts that loss of pioneer TF binding should result in 

closing of chromatin and loss of settler TF binding, at times directionally. Sites at which 

pioneer TF binding is lost during mESC differentiation do in fact show dramatic loss of 

DNase hypersensitivity and of adjacent TF binding (Fig. 6a, b). To address this idea 

mechanistically, we constructed mESC with Doxycycline-inducible dominant negative (DN) 

alleles for two pioneer TFs, NFYA and Nrf1, that consist solely of DNA-binding domains 

(Fig. 6c). These DN proteins should bind to their cognate motifs and compete with their 

native counterparts, blocking pioneer-induced increase in chromatin accessibility. Creation 

of Doxycycline-inducible lines avoids the lethality associated with knockouts of these 

TFs40, 41. DNase-qPCR analysis at a set of strongly bound sites revealed that both DN 

NFYA and DN Nrf1 significantly reduced hypersensitivity at their respective binding sites 

(Fig. 6d). Furthermore, impairing NFYA and Nrf1 binding also impaired adjacent binding of 

the settler TF c-Myc at several genomic loci (Fig. 6e). Consistent with our prediction of 

NFYA's directional pioneer activity (Fig. 4), impairing NFYA binding diminished c-Myc 

binding when the c-Myc site was downstream of the NFYA site but not upstream (Fig. 6e). 

Thus, pioneer TF binding is required to maintain open chromatin and to allow nearby settler 

TF binding, confirming that pioneer TFs sit atop a TF binding hierarchy.

DISCUSSION

We conclude that PIQ offers a valuable window into TF binding and behavior and has 

facilitated the elucidation of pioneer TFs that represent a mechanistically diverse set of TFs 

that play a disproportionately large role in organizing chromatin structure. In a chromatin-

based view of TF binding, pioneer TFs shape the chromatin landscape, allowing settler TFs 

and specific combinations of migrant TFs to populate open chromatin (Fig. 6f). We have 

shown both computationally and experimentally that through mESC differentiation, gain of 

pioneer TF binding opens chromatin and that loss of pioneer TF binding closes chromatin, 

and so we posit that pioneer TFs play an important role in controlling the TF binding 

dynamics that control cell fate acquisition.

PIQ was designed to model factors that directly modulate chromatin accessibility and is thus 

uniquely capable of identifying pioneer factors from DNase-seq experiments. PIQ fits a 

background read model over the entire genome, which allows us to precisely quantify how 

much a transcription factor opens chromatin relative to both other factors and genomic 

background. Prior methods such as CENTIPEDE model TF binding on a factor-to-factor 

basis and therefore would normalize out cross-factor effects. In addition, the chromatin 

opening index is a natural extension of a TF's profile in PIQ, whereas in DGF or 

CENTIPEDE profiles are by definition normalized to a mean of zero and do not indicate 

chromatin opening. We have found in practice that this more detailed model of chromatin 

accessibility has made it possible to detect TFs with indistinct footprints but large chromatin 

effects. In some of our identified pioneers such as Gata6, PIQ detects distinct binding sites 

whereas CENTIPEDE fails to do so (Supplementary Fig. 8).

Recent work42, 43 has suggested that DNase sequence bias may add noise to narrow DNase-

seq footprints. In PIQ, TF binding detection is performed on a TF-specific profile, extending 
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400 bp from each motif and thus not limited to the 5-10 bp footprint itself (Supplementary 

Fig. 9). PIQ performs a profile-level significance test for whether or not an estimated TF 

profile is significant outside its motif match region, and all identified pioneer TFs are highly 

significant.

Our identification of pioneer and settler TFs is limited by the breadth of the motifs used in 

PIQ, by the degrees of expression and dynamic binding of TFs in the cell types analyzed in 

this dataset, and by the focus on single motifs which may exclude emergent chromatin 

opening of TF combinations. Thus the list of pioneer and settler TF families should expand 

with the collection of more DNase-seq data and TF motifs15. We further note that TFs that 

do not open chromatin but still facilitate the binding of other factors and those that induce 

chromatin repression are not captured by our DNase-based assay. Notably, the most well 

studied pioneer TF, Foxa1, has a relatively low score in all indices (Fig. 3c–e). This may 

result from the dual role of Foxa1 as a chromatin opening and compacting agent44, 45, its 

dependence on prior binding of Foxd346 whose strong expression in mESC could obscure its 

pioneer activity in this lineage, or its minimal role in coordinating chromatin structure as 

determined by knockout studies in mouse liver47. In any case, this result exemplifies that the 

computational approach taken here focuses on pioneer TFs that increase DNase 

hypersensitivity when they bind and thus does not exhaustively identify pioneer TFs.

Comparing mechanisms by which pioneer TFs function will be a fertile area for future 

research. Codifying TF properties is a step on the road to a priori TF binding prediction and 

gene network modeling. And as recent work has implicated pioneer TFs in cellular 

reprogramming26, categorizing pioneer and settler TFs could lead to principled manipulation 

of cell fate.

Online methods

PIQ algorithm

Mathematical rationale, principles and implementation of PIQ are described in the 

Supplementary Information.

Mouse embryonic stem cell line generation, culture and differentiation

Mouse embryonic stem cell culture and endoderm differentiation was modified slightly from 

previously published protocols27. Undifferentiated 129P2/OlaHsd mouse ES cells were 

maintained on gelatin-coated plates with mouse embryonic fibroblast (MEF) feeders in mES 

media composed of Knockout DMEM (Life Technologies) supplemented with 15% defined 

fetal bovine serum (FBS) (HyClone), 0.1mM nonessential amino acids (Life Technologies), 

Glutamax (Life Technologies), 0.55mM 2-mercaptoethanol (Sigma), and 1X ESGRO LIF 

(Millipore).

Prior to differentiation, ES cells were passaged onto gelatin-coated plates for 25 minutes to 

deplete MEFs. MEF-depleted ES cells were then seeded at 1 *10^4 cells/cm2 onto gelatin-

coated dishes in mES media. After 12-24 hours, media was changed to Advanced DMEM 

(Life Technologies) supplemented with N-2 (Life Technologies), B27 Supplement without 

vitamin A (Life Technologies), and Glutamax. After 44-48 hours, media was changed to 

Sherwood et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Advanced DMEM with 2% FBS, Glutamax, 5 nM GSK-3 inhibitor XV and 50 ng/mL E. 

coli-derived Activin A (Peprotech) for 24 hours to produce mesendoderm. For endoderm 

differentiation, cells were then fed with Advanced DMEM with 2% FBS, Glutamax, 50 

ng/mL Activin A and 1 μM Dorsomorphin (Sigma) for 48 hours. For intestinal endoderm 

differentiation, cells at the endoderm stage were fed for 24 hours with Advanced DMEM 

with B-27 supplement without vitamin A, Glutamax, and 100 nM GSK-3 inhibitor XV. For 

pre-pancreatic endoderm differentiation, cells at the endoderm stage were fed for 24 hours 

with Advanced DMEM with B-27 supplement without vitamin A, Glutamax, 500 nM 

retinoic acid (Calbiochem), 50 nM A-83-01 (Calbiochem), and 8 ng/mL Bmp4 (Stemgent). 

For mesodermal differentiation, cells at the mesendoderm stage were treated for 48 hours 

with 10 ng/mL Bmp4.

ES cells with doxycycline-inducible alleles for Sox2, Foxa1, Hnf1β, Cdx2, Gata6, Zfp161, 

and Klf7 in the HPRT locus were created as described 48 and maintained and differentiated 

as above. For dominant negative lines, DNA-binding domains of NFYA and Nrf1 were used 

to create doxycycline-inducible HPRT lines as above.

Dominant negative lines were grown for >7 days in mES media supplemented with 5 nM 

GSK-3 inhibitor XV and 500 nM UO126 to enhance pluripotency49 and 2 μg/mL 

Doxycycline. Cells were harvested at this stage for DNase-qPCR. For ChIP-qPCR, cells 

were treated for 6 hours with mES media with 1 μM retinoic acid.

Tol2 GFP reporter transposon construct generation, transfectio, and flow cytometry

PCR-amplified constructs containing pioneer and non-pioneer motif regions and RXR:RAR 

binding sites were generated from primers listed below and cloned into PacI and AscI sites 

of p2TAL200R175-minHsp-GFP-BlR (Sherwood et al, manuscript under review). To 

generate the reporter construct with 2 kb spacer DNA added between the enhancer and 

promoter, 2 kb of genomic DNA from a consistently DNase-insensitive genomic region 

(primers included in oligonucleotide section) was cloned into the PacI site of 

p2TAL200R175-minHsp-GFP-BlR.

Tol2-containing reporter plasmids and transposase-containing pCAGGS-mT2TP (Sherwood 

et al, manuscript under review) were transfected into the mES lines noted in the text using 

Xfect for mES cells transfection reagent (Clontech). Blasticidin selection was performed for 

>7 days in mES media with 5 nM GSK-3 inhibitor XV and 500 nM UO126 added to 

enhance pluripotency49.

For flow cytometric GFP detection, cells were trypsinized and seeded at 3*104 cells/cm2 

onto 96-well plates. Cells were treated with mES media alone or supplemented with 1 μM 

retinoic acid and/or 2 μg/mL Doxycycline or differentiated into mesendoderm prior to 

treatment. After 24 hours, cells were trypsinized, quenched, and fluorescence of 5-20*103 

cells was measured using a BD Accuri C6 flow cytometer and accompanying software (BD 

Biosciences).
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Antibodies and immunofluorescence

For cell immunofluorescence analysis, tissue culture plates were fixed for 20 minutes in 4% 

paraformaldehyde (Electron Microscopy Sciences) and washed in PBS with 0.1% Triton 

X-100 (Sigma). Tissues were blocked by 20 minute incubation at 4 degrees in PBS with 

20% donkey serum (Jackson Immunoresearch) and 0.1% Triton X-100. Primary and 

secondary antibody staining were performed overnight at 4 degrees in PBS with 5% donkey 

serum and 0.1% Triton X-100, and after primary and secondary antibody staining, washing 

was performed with PBS with 0.1% Triton X-100. After staining, plates were washed and 

incubated with 1 μg/mL Hoechst 33342 (Life Technologies). Imaging was performed using 

a DMI 6000b inverted fluorescence microscope (Leica), and image analysis with the Leica 

AF6000 software package.

The following primary antibodies were used: goat anti-Foxa2 M-20, rabbit anti-RAR 

M-454, rabbit anti-cMyc N-262 (Santa Cruz Biotechnology), rabbit anti-Foxa2 (Millipore); 

goat anti-Sox17, mouse anti-Sox2, (R+D Systems); mouse anti-Hnf1β (BD Biosciences). 

AlexaFluor488 and AlexaFluor594 conjugates (Jackson Immunoresearch) were used for 

secondary detection.

ChIP-qPCR

ChIP was performed according to the “Mammalian ChIP-on-chip” protocol (Agilent). 1 × 

107 - 5 × 107 cells were used for each experiment. qPCR primers are listed in the table of 

oligonucleotides.

Oligonucleotides

Oligonucleotides used in this work are presented in Supplementary Table 5.

DNase-seq

DNase-seq was performed using adaptations of previous protocols50. A detailed protocol 

can be found in the Supplementary Information.

DNase-qPCR

DNase-qPCR samples were prepared from the doxycyline-induced dominant-negative cell 

lines and control cell lines in the absence of doxycyline as per the DNase-seq protocol 

above. Experimental primers were designed for pioneer transcription factor binding sites and 

used in conjunction with the positive and negative hypersensitivity control primers described 

above in quantitative PCR analyses. Hypersensitivity at experimental primers sites was 

calculated for the dominant negative lines and control lines as follows:

Significance was calculated using Student's t-test.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Accurate detection of dynamic TF binding using DNase-seq and PIQ. Schematic outlining 

the PIQ algorithm. See text and Supplementary Information for details.
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Figure 2. 
Benchmarking PIQ. (a) Comparison of AUC values (the probability of correctly ranking a 

bound TF site above an unbound one) comparing PIQ versus ChIP-seq (X-axis) and DGF/

CENTIPEDE versus ChIP-seq (Y-axis) for 303 matched ChIP-seq experiments in K562 

cells. The Y-axis value plots the higher AUC value between DGF and CENTIPEDE for each 

experiment. (b) ROC curves (which show the tradeoff between true positives to false 

positives as the cutoff for defining what is bound is varied) comparing mESC-stage PIQ 

binding calls for the TFs Ctcf, c-Myc and Esrrb against matched ChIP-seq binding calls. To 

calculate ROC curves, we ranked all above-threshold genomic motif instances for each TF 

according to their PWM motif strength (purple), total adjacent DNase hypersensitivity in a 

400 bp window (red) or the per-site binding score given by PIQ (black). Plots compare true 

positives (Y-axis) to false positives (X-axis) at progressively lower ranked sites. Inset plot 

displays average, minimum and maximum AUC values for six mESC-stage PIQ versus 

ChIP-seq comparisons.
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Figure 3. 
Systematic identification of pioneer TFs. (a) Flow chart outlining mESC-derived 

populations used for dynamic DNase-seq analysis. (b) Differences in PIQ-detected binding 

sites for eight selected TFs with strong microarray expression values in mESC (green), 

mesendoderm (blue) and PancE (red). For each TF at each stage, PIQ calculates a score 

representing the overall number and strength of binding sites, plotted in natural log PIQ 

binding strength units normalized to mesendoderm values. (c) Pioneer index log odds scores 

for all PIQ motifs. (d) Chromatin opening index log odds scores for all PIQ motifs. (e) 

Social index scores for all PIQ motifs. Scores of selected pioneer and non-pioneer TFs in A-

C are noted. (f) Schematic of modular Tol2 transposon-based pioneer reporter system to test 

pioneer and non-pioneer motifs for chromatin opening ability. Chromatin openness is read 

out by the level of RA-induced RAR:RXR DNA binding and consequent GFP 

transcriptional activation, as measured by flow cytometric fluorescence. (g) Average 

increase in flow cytometric fluorescence after RA addition for 18 pioneer reporter lines 

grouped as predicted pioneer (red) and non-pioneer (blue) TFs, normalized to RA-induced 

GFP of the control reporter line. Error bars indicate SEM, and dotted line represents 99% 

prediction interval based on control RA-induced GFP, indicating lines with RA-induced 

GFP out of the predicted control range. Predicted pioneers as a group have significantly 

higher average RA-induced GFP than predicted non-pioneers. n=4, P<0.01 in t-test.
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Figure 4. 
Asymmetrical chromatin opening by directional pioneers. (a) Per-base chromatin opening 

index log odds scores, which represent expected local increase in hypersensitivity induced 

by TF binding at all above-threshold genomic motifs for Creb1, Klf7, NFYA, and Zfp161. 

X-axis for each plot is +/−200 bp from motif center. (b) Experimental validation of 

directional pioneers. Average increase in flow cytometric fluorescence after RA addition for 

pioneer reporter lines for the stated motifs. For each TF noted, the left plot (labeled as RC 

for reverse complement) shows reporter results when the motif orientation is such that the 

RAR site is on the left of the motif with respect to the plot in a, and the right plot (labeled as 

Fw for forward) shows results when the RAR site is on the right of the motif with respect to 

a. All plots are normalized to control line RA-induced GFP as in Figure 3f, error bars 

indicate SEM, and a 99% prediction interval is shown as in Figure 3f.
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Figure 5. 
Binding of settler TFs is governed by underlying chromatin state. (a) Comparing motif 

dependence (X-axis) versus chromatin opening index (Y-axis) for all 733 motifs in mouse 

lineage. Positions of select TFs are denoted and a linear trendline is displayed which shows 

imperfect but statistically significant positive correlation. (b) Comparing chromatin 

dependence (X-axis) versus chromatin opening index (Y-axis) for all 733 motifs in mouse 

lineage. Classes of pioneer TFs (blue), settler TFs (red), and migrant TFs (green) as defined 

by their chromatin opening and dependence properties are shaded, and select members of 

each class are listed. (c) Comparing K562 DNase-seq chromatin openness score (X-axis) vs. 

binned K562 ChIP-seq binding probability at strong motifs (Y-axis) for Elf1 (ETS family, 

pioneer), c-Myc (settler), and the average of all ChIP-seq experiments. (d) Contour plots 

showing log odds binding probability (contour) for bins of strong motifs at varying 

chromatin openness scores (X-axis) and PWM scores (Y-axis) for the K562 ChIP-seq TF 

clusters displaying chromatin-dependence only (left) or combinatorial motif-dependence and 

chromatin-dependence (right). For chromatin-dependent TFs, binding probability is 

predominantly dependent on chromatin openness score, whereas binding probability scores 

of combinatorially-dependent TFs increase as both chromatin openness and PWM score are 

increased. (e) Change in number of true positive PIQ calls per TF motif at a 10% false 

discovery rate as a result of incorporating motif-dependence and chromatin-dependence as 

prior information for all K562 ChIP-seq motif comparisons. Prior information improves PIQ 

accuracy for most TFs.
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Figure 6. 
Pioneer TFs control chromatin state and settler TF binding. (a–b) Per-base average DNase 

hypersensitivity (HS) (a) and number of PIQ binding sites (b) within 4 kb of Klf7 and 

NFYA motifs for sites conserved (dotted lines) or lost (solid lines) between mesendoderm 

and endoderm stages. Both DNase HS and adjacent TF binding are diminished when Klf7 

and NFYA binding are lost between successive stages. (c) Schematic of pioneer dominant 

negative (DN) competition experiments in which Doxycycline (Dox) induces DN pioneer 

TF expression (DBD), which should block pioneer-induced chromatin opening and prevent 

settler binding to opened chromatin. (d) Mean DNase hypersensitivity at several strong 

binding sites for NFYA (left) and Nrf1 (right) in wildtype (wt) (green) or DN NFYA/DN 

Nrf1 (red) mES, normalized to background DNase activity at non-hypersensitive sites. 

Asterisk indicates statistically significant difference between average DNase HS between wt 

and DN (n=4, P<0.01) using t-test. (e) Mean ChIP enrichment for four c-Myc sites 

downstream (in direction of predicted pioneer activity) of NFYA (left column), upstream (in 

direction of predicted non-pioneer activity) of NFYA (middle column) or adjacent to Nrf1 

(right column) in wt (blue) or DN NFYA/DN Nrf1 (red) mES, normalized to positive and 

negative control genomic c-Myc sites. N=3, P<0.01 using t-test. (f) Model of TF binding 

hierarchy. Pioneers open chromatin, some directionally, and open chromatin is populated by 

settler TFs and by certain combinations of migrant TFs.
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