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Abstract: In multiple sclerosis (MS), gait impairment is one of the most prominent symptoms. For a
sensitive assessment of pathological gait patterns, a comprehensive analysis and processing of several
gait analysis systems is necessary. The objective of this work was to determine the best diagnostic gait
system (DIERS pedogait, GAITRite system, and Mobility Lab) using six machine learning algorithms
for the differentiation between people with multiple sclerosis (pwMS) and healthy controls, between
pwMS with and without fatigue and between pwMS with mild and moderate impairment. The data
of the three gait systems were assessed on 54 pwMS and 38 healthy controls. Gaussian Naive Bayes,
Decision Tree, k-Nearest Neighbor, and Support Vector Machines (SVM) with linear, radial basis
function (rbf) and polynomial kernel were applied for the detection of subtle walking changes. The
best performance for a healthy-sick classification was achieved on the DIERS data with a SVM rbf
kernel (κ = 0.49 ± 0.11). For differentiating between pwMS with mild and moderate disability, the
GAITRite data with the SVM linear kernel (κ = 0.61 ± 0.06) showed the best performance. This study
demonstrates that machine learning methods are suitable for identifying pathologic gait patterns in
early MS.

Keywords: multiple sclerosis; gait analysis; mobility; machine learning; feature selection

1. Introduction

Multiple sclerosis (MS) is an inflammation-related chronic disease of the central ner-
vous system that causes damage to the myelin layer of nerve fibers [1]. The manifestation of
a variety of neurological symptoms may occur depending on the location of inflammatory
lesions [2]. Within the classic course of the MS disease, the clinical appearance is mainly
characterized by the progressive deterioration of the gait pattern [3,4]. With a prevalence
of 41%, gait impairments are among the most common symptoms of the demyelinating
disease [5]. Walking is a complex task involving the cooperation of several bodily func-
tional systems, including pyramidal motor movement control and cerebellar coordination
and balance [6]. Previous studies have provided evidence that gait abnormalities may well
be present before they become clinically apparent [7–9].

Faced with the progression of MS disease and the increasing disability, the timing
of treatment initiation and optimization upon treatment failure has an important impact
on the course of the disease. Early initiation of therapy is essential for a more favorable
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disease course [10,11]. So continuous phenotyping of people with MS (pwMS) is crucial
to detect early signs of progression and non-response to treatment [12–14]. Our concept
of the implementation of an individualized, innovative management of MS is integrated
in the development of digital twins [15]. Our vision is to generate and implement digital
twins in the management of MS in order to improve diagnosis, treatment and management
strategies as well as patient participation and compliance.

As part of such a digital twin for MS, we need to address the complexity of gait
changes in pwMS and consider new methodological approaches in addition to previously
used measurement tools to select the most important gait outcome parameters in the early
stages of the disease for better disease monitoring. The early detection of gait changes in
mild or moderate MS is helpful for the clinician to choose the best possible therapy and
further therapeutic measures.

The challenge is to detect these deviations in individual cases and to differentiate
them from normal variability in the general population. In practice, experts encounter
several difficulties with standard clinical tests such as the 25-foot walk (T25FW) and the
Expanded Disability Status Scale (EDSS) [7,16,17]. For one, there is no clear cut-off value
to classify pathological gait since all measured parameters vary for each individual. For
example, they strongly depend on the patient’s height, age, gender, and fitness level [18–20].
In addition, many of the measures are insensitive to subtle changes in gait pattern [21].
Consequently, early gait deterioration cannot be quantified and remains unnoticed until
visible impairments occur. For continuous monitoring of the gait function and identification
of early gait abnormalities, a variety of diagnostic tests and specific digital systems for gait
analysis are necessary [22]. Digital deep phenotyping of gait can be achieved by motion
capture systems based on optoelectronic stereophotogrammetry, accelerometers or force
sensors which were found to be more sensitive than the T25FW for differentiating between
patients and healthy controls [23–26].

Gait systems in the diagnostic process measure a wide range of outcome parameters.
The identification of relevant parameters remains a challenge. In practice, only a limited
selection of parameters and tests can be integrated into daily clinical routine [27]. Com-
plementary diagnostic information may arise from wider patterns in the discarded data.
Machine learning methods are suitable to detect patterns in a large amount of data. In recent
years, a number of studies successfully advanced the diagnostic capability in a wide range
of medical disciplines [24,28–32]. Jiang et al. reported a variety of medical applications
where diagnostics are improved by Support Vector Machines (SVM). Such comparatively
simple representatives of machine learning algorithms are performing quite well when
extracting the most relevant information from complex high dimensional data [29]. Deep
Learning algorithms provide a more sophisticated approach to classification problems
by mimicking neuronal networks [29,31]. They perform best when trained on big data
collection with thousands of samples [31,32]. Related to detailed gait analysis, Saxe et al.
reviewed the current literature with appropriate metrics, devices, and algorithms [24].
Machine learning methods, namely k-Nearest Neighbors, SVM, and Neural Networks,
were suitable for identifying, collecting, and rating pathological gait patterns. The eval-
uation of a pathological gait requires not only precise data acquisition, but also precise
signal processing and feature selection [24]. Piryonesi et al. demonstrated that machine
processing can predict falls and injuries in pwMS by utilizing Decision Trees and Gradient
Boosted Trees [30].

This study was designed to advance machine learning in MS diagnosis and treatment
through utilizing recent developments in data acquisition and data processing. Three diag-
nostic gait systems were compared in their capability to provide sufficient gait parameters
to implement the most promising machine learning algorithms for the classification of
MS in its early stages. Thereby, the machine learning approach was confronted with three
tasks: first, the detection of MS, second, the detection of fatigue in pwMS and third, the
differentiation of MS disability levels as measured with the EDSS. Suitable gait parameters
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were explored and compared to related studies for the differentiation between pwMS and
healthy controls.

2. Materials and Methods
2.1. Study Design

Gait analyses were performed in a non-interventional monocentric cohort study using
three different sensor-based gait systems. Each subject performed all measurements on the
same day. Overall, 92 Subjects (54 pwMS and 38 healthy controls) were recruited by the
MS Center Dresden (MSC) between October 2019 and February 2020. In this study, we only
included patients with clinically diagnosed MS and healthy control subjects who did not
require a walking aid. PwMS with an EDSS score of 1 to 4 were recruited by a physician’s
neurological status assessment at the MSC of the University Hospital Dresden, Germany.
Therefore, the patients as well as subjects should not be older than 65 years and they had to
provide written informed consent for the study. Only pwMS who had no relapse symptoms
in the course of the disease within the last four weeks prior to the assessment were included.
Patients were excluded from the study if they were taking medications that influenced
walking ability. These included agents with fampridine, cannabinoids, and baclofen.
Furthermore, patients with an additional significant neurological or neurodegenerative
disease and pwMS with limiting orthopedic impairments were not included. For the
second analysis, the MS cohort was divided into two subgroups based on the presence of
fatigue. The EDSS served as the criterion for this subdivision of the 54 pwMS of overall
physical and cognitive fatigue. This subdivision was made to determine the feasibility
of using machine learning algorithms to differentiate between pwMS with and without
fatigue. The fatigue cohort consisted of 27 patients (50%), while the others showed no signs
of fatigue. For the third analysis, all pwMS were divided into two groups according to
their EDSS score. The definition of different disability levels were based on EDSS with mild
(EDSS ≤ 2.5) and moderate disability (3.0 ≤ EDSS ≤ 4.0). The mild EDSS cohort consisted
of 35 patients (65%) and moderate EDSS cohort consisted of 19 patients (35%).

Subjects were tested with GAITRite (CIR-Systems Inc., Franklin, NJ, USA) accord-
ing to the Dresden Protocol for Multidimensional Gait Assessment (DMWA) [33]. The
GAITRite was investigated in numerous studies and has demonstrated high reliability and
validity [34–36]. The MSC’s walkway has a resolution of 0.6 sensors/cm2 and a sampling
rate of 120 Hz [37]. According to the DMWA protocol, subjects had to walk twice over the
8-metre walkway at their own chosen walking speed. Next, a 2-min walk test (2MWT) was
performed using the validated Mobility Lab System (APDM Inc., Portland, OR, USA) of
balance and spatiotemporal gait parameters [38]. Six body worn OPAL sensors character-
ize the system. By processing data from the integrated accelerometers, gyroscopes, and
magnetometers, the Mobility Lab provides reliable and valid gait parameters [39,40]. The
sampling rate is 128 Hz [41]. For valid gait and balance parameters, the motion sensors
were attached to specific parts of the body. As with other motion worn sensors, the sensor
for measuring the upper sway was placed in front of the sternum 2 cm below the fossa
jugularis [42]. To measure the balance of the lower torso, another sensor was placed on the
lumbar spine at L5 [42–44]. Two further sensors were attached to the left and right wrist,
4 cm from the back of the hand [45]. The last two sensors for spatiotemporal gait param-
eters were placed on the forefoot [46,47]. During the 2MWT, subjects walked back and
forth along a 35-m straight corridor in the MSC at a self-selected velocity. Gait endurance
testing is used as an important marker in various medical fields. Originally, the Cooper
12-min walk test was developed for physical fitness and over time, shorter versions of this
endurance walk test, such as the 6- and 2-min walking test have been developed [48,49]. In
medicine, the 6-MWT is considered the gold standard for endurance testing [50]. However,
some patients are unable to walk for more than two minutes. Therefore, the 6MWT is often
too strenuous and time-consuming for cardiac patients and also for pwMS, so the 2MWT
is a practical alternative in this case [49,51,52]. This is a popular and well-established
walking test to obtain a detailed impression of walking ability, and there are several papers



Brain Sci. 2021, 11, 1049 4 of 21

demonstrating good comparability of these two endurance walking tests [52–54]. Due
to the high effort of 6MWT for pwMS and also limited time, space and staff resources in
clinical practice, the 2MWT was favored for gait endurance testing as part of the DMWA
protocol. Finally, the subjects were measured at the Institute of Biomedical Engineering
at the TU Dresden using the DIERS pedogait (DIERS International GmbH, Schlangenbad,
Germany). The measurement systems and methods were validated in a number of pa-
pers [55–57]. The pedogait system provides a functional representation of plantar pressure
distribution through capacitive pressure measurement [55]. The sensor plate is integrated
in the treadmill. The plate has a resolution of 1.4 sensors/cm2 and a sampling rate of
120 Hz [58]. Subjects were instructed to walk loosely on the treadmill facing forward. After
a two-minute run-in, the measurement was performed. The measurement time lasted 6 s.
Table 1 shows the gait parameters recorded by all three gait systems.

Table 1. Recorded gait parameters of three diagnostic gait analysis systems; the unit of each gait parameters is shown
in parentheses. The parameters have been recorded and merged for the left and right sides (L/R); The parameters are
presented as mean [mean] or standard deviation [SD]; ( )—dimensionless values; COP = center of pressure; GCT = gait cycle
time; HH = heel to heel.

DIERS GAITRite Mobility Lab

Bipedale Phase (%GCT) [mean] Ambulation Time (s) [mean] Duration (s)

Cadence (steps/min) [mean] Cadence (steps/min) [mean] Lower Limb—Cadence L/R (steps/min)
[mean]/[SD]

COP-Deflection lateral L/R (cm) [mean] Cycle Time Differential (s) Lower Limb—Circumduction L/R (cm)
[mean]/[SD]

Distance (cm) [mean] Cycle Time L/R (s) [mean] Lower Limb—Double Support L/R
(%GCT) [mean]/[SD]

Foot Rotation L/R (degrees) [mean] Distance (cm) [mean] Lower Limb—Elevation at Midswing
L/R (cm) [mean]/[SD]

Forefoot L/R (% Stance Phase) [mean] Double Supp. Time L/R (s)/(%GCT)
[mean]/[SD]

Lower Limb—Foot Strike Angle L/R
(degrees) [mean]/[SD]

Loading Response L/R (%GCT) [mean] Double Support Load Time L/R (s)/
(%GCT) [mean]

Lower Limb—Gait Cycle Duration L/R
(s) [mean]/[SD]

Midfoot L/R (% Stance Phase) [mean] Double Support Unload Time L/R
(s)/(%GCT) [mean]

Lower Limb—Gait Speed L/R (m/s)
[mean]/[SD]

Pre-Swing Phase L/R (%GCT) [mean] Functional Amb. Profile ( ) Lower Limb—Lateral Step Variability
L/R (cm)

Rearfoot L/R (% Stance Phase) [mean] Heel Off On Perc L/R (s) [mean] Lower Limb—N (#)

Single Support L/R (%GCT) [mean] Heel Off On Time L/R (s) [mean]/[SD] Lower Limb—Single Limb Support L/R
(%GCT) [mean]/[SD]

Stance Phase L/R (%GCT) [mean] HH-Base Support L/R (cm) [mean]/[SD] Lower Limb—Stance L/R (%GCT)
[mean]/[SD]

Step Length L/R (cm) [mean] Normalized Velocity (cm/s) [mean] Lower Limb—Step Duration L/R (s)
[mean]/[SD]

Step Time L/R (ms) [mean] Single Supp. Time L/R (s)/(%GCT)
[mean]/[SD]

Lower Limb—Stride Length L/R (m)
[mean]/[SD]

Step Width (cm) [mean] Stance Time L/R (s)/(%GCT)
[mean]/[SD]

Lower Limb—Swing L/R (%GCT)
[mean]/[SD]

Stride Length (cm) [mean] Step Count ( ) Lower Limb—Terminal Double Support
L/R (%GCT) [mean]/[SD]

Stride Time (ms) [mean] Step Extremity L/R (ratio) Lower Limb—Toe Off Angle L/R
(degrees) [mean]/[SD]

Swing Phase L/R (%GCT) [mean] Step Length Differential (cm) Lower Limb—Toe Out Angle L/R
(degrees) [mean]/[SD]

Velocity (km/h) [mean] Step Length L/R (cm) [mean]/[SD] Lumbar/Trunk—Coronal Range of
Motion (degrees) [mean]/[SD]

Walk Track anterior/posterior Position
(mm) [SD] Step Time Differential (s) Lumbar/Trunk—Sagittal Range of

Motion (degrees) [mean]/[SD]
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Table 1. Cont.

DIERS GAITRite Mobility Lab

Walk Track lateral Position (mm) [SD] Step Time L/R (s) [mean]/[SD] Lumbar/Trunk—Transverse Range of
Motion (degrees) [mean]/[SD]

Stride Length L/R (cm) [mean]/[SD] Turns—Angle (degrees) [mean]/[SD]
Stride Time L/R (s) [SD] Turns—Duration (s) [mean]/[SD]

Stride Velocity L/R (cm/s) [mean]/[SD] Turns—N ( )
Swing Time L/R (s)/(%GCT)

[mean]/[SD] Turns—Steps in Turn ( ) [mean]/[SD]

Toe In/Out L/R (degrees) [mean] Turns—Turn Velocity (degrees/s)
[mean]/[SD]

Velocity (cm/s) [mean] Upper Limb—Arm Range of Motion L/R
(degrees) [mean]/[SD]

Upper Limb—Arm Swing Velocity L/R
(degrees/s) [mean]/[SD]

In addition to a comprehensive gait analysis, a standardized outpatient clinical neuro-
logical examination was performed as baseline. Patient-reported outcomes (PROs) were
collected from study participants with MS at the end of the study. These included a self-
reported measure of the impact on walking ability, using the Multiple Sclerosis Walking
Scale (MSWS-12) and the Early Mobility Impairment Questionnaire (EMIQ) [59,60]. PROs
are valued in the diagnosis and treatment of MS [61,62]. They are reliable and valid for the
assessment of MS-related symptoms [61].

2.2. Basic Statistics

Quantitative population characteristics were presented as measures of central ten-
dency (mean/median), followed by dispersion measures. Categorical characteristics were
expressed as relative frequencies. Student’s t-test, Mann Whitney U test or chi-squared tests
were used to quantify differences between pwMS and healthy controls on key characteris-
tics. Because of the observational nature of our study and the lack of random assignment,
propensity score matching was performed to balance sociodemographic characteristics
between pwMS and healthy controls in case of statistically significant differences between
the two groups. For this purpose, 1:1 matching without replacement was applied using
propensity scores generated by logistic regression. The resulting matched data set was
tested for balance by performing statistical tests for sociodemographic differences between
pwMS and healthy controls (Appendix A Table A1). A matching procedure was only used
for the first objective (54 pwMS vs. 38 healthy controls), as neither fatigue nor impair-
ment affected healthy controls. The gait parameters described in the DMWA protocol are
used in routine clinical practice as key parameters for the assessment of mobility changes.
Therefore, these key parameters were analyzed in the further descriptive review.

2.3. Machine Learning Approaches

To distinguish between pwMS and healthy control, six different machine learning
techniques were applied: Naive Bayes, Decision Tree, k-Nearest Neighbor, and SVM with
linear, radial basis function (rbf) and polynomial kernel. Ensemble learning can improve
the performances of classification [63–65]. Therefore, a majority decision of all six models
was calculated besides the evaluation of the six individual decisions. When at least three
models classified a data point as pwMS, the ensemble predicted the label pwMS. The
same methodology was applied to distinguish between pwMS with and without fatigue,
and between mild EDSS score and moderate EDSS score. A deeper examination of the
hyperparameter optimization and feature selection was undertaken by the example of
the first task. The suitability of each diagnostic gait system was evaluated based on the
performance of each classification task. The methodology is illustrated in Figure 1.
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Figure 1. Workflow of the methodology for the application of the machine learning techniques.

First, raw data were preprocessed. Gait parameters of each diagnostic gait system
formed one data set (DIERS data, GAITRite data, and Mobility Lab data). These data
sets were used as input features, with only metric features present in the data sets. Four
participants in the Mobility Lab data set were excluded due to missing values. All features
were standardized before applying the classification models.

Second, the hyperparameters were tuned. A Gaussian distribution was assumed
for the Naive Bayes model. A grid search optimized the hyperparameters of the other
five models. Table 2 shows the range of each hyperparameter. A stratified 5-fold cross-
validation with Cohen’s kappa (κ) as evaluation score was implemented. The performance
was categorized as either poor (κ < 0), slight (0 ≤ κ ≤ 0.2), fair (0.2 < κ ≤ 0.4), moderate
(0.4 < κ ≤ 0.6), substantial (0.6 < κ ≤ 0.8), or almost perfect agreement (0.8 < κ < 1) [62].

Next, a sequential forward floating selection (SFFS) was applied on each classification
model [66]. To find the top-n-features, the algorithm started with an empty feature space
and iteratively added the feature improving Cohen’s kappa the most. After each iteration,
features already contained in the subset were removed one by one until the score did not
improve anymore. These steps were executed until all features were selected.

Finally, the predictions of the six classification models were evaluated. To verify
how the results compare to random guessing, a permutation test was performed on each
model [67]. The test assigns randomly chosen labels to data points, preserving the label
distribution, and performs 1000 of these permutations to attain a p-value. The p-value
of this test was calculated to estimate whether the predictions were better than random
guessing. Cohen’s kappa, accuracy, sensitivity, and specificity were calculated to evaluate
and compare the different classification models. The stratified 5-fold cross-validation
was repeated 10 times to reduce bias when splitting the data into the folds. The machine
learning analysis was performed using scikit-learn version 0.23.2 [68] and mlxtend version
0.18.0 python packages [69].
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Table 2. Range of hyperparameters optimized with grid search; SVM = Support Vector Machine;
rbf = radial basis function.

Method Hyperparameter Min Max Step Size Scale

Decision Tree
Criterion: ‘gini’ or ‘entropy’ - - - -

Maximum depth 2 7 1 linear
Minimum samples at a leaf

node 5 20 1 linear

k-Nearest
Neighbor

Weights: ‘uniform’ or ‘distance’ - - - -
Distance metric: ‘euclidean’ or

‘manhattan’ - - - -

Numbers of neighbors k 2 22 1 linear

SVM
(linear
kernel)

Regularization C 0.01 10 10 logarithmic

SVM
(rbf kernel)

Regularization C 1 10 1 linear
Kernel coefficient gamma 0.01 0.1 0.01 linear

SVM
(polynomial

kernel)

Regularization C 0.1 10 10 logarithmic
Kernel coefficient gamma 0.01 0.1 0.01 linear

Degree 1 10 1 linear

3. Results
3.1. Descriptive Analyses

For the 54 pwMS included, a median EDSS of 2 (IQR 1.5–3) was determined. 35 pwMS
(65%) showed mild disability (19 pwMS moderate disability) and 27 pwMS (50%) ex-
perienced fatigue (27 pwMS without fatigue). On average, pwMS (40.3 ± 10.9) were
significantly older than healthy controls (34.5 ± 13.2) (p = 0.002). Consequently, a 1:1
propensity score matching procedure was performed for the healthy-sick classification
(first objective), with the age factor to achieve better comparability of the data. This pro-
cedure was successful, leaving no age difference between the groups (p = 0.96) and only
dropping eight healthy controls that could not be matched. Furthermore, the matched
study population (N = 60) demonstrated an equal sex ratio (21 females and 9 males in both
the pwMS and healthy control group). A summary of the patient and disease characteristics
before and after the matching procedure is provided in Table A1 in the Appendix A. A
selection of key gait parameters used in clinical routine for the evaluation of mobility
changes is shown in Table 3.

In the initial mean observation, the pwMS show a larger step length difference and
a longer double support time compared to the healthy controls. However, checking
this statement using the Mann-Whitney U-test does not result in any confirmation of a
significant change in the parameters collected.
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Table 3. Selected gait parameters for people with MS and healthy controls (N = 60). Key parameters
used in clinical routine according our DMWA protocol [33]; MS = multiple sclerosis; HC = healthy
controls; EMIQ = Early Mobility Impairment Questionnaire; MSWS = Multiple Sclerosis Walking
Scale; GCT = Gait Cycle Time; L = left; R = right; standard deviation = SD; data in mean ± SD;
( )—dimensionless values; p-value via Mann-Whitney U-Test for differences between groups.

Outcome Variable MS (N = 30) HC (N = 30) p

GAITRite
Velocity (m/s) 1.3 ± 0.1 1.3 ± 0.2 0.652

Step length difference (cm) 2.0 ± 1.7 1.4 ± 1.2 0.107
Step time difference (ms) 11.9 ± 8.9 8.0 ± 7.0 0.079

Base of support (cm) L 9.2 ± 2.7 9.4 ± 2.1 0.756
Base of support (cm) R 9.2 ± 2.6 9.4 ± 2.2 0.393

Functional ambulation profile ( ) 97.5 ± 3.1 96.8 ± 3.9

Mobility Lab
Gait speed (m/s) L 1.4 ± 0.1 1.4 ± 0.2 0.177
Gait speed (m/s) R 1.4 ± 0.1 1.4 ± 0.1 0.093

Double support (%GCT) L 18.7 ± 2.9 17.6 ± 2.2 0.170
Double support (% GCT) R 18.7 ± 2.9 17.7 ± 2.2 0.167

Stance (%GCT) L 59.5 ± 1.7 58.9 ± 1.0 0.131
Stance (% GCT) R 59.2 ± 1.5 58.7 ± 1.4 0.225

Patient reported outcomes
EMIQ 11.0 ± 13.1

MSWS-12 11.0 ± 17.4

3.2. Machine Learning Techniques

Six classification models were used to determine the most suitable gait measurement
system. Table 4 shows the optimized parameters for each classification model based on the
matched collective. Different classification models were generated for each data set except
the SVM with the linear kernel. The regularization C was equal (C = 0.01) to all data sets.

Table 4. Results of the hyperparameter optimization for each data set (matched collective); SVM = Support Vector Machine;
rbf = radial basis function.

Parameter DIERS
Data Set

GAITRite
Data Set

Mobility Lab
Data Set

Decision Tree
Criterion gini entropy entropy

Maximum depth 2 2 3
Minimum samples at a leaf node 18 5 9

k-Nearest Neighbor
Weights uniform uniform uniform

Distance metric euclidean manhattan euclidean
Numbers of neighbors k 11 2 9

SVM
(linear kernel) Regularization C 0.01 0.01 0.01

SVM
(rbf kernel)

Regularization C 3 3 1
Kernel coefficient gamma 0.04 0.01 0.06

SVM
(polynomial kernel)

Regularization C 1 0.1 0.1
Kernel coefficient gamma 0.08 0.03 0.01

Degree 1 3 1

The classification results of each model and data set based on the matched collective
are shown in Table 5. The SFFS improved the classification performance for all data sets
except for Decision Tree and SVM with rbf kernel for the Mobility Lab data set. Additionally,
the number of features were reduced strongly. All classification models of each data set
generated a highly significant p-value (p ≤ 0.001) in the permutation test after the SFFS
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(apart from the Decision Tree) for all three data sets. A compilation of all top-n-relevant
features for each individual data set and each classification model is presented in the
Appendix A (Table A2).

Table 5. Performance of the six classification models on the detection of MS in 60 subjects (matched collective). The values
are presented as mean ± standard deviation across 5-fold cross-validation repetition. In addition, the majority decision
of all six models is shown. A majority decision for a positive label occurs when at least three models (≥3) predicted the
positive class. a Best overall performance per category for each data set; SVM = Support Vector Machine; rbf = radial basis
function; SFFS = sequential forward floating selection; p-value via permutation test.

No.
Features

Cohen’S
Kappa Accuracy (%) Sensitivity

(%) Specificity (%) p

DIERS data set

Gaussian Naive Bayes Without SFFS 33 0.26 ± 0.05 63.2 ± 2.5 51.0 ± 2.7 75.3 ± 3.2 0.025
With SFFS 11 0.46 ± 0.06 73.2 ± 2.8 64.3 ± 3.2 82.0 ± 3.6 0.001

Decision Tree
Without SFFS 33 0.24 ± 0.06 62.0 ± 2.9 62.0 ± 3.9 62.0 ± 5.7 0.085

With SFFS 1 0.43 ± 0.05 71.3 ± 2.5 66.0 ± 2.1 76.7 ± 3.8 0.002

k-Nearest Neighbor Without SFFS 33 0.23 ± 0.06 61.3 ± 3.0 39.0 ± 4.5 83.7 ± 4.0 0.020
With SFFS 5 0.40 ± 0.10 69.8 ± 4.8 62.7 ± 6.2 77.0 ± 5.1 0.001

SVM
(linear kernel)

Without SFFS 33 0.26 ± 0.07 63.2 ± 3.6 56.0 ± 5.2 70.3 ± 5.1 0.002
With SFFS 28 0.39 ± 0.07 69.7 ± 3.6 63.0 ± 4.8 76.3 ± 6.4 0.001

SVM
(rbf kernel)

Without SFFS 33 0.20 ± 0.10 60.0 ± 4.8 59.0 ± 5.2 61.0 ± 6.7 0.008
With SFFS 8 0.49 ± 0.11 a 74.5 ± 5.5 a 67.0 ± 6.2 a 82.0 ± 6.1 a 0.001 a

SVM
(polynomial kernel)

Without SFFS 33 0.24 ± 0.09 61.8 ± 4.5 55.7 ± 6.9 68.0 ± 7.1 0.001
With SFFS 13 0.41 ± 0.06 70.3 ± 3.2 63.0 ± 4.0 77.7 ± 5.5 0.001

Majority decision (≥3) With SFFS - 0.49 ± 0.08 74.5 ± 3.9 69.7 ± 3.7 79.3 ± 5.8 -

GAITRite data set

Gaussian Naive Bayes Without SFFS 76 0.01 ± 0.09 50.3 ± 4.7 70.3 ± 5.1 30.3 ± 5.3 0.141
With SFFS 8 0.19 ± 0.10 59.7 ± 5.2 63.3 ± 6.1 56.0 ± 6.6 0.001

Decision Tree
Without SFFS 76 −0.02 ± 0.12 49.0 ± 5.9 35.7 ± 11.8 62.3 ± 16.6 0.170

With SFFS 3 0.10 ± 0.16 55.2 ± 4.8 61.1 ± 8.6 46.8 ± 7.2 0.008

k-Nearest Neighbor Without SFFS 76 0.11 ± 0.07 55.5 ± 3.7 26.3 ± 4.3 84.7 ± 5.9 0.116
With SFFS 31 0.21 ± 0.08 60.7 ± 4,0 38.0 ± 4.5 83.3 ± 5.4 0.001

SVM
(linear kernel)

Without SFFS 76 0.14 ± 0.12 57.2 ± 5.8 60.7 ± 8.6 53.7 ± 6.2 0.120
With SFFS 18 0.16 ± 0.13 58.0 ± 6.7 61.3 ± 5.0 54.7 ± 10.6 0.001

SVM
(rbf kernel)

Without SFFS 76 0.08 ± 0.07 54.2 ± 3.7 52.0 ± 4.5 56.3 ± 6.9 0.216
With SFFS 34 0.20 ± 0.09 59.8 ± 4.5 50.7 ± 5.2 69.0 ± 6.7 0.001

SVM
(polynomial kernel)

Without SFFS 76 0.16 ± 0.09 58.2 ± 4.6 93.0 ± 4.6 23.3 ± 7.5 0.005
With SFFS 10 0.17 ± 0.11 58.7 ± 5.4 70.7 ± 8.1 46.7 ± 13.1 0.001

Majority decision (≥3) With SFFS - 0.28 ± 0.09 a 63.8 ± 4.4 a 67.3 ± 7.0 a 60.3 ± 4.6 a -

Mobility Lab data set

Gaussian Naive Bayes Without SFFS 93 0.10 ± 0.06 55.1 ± 3.0 53.8 ± 6.1 56.4 ± 2.8 0.492
With SFFS 15 0.36 ± 0.08 67.9 ± 3.9 71.7 ± 5.6 63.9 ± 4.9 0.001

Decision Tree
Without SFFS 93 0.08 ± 0.09 54.0 ± 4.4 53.1 ± 10.0 55.0 ± 6.6 0.198

With SFFS 41 0.08 ± 0.08 54.2 ± 4.0 52.8 ± 11.7 55.7 ± 7.6 0.007

k-Nearest Neighbor Without SFFS 93 0.08 ± 0.07 53.3 ± 3.5 17.2 ± 6.9 90.7 ± 3.5 0.100
With SFFS 9 0.33 ± 0.06 66.1 ± 3.2 55.9 ± 4.5 76.8 ± 5.1 0.001

SVM
(linear kernel)

Without SFFS 93 0.01 ± 0.07 50.5 ± 3.7 48.6 ± 7.4 52.5 ± 6.1 0.495
With SFFS 5 0.20 ± 0.07 60.0 ± 3.4 59.7 ± 5.2 60.4 ± 5.4 0.001

SVM
(rbf kernel)

Without SFFS 93 0.20 ± 0.06 60.5 ± 3.0 90.3 ± 3.6 29.6 ± 5.1 0.004
With SFFS 24 0.41 ± 0.10 a 70.4 ± 5.0 a 77.9 ± 6.5 a 62.5 ± 7.2 a 0.001 a

SVM
(polynomial kernel)

Without SFFS 93 0.00 ± 0.07 50.4 ± 3.3 80.3 ± 5.2 19.3 ± 3.8 0.035
With SFFS 12 0.02 ± 0.07 51.6 ± 3.3 80.0 ± 7.8 22.1 ± 3.7 0.001

Majority decision (≥3) With SFFS - 0.34 ± 0.08 67.2 ± 3.8 83.8 ± 6.5 50.0 ± 7.1 -
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The standard deviation (SD) of κ varied from 0.05 to 0.16. The largest variation of the
SD (±16.6%) was observed for specificity for the GAITRite data set. The mean κ-value
varied from 0.39 to 0.49 for the DIERS data set and after the SFFS. The mean κ-value varied
from 0.10 to 0.28 for the GAITRite data set and after the SFFS. The mean κ-value varied
from 0.02 to 0.41 for the Mobility Lab data set and after the SFFS.

The SVM with rbf kernel model (κ = 0.49 ± 0.11) was the best classification model for
the DIERS data set. The k-Nearest Neighbor model (κ = 0.21 ± 0.08) was the best model for
the GAITRite data set and the SVM with rbf kernel (κ = 0.41 ± 0.10) was the best model for
the Mobility Lab data set. The majority decision outperformed the individual classifiers on
the GAITRite data set (κ = 0.28 ± 0.09). However, it was not able to achieve better results
on the other two data sets. The overall performance of the models was highest on the
DIERS data set.

Moderate agreement on the DIERS data set was achieved with four models: Gaussian
Naive Bayes, Decision Tree, and SVM with rbf kernel and with polynomial kernel. The
Mobility Lab data set, however, only reached a single moderate agreement with SVM
rbf kernel. The objective was to select the most important gait parameters that are the
best to distinguish between a healthy and pathological gait pattern. For this purpose,
important gait parameters were identified by determining the top-n-features by SFFS
for each classifier with a score no less than moderate agreement. Gait parameters were
then sorted in a frequency table, as parameters chosen by two or more classifiers were
considered to be more relevant to gait classification (Table 6). Few gait parameters were
used multiple times for processing. Especially the gait velocity parameter was used in
three classification models of the DIERS data set and in the best possible method of the
Mobility Lab data set (SVM with rbf kernel). Furthermore, step length right was used in
three models of the DIERS data set along with step length left, which appeared in two of
these models (Table 6).

Table 6. List of features for classification models with moderate agreement for each data set (matched collective). The gait
parameters are given in their mean value. If the standard deviation of the gait parameter is meant, it is explicitly followed
by [SD].

Features No. of Uses

DIERS data set (Gaussian Naive Bayes, Decision Tree, SVM with rbf and polynomial kernel)

Single Support L, Step Length R, Velocity 3

Foot Rotation L, Loading Response L, Pre-Swing Phase L, Step Length L, Stride Length, Stride Time, Walk
Track anterior/posterior Position [SD] 2

Cadence, COP-Deflection lateral L, COP-Deflection lateral R, Foot Rotation R, Midfoot L, Midfoot R,
Pre-Swing Phase R, Rearfoot L, Stance Phase R, Swing Phase R 1

Mobility Lab data set (SVM with rbf kernel)

Lower Limb—Double Support R, Lower Limb—Foot Strike Angle R [SD], Lower Limb—Gait Speed L, Lower
Limb—Gait Speed R, Lower Limb—Lateral Step Variability L, Lower Limb—Single Limb Support R, Lower
Limb—Stance L, Lower Limb—Stride Length L, Lower Limb—Terminal Double Support R, Lower Limb—Toe
Off Angle L, Lower Limb—Toe Off Angle L [SD], Lower Limb—Toe Off Angle R, Lower Limb—Toe Off Angle

R [SD], Lower Limb—Toe Out Angle R [SD], Lumbar—Coronal Range of Motion [SD], Lumbar—Sagittal
Range of Motion, Lumbar—Sagittal Range of Motion [SD], Trunk—Coronal Range of Motion [SD],

Trunk—Transverse Range of Motion [SD], Turns—Turn Velocity [SD], Upper Limb—Arm Range of Motion L,
Upper Limb—Arm Range of Motion L [SD], Upper Limb—Arm Swing Velocity L [SD], Upper Limb—Arm

Swing Velocity R [SD]

1
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The results of the classification of pwMS with and without fatigue are shown in
Table 7. In this case, the k-Nearest Neighbor with the GAITRite data set (κ = 0.56 ± 0.05)
was the best model to classify pwMS with and without fatigue. Furthermore, the resulting
κ was better. The majority decision outperformed the individual classifiers on the Mobility
Lab data set (κ = 0.47 ± 0.04). However, it was not able to achieve better results with the
other two data sets.

Table 7. Performance of the six classification models on the detection of fatigue in people with
multiple sclerosis (n = 54) after hyperparameter optimization and feature selection. In addition, the
majority decision of all six models is shown. A majority decision for a positive label occurs when
at least three models (≥3) predicted the positive class. The values are presented as mean ± stan-
dard deviation across 10 times 5-fold cross-validation repetition. a Best overall performance per
category for each data set; SVM = Support Vector Machine; rbf = radial basis function; p-value via
permutation test.

Performance DIERS Data Set GAITRite Data
Set

Mobility Lab
Data Set

Gaussian Naive
Bayes

Cohen’s kappa: 0.06 ± 0.12 0.35 ± 0.08 0.11 ± 0.12
Accuracy (%): 53.1 ± 5.9 67.6 ± 4.0 55.7 ± 6.2

p: 0.009 0.001 0.001

Decision Tree
Cohen’s kappa: 0.24 ± 0.04 a 0.29 ± 0.13 0.36 ± 0.03
Accuracy (%): 62.2 ± 1.8 a 64.6 ± 6.5 67.9 ± 1.5

p: 0.050 0.001 0.031

k-Nearest
Neighbor

Cohen’s kappa: 0.18 ± 0.05 0.56 ± 0.05 a 0.42 ± 0.10
Accuracy (%): 58.9 ± 2.4 78.1 ± 2.7 a 71.1 ± 4.9

p: 0.002 0.001 a 0.001

SVM
(linear kernel)

Cohen’s kappa: −0.01 ± 0.10 0.34 ± 0.06 0.32 ± 0.07
Accuracy (%): 49.4 ± 4.9 67.0 ± 3.2 65.8 ± 3.4

p: 0.004 0.001 0.001

SVM
(rbf kernel)

Cohen’s kappa: 0.10 ± 0.11 0.36 ± 0.12 0.41 ± 0.06
Accuracy (%): 55.2 ± 5.6 67.8 ± 5.8 70.4 ± 3.1

p: 0.013 0.001 0.001

SVM
(polynomial

kernel)

Cohen’s kappa: 0.09 ± 0.11 0.35 ± 0.05 −0.02 ± 0.06
Accuracy (%): 54.6 ± 5.4 67.6 ± 2.5 48.7 ± 3.1

p: 0.001 0.001 0.001

Majority
decision (≥3)

Cohen’s kappa: 0.13 ± 0.11 0.50 ± 0.04 0.47 ± 0.04 a

Accuracy (%): 56.5 ± 5.3 74.8 ± 1.8 73.2 ± 2.1 a

The results of the classification into pwMS with mild and moderate EDSS scores are
shown in Table 8. The GAITRite data set with the SVM with linear kernel (κ = 0.61 ± 0.06)
generated the best performance with substantial agreement. Overall, the models had a
better performance compared to the other two classification tasks. The majority decision
did not achieve a better performance than the individual classification models.
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Table 8. Performance of the six classification models on the detection of mild EDSS or moderate EDSS
in people with multiple sclerosis (n = 54) after hyperparameter optimization and feature selection.
In addition, the majority decision of all six models is shown. A majority decision for a positive
label occurs when at least three models (≥3) predicted the positive class. The values are presented
as mean ± standard deviation across 10 times 5-fold cross-validation repetition. Sensitivity and
specificity were used instead of the accuracy due to imbalanced data (65% mild, 35% moderate). a

Best overall performance per category for each data set; SVM = Support Vector Machine; rbf = radial
basis function; p-value via permutation test.

Performance DIERS Data Set GAITRite Data
Set

Mobility Lab
Data Set

Gaussian Naive
Bayes

Cohen’s kappa: 0.57 ± 0.03 a 0.35 ± 0.12 0.31 ± 0.08
Sensitivity (%): 60.5 ± 2.8 a 56.8 ± 6.5 57.4 ± 5.8
Specificity (%): 93.1 ± 1.5 a 77.7 ± 6.7 74.1 ± 5.0

p: 0.001 a 0.001 0.001

Decision Tree

Cohen’s kappa: 0.53 ± 0.11 0.43 ± 0.05 0.47 ± 0.03
Sensitivity (%): 63.7 ± 9.4 66.3 ± 6.7 60.5 ± 2.8
Specificity (%): 88.0 ± 5.5 77.1 ± 3.0 85.3 ± 0.0

p: 0.001 0.002 0.001

k-Nearest
Neighbor

Cohen’s kappa: 0.52 ± 0.06 0.40 ± 0.08 0.39 ± 0.11
Sensitivity (%): 51.6 ± 4.8 48.4 ± 6.5 47.4 ± 7.8
Specificity (%): 95.7 ± 2.4 88.6 ± 4.7 89.1 ± 5.6

p: 0.001 0.001 0.001

SVM
(linear kernel)

Cohen’s kappa: 0.37 ± 0.09 0.61 ± 0.06 a 0.48 ± 0.09 a

Sensitivity (%): 51.6 ± 7.4 70.0 ± 5.0 a 67.9 ± 7.2 a

Specificity (%): 83.7 ± 3.8 89.7 ± 2.8 a 80.3 ± 4.6 a

p: 0.001 0.001 a 0.001 a

SVM
(rbf kernel)

Cohen’s kappa: 0.44 ± 0.02 0.18 ± 0.09 0.20 ± 0.07
Sensitivity (%): 41.1 ± 2.2 17.4 ± 5.6 23.7 ± 6.2
Specificity (%): 97.1 ± 1.3 97.7 ± 2.3 93.5 ± 2.3

p: 0.001 0.001 0.001

SVM
(polynomial

kernel)

Cohen’s kappa: 0.40 ± 0.03 0.45 ± 0.11 0.15 ± 0.03
Sensitivity (%): 36.8 ± 4.3 61.6 ± 7.5 13.2 ± 2.8
Specificity (%): 97.7 ± 1.8 82.3 ± 5.8 98.8 ± 1.5

p: 0.001 0.001 0.018

Majority
decision (≥3)

Cohen’s kappa: 0.55 ± 0.06 0.60 ± 0.05 0.47 ± 0.09
Sensitivity (%): 54.2 ± 5.0 69.5 ± 3.3 54.2 ± 5.0
Specificity (%): 96.3 ± 2.4 88.9 ± 4.1 89.7 ± 5.4

4. Discussion

Data sets of three gait systems were compared and analyzed using machine learning
methods. First, the objective was to determine which gait system provides the highest
discriminatory power between pwMS and healthy controls. The DIERS system was the
most successful at recognizing pwMS. The specificity was always better than the sensitiv-
ity. Consequently, the classification models are more suitable for predicting the healthy
collective. Four classification models had a moderate agreement (Gaussian Naive Bayes,
Decision Tree, SVM with rbf and polynomial kernel). Especially the SVM with rbf kernel
performed well. The GAITRite data set was least suitable for this classification task. The
best performance was a fair agreement with this data set.

Determining relevant gait parameters is important for the diagnosis of pwMS. In
the clinical routine for pwMS, the interpretation of the multitude of data collected by
multimodal gait analysis is often not completely possible and leads to a preselection of
relevant gait parameters. The descriptive analysis of these outcome parameters shows
a reduced step length difference and a longer double support time compared to other
studies [9]. However, no significant changes between the healthy group and the pwMS
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could be found in any of the preselected outcome parameters. During clinical observation
of mobility data, a certain preselection of the underlying gait parameters is done. Due to
the large number of outcome parameters, it is not possible to consider them all equally
in the evaluation. Machine learning methods were used to take all spatiotemporal gait
parameters (as in Table 1) as a basis for the analysis without preselection.

These results are in line with previous reports investigating most relevant gait pa-
rameters to distinguish between pwMS and healthy controls. Data from a recent review
by Chee et al. suggests that people with higher levels of MS-related disability have more
careful and stable gait patterns compared to people with lower levels of MS-related dis-
ability [70]. The gait parameters that differentiated pwMS by their degree of disability
were gait speed, step length, cadence, step time, step time variability, stance phase, and
double support time. More disability was associated with shorter stride length and lower
cadence [70]. In our work, especially the gait parameters of walking speed and step length
were commonly selected to differentiate pwMS from healthy controls. Two models selected
both sides of step length as relevant gait parameters. This suggests that both step lengths
have an impact on the model, rather than leading to redundancy. Regarding pwMS, bilat-
eral observations are an important aspect of disease monitoring since muscles degenerate
at different paces [71]. However, further studies are needed validate these results. The
integration of a feature selection method (SFFS) has proven to be suitable for improving
the performance. However, it is important to note that the result of a SFFS is only a local
optimum for a specific model. It is therefore possible that a combination of both step
lengths was never inputted into the latter model.

The selection of a machine learning method depends on the data structure. This
structure is often unknown and is difficult to determine due to the curse of dimensionality.
Therefore, this study investigated six classification methods. These methods were used in
similar classification tasks. The classification methods are simple (low train complexity)
algorithms with a good interpretability. However, each method has its own advantages and
disadvantages. The Naive Bayes is a simple algorithm and is suitable for small data sets,
but it is often very effective in some classification tasks [72–75]. In contrary, the Naive Bayes
provides a bad performance with complex data structure [73]. The present data sets consist
of few data. Thus, the Naive Bayes could have provided good results here as well. The
model achieved just a moderate agreement with the DIERS data set. Therefore, the present
data sets could own an inherent complexity. Decision Tree is a fast adaptable classification
method and is appropriate for discovering important features [76–78]. In the present work,
the Decision Tree achieved a moderate agreement with the DIERS data set. The other two
data sets only provided a slight agreement. Furthermore, the Decision Tree showed the
greatest variations of the standard deviations (±16.6%) without SFFS. These classification
models therefore may not be suitable for generating generally valid results. In addition,
this method tends towards overfitting in contrast to other methods [76,79]. To prevent
overfitting, the Decision Tree was pruned by adjusting the parameters maximum depth
and minimum samples at a leaf node (hyperparameter optimization). The maximum depth
was very small (Table 4) for all three data sets and the minimum samples at leaf nodes were
high in the case of the DIERS data set. This indicates that the model underfit the data. In
general, the trained model is too simple for the complex task. The k-Nearest Neighbor has
a short training phase and is easy to use [72,80,81]. The results of the k-Nearest Neighbor
models showed a fair agreement (0.21 ≤ κ ≤ 0.40) for all data sets. A disadvantage of
the method is the long request time, especially when calculating distances with a high
number of neighbors [72,76]. The resulting k-Nearest Neighbor models weighted features
uniformly for all data sets (Table 4). Thus, important features can lose importance due
to irrelevant features [72,80,81] and the method achieved just a fair agreement. The high
number of Nearest Neighbors (k = 11 DIERS data set) relative to the number of samples
(30 pwMS and 30 healthy control subjects) indicates that the models underfit the data. The
SVM is suitable for binary classification, complex data structure and high dimensional
data [76,82–84]. Therefore, the SVM seems suitable for the three data sets. This work
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investigated three kernels for the data space transformation. The SVM with a linear kernel
achieved a fair agreement only with the DIERS data set. The model used a large margin for
classification (small C = 0.01, Table 4). This could indicate that the model underfit the data.
The SVM with a rbf kernel achieved a moderate agreement with the DIERS data set and the
Mobility data set. The SVM with a polynomial kernel also achieved a moderate agreement
with the DIERS data set. Nevertheless, the degree of one and the high regularization value
(C = 10, Table 4) could also indicate overfitting. In summary, the Decision Tree does not
seem suitable for the classification of healthy people and pwMS using gait analysis features.
The SVM with rbf kernel appears more appropriate for this classification task. Overall, it is
important to note that the grid search only finds a local optimum for a specific model.

Second, the detection of fatigue in pwMS was explored. The GAITRite data set
achieved the best performance with κ = 0.56 and was overall the best gait system. The
DIERS data set was not suitable for fatigue classification. The k-Nearest Neighbor was
the best method for classifying the GAITRite and Mobility Lab data sets and achieved
moderate agreement. In comparison with the healthy-sick classification, the classification
models were able to achieve similar performances using gait parameters.

Third, the classification of mild and moderate EDSS score was explored in pwMS.
The GAITRite data set achieved the best performance with κ = 0.61. Overall, the DIERS
system was the best gait system for this task. Each model achieved a moderate agreement
except for the SVM with linear kernel and the SVM with polynomial kernel. Both achieved
a fair agreement. The SVM with linear kernel was the best method for classifying the
GAITRite and Mobility Lab data sets and achieved substantial and moderate agreement.
In comparison with the first and second classification task, the models were able to achieve
better performances overall using all three gait data sets. The specificity was always better
than the sensitivity. Thus, the models were able to predict mild EDSS scores especially well.
In contrary to other studies, this work demonstrated that subtle gait changes could also
appear for an EDSS score ≤ 4.

Previous studies reported that a majority decision can improve the performance of
classification. This effect was not reflected in our data set with only the GAITRite data set
in healthy-sick classification and Mobility Lab data set in fatigue classification improving
on the majority decision. However, in comparison, it only achieved a fair to moderate
agreement. A reason for this is the composition of the ensemble. Sagi et al. summarized two
key conditions for a successful application of ensemble learning [63]. First, the methods
should not be too similar in their way of decision making. Second, the quality of the
performances of the individual prediction should be better than random guessing and as
good as possible. This study used different methods, which are diverse in decision making.
However, the range of performances of the individual models achieved slight to moderate
agreement. Thus, the models could not achieve a better performance through the voting
procedure.

When recognizing the limitations of this study there are reasons why the results
should be generalized with caution. The small number of subjects is a disadvantage of this
study. In general, more data helps to build more robust models and accurately predict the
performance on new data. A total of 92 participants were included in this study. The mean
age gap between pwMS und healthy control was six years. Regarding the aging process,
changes in gait speed, stride length, and distance traveled occur [85–87]. Therefore, due
to the large age difference and for better comparability of the cohorts a propensity score
matching was performed. This resulted in a study cohort of 30 pwMS and 30 healthy
controls. No test data set was used due the small data size. Therefore, the results could
have a positive bias. Stratified 5-fold cross-validation was used for grid search, SFFS and
performance evaluation in order to make the results generally valid [88]. However, a cross
validation score could be obtained by chance, the split of the folds being a significant
issue [89]. Thus, the cross-validation was repeated 10 times and preceded by a permutation
test. These defined methods are sufficient to evaluate the results. The results showed
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that all classification models for each data set performed better than random guessing
(p ≤ 0.001) after the SFFS except the Decision Tree.

Furthermore, it must be considered that each measurement system is based on differ-
ent physical measurement principles. In this work, gait parameters were obtained from the
processing of resistive pressure sensors [35], accelerometer, gyroscope and magnetometer
sensors [38] and capacitive pressure sensors [56]. Gait changes in pwMS affect not only
spatiotemporal parameters, but also kinematics and kinetics. Indeed, spatiotemporal pa-
rameters, especially in pwMS with mild disabilities are often similar to those in healthy
individuals, and the differences only become visible with special processing techniques. An
evaluation of video-based data was not possible for precise classification of gait patterns,
even though it is continuously developed and proved to be a very reliable tool for gait
analysis [90].

Due to the varying degrees of gait abnormalities in pwMS, it seems useful to confi-
dently classify the types of mobility impairments and evaluate the applicability of machine
learning methods to support the phenotyping of pwMS. The accurate classification of
the different walking impairments could then be used to characterize the MS phenotype.
Continuous characterization of the MS phenotype will allow more specific treatment de-
cisions to be made by the clinicians providing treatment and an early counteracting of
disability progression.

5. Conclusions

This work demonstrated that the DIERS system was the most appropriate gait system
for healthy-sick classification among the examined devices. Velocity and step length were
especially relevant for this classification task. The GAITRite system was suitable for disease
monitoring though the detection of fatigue and the differentiation of mild and moder-
ate EDSS score. In addition, the differentiation between mild and moderate EDSS score
achieved the highest performance in this study with a κ = 0.6. The k-Nearest Neighbor
and the SVM were suitable to discriminate subtle gait changes. Further investigation of
other analyzing methods in the field of hyperparameter optimization and feature selec-
tion could improve the performances and generalize the models. For future work, it is
relevant to analyze a larger pwMS cohort with different MS courses using the algorithms
presented here.

Machine learning strategies enable the integration and visualization of gait parameters
collected in routine clinical practice. Based on this data, model calculations can be used
to quantify certain phenotypes and generate algorithms from which more specific and
also more individualized treatment guidelines could be derived. Regarding the increasing
amount of data, it is important to increasingly include machine learning strategies into the
phenotyping of MS to provide an individualized comprehensive view of gait changes as
part of the development of innovative disease management concepts such as digital twins
for MS.
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Appendix A

Table A1. Characterization of people with multiple sclerosis (MS) and healthy controls (HC), respectively, before and after
propensity score matching (N = 92); SD = Standard Deviation; EDSS = Expanded Disability Status Scale; RRMS = relapsing–
remitting MS; PPMS = primary progressive MS; b p-value via t-test for differences between groups; c p-value via chi-squared
test for differences between groups.

Unmatched Set (N = 92) Matched Set (N = 60)

MS (N = 54) HC (N = 38) p MS (N = 30) HC (N = 30) p

Mean age in years (mean ± SD) 40.3 ± 10.9 34.0 ± 13.3 0.002 b 37.1 ± 12.5 36.9 ± 13.5 0.961 b

Gender
Female N (%) 35 (64.8%) 23 (60.5%) 0.675 c 21 (70.0%) 21 (70.0%) 0.999 c

Male N (%) 19 (35.2%) 15 (39.5%) 9 (30.0%) 9 (30.0%)
Duration of disease in years (mean ± SD) 8.1 ± 6.0 7.1 ± 5.4

EDSS (median)
EDSS (Interquartile range)

2
1.5–3.0

1.5
1.5–2.6

Disease Course N (%)
RRMS 52 (96.3%) 29 (96.7%)
PPMS 2 (3.7%) 1 (3.3%)

Table A2. List of all top-n-relevant features for each individual data set (matched collective) and classification model. The
parameters have been recorded and merged for the left and right sides (L/R). The gait parameters are given in their mean
value. If the standard deviation of the gait parameter is meant, it is explicitly followed by [SD]; SVM = Support Vector
Machine; rbf = radial basis function.

No. Features Features

DIERS data set

Gaussian Naive Bayes 11
COP-Deflection lateral R, Foot Rotation L, Foot Rotation R, Pre-Swing Phase R,

Single Support L, Step Length L, Step Length R, Stride Length, Stride Time, Velocity,
Walk Track anterior/posterior Position [SD]

Decision Tree 1 Velocity

k-Nearest Neighbor 5 Rearfoot L, Stance Phase R, Step Time L, Stride Length, Stride Time

SVM
(linear kernel) 28

Bipedale Phase, Cadence, COP-Deflection lateral L, Foot Rotation L, Forefoot R,
Loading Response L, Loading Response R, Midfoot L, Midfoot R, Pre-Swing Phase
L, Pre-Swing Phase R, Rearfoot L, Rearfoot R, Single Support L, Single Support R,
Stance Phase L, Stance Phase R, Step Length L, Step Length R, Step Time L, Step
Width, Stride Length, Stride Time, Swing Phase L, Swing Phase R, Velocity, Walk

Track anterior/posterior Position [SD], Walk Track lateral Position [SD]

SVM
(rbf kernel) 8 Cadence, Foot Rotation L, Loading Response L, Pre-Swing Phase L, Single Support

L, Step Length R, Velocity, Walk Track anterior/posterior Position [SD]

SVM
(polynomial kernel) 13

COP-Deflection lateral L, Loading Response L, Midfoot L, Midfoot R, Pre-Swing
Phase L, Rearfoot L, Single Support L, Stance Phase R, Step Length L, Step Length R,

Stride Length, Stride Time, Swing Phase R

GAITRite data set

Gaussian Naive Bayes 8
Cycle Time Differential, Double Support Load Time R (%GC), HH Base Support L,

Stance Time L, Step Extremity R, Step Time Differential, Stride Velocity L [SD],
Swing Time L

Decision Tree 3 Stance Time L (%GC), Step Count, Swing Time R
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Table A2. Cont.

No. Features Features

DIERS data set

k-Nearest Neighbor 31

Ambulation Time, Cadence, Cycle Time L, Distance, Double Supp. Time L (%GC),
Double Supp. Time R (%GC), Double Supp. Time L [SD], Double Supp Time R [SD],
Double Supp. Time L, Double Supp. Time R, Double Support Load Time L (%GC),

Double Support Load Time L, Double Support Unload Time L (%GC), Double
Support Unload Time R (%GC), Double Support Unload Time R, HH Base Support

L, HH Base Support R, Single Supp. Time L (%GC), Single Supp. Time R (%GC),
Stance Time L (%GC), Stance Time R [SD], Step Count, Step Extremity L, Step

Extremity R, Step Length L [SD], Step Time L [SD], Step Time R [SD], Stride Time R
[SD], Stride Velocity R, Swing Time L (%GC), Swing Time R

SVM
(linear kernel) 18

Double Supp. Time L (%GC), Double Supp. Time R (%GC), Double Support Load
Time L (%GC), Double Support Unload Time R (%GC), Double Support Unload
Time R, Single Supp. Time L (%GC), Single Supp. Time R (%GC), Stance Time R

(%GC), Stance Time L, Step Extremity R, Step Length L, Step Length R, Step Time
Differential, Stride Length L [SD], Stride Length L, Stride Length R, Swing Time R

(%GC), Swing Time R [SD]

SVM
(rbf kernel) 34

Distance, Double Supp. Time L (%GC), Double Supp. Time R (%GC), Double Supp.
Time R [SD], Double Supp. Time L, Double Supp. Time R, Double Support Load

Time L (%GC), Double Support Load Time L, Double Support Load Time R, Double
Support Unload Time L (%GC), Double Support Unload Time R (%GC), Double

Support Unload Time R, Heel Off On Perc R, HH Base Support L, HH Base Support
R, Single Supp. Time L (%GC), Single Supp. Time R (%GC), Stance Time L (%GC),
Stance Time R (%GC), Step Count, Step Length Differential, Step Length L, Step
Length R, Step Time Differential, Stride Length L [SD], Stride Length L, Stride

Length R, Stride Velocity L, HH Base Support R [SD], Swing Time L (%GC), Swing
Time R (%GC), Swing Time R, Toe In / Out R, Velocity

SVM
(polynomial kernel) 10

Distance, Double Supp. Time L, Double Support Unload Time L (%GC) L, Heel Off
On Perc R, Heel Off On L [SD], Step Time Differential, Stride Velocity L, Stride

Velocity L [SD], Swing Time L, Toe In / Out R

Mobility Lab data set

Gaussian Naive Bayes 15

Lower Limb—Double Support L (%GCT), Lower Limb—Double Support R (%GCT),
Lower Limb—Foot Strike Angle R, Lower Limb—Stance R (%GCT), Lower

Limb—Terminal Double Support R (%GCT) [SD], Lower Limb—Toe Off Angle L,
Lower Limb—Toe Off Angle R, Lumbar—Sagittal Range of Motion, Trunk—Coronal
Range of Motion [SD], Trunk—Sagittal Range of Motion, Trunk—Transverse Range

of Motion, Turns—N, Turns—Steps in Turn, Turns—Turn Velocity, Upper
Limb—Arm Range of Motion L

Decision Tree 41

Duration, Lower Limb—Cadence L, Lower Limb—Cadence R, Lower
Limb—Circumduction L, Lower Limb—Circumduction L [SD], Lower

Limb—Circumduction R, Lower Limb—Elevation at Midswing L, Lower
Limb—Elevation at Midswing R, Lower Limb—Elevation at Midswing R [SD],

Lower Limb—Foot Strike Angle L, Lower Limb—Foot Strike Angle L [SD], Lower
Limb—Foot Strike Angle R, Lower Limb—Foot Strike Angle R [SD], Lower

Limb—Gait Cycle Duration L, Lower Limb—Gait Cycle Duration L [SD], Lower
Limb—Gait Cycle Duration R, Lower Limb—Gait Cycle Duration R [SD], Lower

Limb—Gait Speed L, Lower Limb—Gait Speed R, Lower Limb—Lateral Step
Variability L, Lower Limb—Lateral Step Variability R, Lower Limb—N, Lower

Limb—Single Limb Support L (%GCT) [SD], Lower Limb—Stance L (%GCT), Lower
Limb—Stance L (%GCT) [SD], Lower Limb—Stance R (%GCT) [SD], Lower

Limb—Step Duration L, Lower Limb—Step Duration L [SD], Lower Limb—Step
Duration R, Lower Limb—Step Duration R [SD], Lower Limb—Stride Length L,

Lower Limb—Stride Length L [SD], Lower Limb—Toe Off Angle L, Lower
Limb—Toe Off Angle L [SD], Lower Limb—Toe Off Angle R, Lower Limb—Toe Off
Angle R [SD], Lower Limb—Toe Out Angle L, Lower Limb—Toe Out Angle L [SD],

Lower Limb—Toe Out Angle R, Trunk—Transverse Range of Motion [SD],
Turns—Steps in Turn [SD]



Brain Sci. 2021, 11, 1049 18 of 21

Table A2. Cont.

No. Features Features

DIERS data set

k-Nearest Neighbor 9

Lower Limb—Gait Cycle Duration L, Lower Limb—Single Limb Support R (%GCT),
Lower Limb—Terminal Double Support R (%GCT), Lower Limb—Terminal Double
Support R (%GCT) [SD], Lower Limb—Toe Off Angle L [SD], Lower Limb—Toe Off

Angle R [SD], Lumbar—Coronal Range of Motion, Trunk—Coronal Range of
Motion, Upper Limb—Arm Range of Motion L [SD]

SVM
(linear kernel) 5

Lower Limb—Stride Length R, Lower Limb—Toe Off Angle R [SD],
Lumbar—Transverse Range of Motion, Lumbar—Transverse Range of Motion [SD],

Upper Limb—Arm Range of Motion R [SD]

SVM
(rbf kernel) 24

Lower Limb—Double Support R (%GCT), Lower Limb—Foot Strike Angle R [SD],
Lower Limb—Gait Speed L, Lower Limb—Gait Speed R, Lower Limb—Lateral Step
Variability L, Lower Limb—Single Limb Support R (%GCT), Lower Limb—Stance L
(%GCT), Lower Limb—Stride Length L, Lower Limb—Terminal Double Support R
(%GCT), Lower Limb—Toe Off Angle L, Lower Limb—Toe Off Angle L [SD], Lower
Limb—Toe Off Angle R, Lower Limb—Toe Off Angle R [SD], Lower Limb—Toe Out
Angle R [SD], Lumbar—Coronal Range of Motion [SD], Lumbar—Sagittal Range of
Motion, Lumbar—Sagittal Range of Motion [SD], Trunk—Coronal Range of Motion
[SD], Trunk—Transverse Range of Motion [SD], Turns—Turn Velocity [SD], Upper
Limb—Arm Range of Motion L, Upper Limb—Arm Range of Motion L [SD], Upper

Limb—Arm Swing Velocity L [SD], Upper Limb—Arm Swing Velocity R [SD]

SVM
(polynomial kernel) 12

Lower Limb—Circumduction R, Lower Limb—Elevation at Midswing R, Lower
Limb—Foot Strike Angle L, Lower Limb—Foot Strike Angle R, Lower Limb—Gait

Speed L, Lower Limb—Stride Length L, Lower Limb—Toe Off Angle L, Lower
Limb—Toe Off Angle L [SD], Turns—Angle [SD], Upper Limb—Arm Range of

Motion R, Upper Limb—Arm Range of Motion R [SD], Upper Limb—Arm Swing
Velocity L

References
1. Goldenberg, M.M. Multiple Sclerosis Review. Pharm. Ther. 2012, 37, 175.
2. Ziemssen, T. Symptom Management in Patients with Multiple Sclerosis. J. Neurol. Sci. 2011, 311, S48–S52. [CrossRef]
3. Galea, M.P.; Cofré Lizama, L.E.; Butzkueven, H.; Kilpatrick, T.J. Gait and Balance Deterioration Over a 12-Month Period in

Multiple Sclerosis Patients with EDSS Scores ≤ 3.0. Neuro Rehabil. 2017, 40, 277–284. [CrossRef]
4. Filli, L.; Sutter, T.; Easthope, C.S.; Killeen, T.; Meyer, C.; Reuter, K.; Lorincz, L.; Bolliger, M.; Weller, M.; Curt, A.; et al. Profiling

Walking Dysfunction in Multiple Sclerosis: Characterisation, Classification and Progression Over Time. Sci. Rep. 2018, 8, 1–13.
[CrossRef]

5. LaRocca, N.G. Impact of Walking Impairment in Multiple Sclerosis. Patient Patient-Cent. Outcomes Res. 2011, 4, 189–201. [CrossRef]
[PubMed]

6. Kalron, A.; Givon, U. Gait Characteristics According to Pyramidal, Sensory and Cerebellar EDSS Subcategories in People with
Multiple Sclerosis. J. Neurol. 2016, 263, 1796–1801. [CrossRef] [PubMed]

7. Novotna, K.; Sobisek, L.; Horakova, D.; Havrdova, E.; Lizrova Preiningerova, J. Quantification of Gait Abnormalities in Healthy-
Looking Multiple Sclerosis Patients (with Expanded Disability Status Scale 0–1.5). Eur. Neurol. 2016, 76, 99–104. [CrossRef]

8. Benedetti, M.G.; Piperno, R.; Simoncini, L.; Bonato, P.; Tonini, A.; Giannini, S. Gait Abnormalities in Minimally Impaired Multiple
Sclerosis Patients. Mult. Scler. Int. 1999, 5, 363–368. [CrossRef] [PubMed]

9. Martin, C.L.; Phillips, B.A.; Kilpatrick, T.J.; Butzkueven, H.; Tubridy, N.; McDonald, E. Gait and Balance Impairment in Early
Multiple Sclerosis in The Absence of Clinical Disability. Mult. Scler. J. 2006, 12, 620–628. [CrossRef] [PubMed]

10. Wiendl, H.; Meuth, S.G. Pharmacological Approaches to Delaying Disability Progression in Patients with Multiple Sclerosis.
Drugs 2015, 75, 947–977. [CrossRef] [PubMed]

11. Voigt, I.; Ziemssen, T. Internationale “Brain Health Initiative” und Multiple Sklerose. DG Neurol. 2019, 3, 1–7. [CrossRef]
12. Ziemssen, T.; Kern, R.; Thomas, K. Multiple Sclerosis: Clinical Profiling and Data Collection as Prerequisite for Personalized

Medicine Approach. BMC Neurol. 2016, 16, 124. [CrossRef]
13. Ziemssen, T.; Piani-Meier, D.; Bennett, B.; Johnson, C.; Tinsley, K.; Trigg, A.; Hach, T.; Dahlke, F.; Tomic, D.; Tolley, C.; et al. A

Physician-Completed Digital Tool for Evaluating Disease Progression (Multiple Sclerosis Progression Discussion Tool): Validation
Study. J. Med. Internet Res. 2020, 22, e16932. [CrossRef]

14. Inojosa, H.; Proschmann, U.; Akgün, K.; Ziemssen, T. Should We Use Clinical Tools to Identify Disease Progression? Front. Neurol.
2021, 11, 1890. [CrossRef]

http://doi.org/10.1016/S0022-510X(11)70009-0
http://doi.org/10.3233/NRE-161413
http://doi.org/10.1038/s41598-018-22676-0
http://doi.org/10.2165/11591150-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/21766914
http://doi.org/10.1007/s00415-016-8200-6
http://www.ncbi.nlm.nih.gov/pubmed/27314963
http://doi.org/10.1159/000448091
http://doi.org/10.1177/135245859900500510
http://www.ncbi.nlm.nih.gov/pubmed/10516781
http://doi.org/10.1177/1352458506070658
http://www.ncbi.nlm.nih.gov/pubmed/17086909
http://doi.org/10.1007/s40265-015-0411-0
http://www.ncbi.nlm.nih.gov/pubmed/26033077
http://doi.org/10.1007/s42451-019-0102-2
http://doi.org/10.1186/s12883-016-0639-7
http://doi.org/10.2196/16932
http://doi.org/10.3389/fneur.2020.628542


Brain Sci. 2021, 11, 1049 19 of 21

15. Voigt, I.; Gabriel, H.; Castro, I.; Dillenseger, A.; Haase, R. Digital Twins for Multiple Sclerosis. Front. Immunol. 2021, 12, 1556.
[CrossRef] [PubMed]

16. Shanahan, C.J.; Boonstra, F.M.C.; Cofré Lizama, L.E.; Strik, M.; Moffat, B.A.; Khan, F.; Kilpatrick, T.J.; van der Walt, A.; Galea,
M.P.; Scott, C.K. Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis. Front. Neurol. 2018,
8, 708. [CrossRef] [PubMed]

17. Inojosa, H.; Schriefer, D.; Ziemssen, T. Clinical Outcome Measures in Multiple Sclerosis: A Review. Autoimmun. Rev. 2020, 19,
102512. [CrossRef]

18. Hora, M.; Soumar, L.; Pontzer, H.; Sládek, V. Body Size and Lower Limb Posture during Walking in Humans. PLoS ONE 2017, 12,
1–26. [CrossRef] [PubMed]

19. Pau, M.; Corona, F.; Pilloni, G.; Porta, M.; Coghe, G.; Cocco, E. Do Gait Patterns Differ in Men and Women with Multiple Sclerosis?
Mult. Scler. Relat. Disord. 2017, 18, 202–208. [CrossRef]

20. Tenforde, A.S.; Borgstrom, H.E.; Outerleys, J.; Davis, I.S. Is Cadence Related to Leg Length and Load Rate? J. Orthop. Sports Phys.
Ther. 2019, 49, 280–283. [CrossRef]

21. Vienne-Jumeau, A.; Quijoux, F.; Vidal, P.P.; Ricard, D. Value of Gait Analysis for Measuring Disease Severity using Inertial Sensors
in Patients with Multiple Sclerosis: Protocol for A Systematic Review and Meta-Analysis. Syst. Rev. 2019, 8, 1–5. [CrossRef]
[PubMed]

22. Scholz, M.; Haase, R.; Schriefer, D.; Voigt, I.; Ziemssen, T. Electronic Health Interventions in The Case of Multiple Sclerosis: From
Theory to Practice. Brain Sci. 2021, 11, 180. [CrossRef] [PubMed]

23. Liparoti, M.; Della Corte, M.; Rucco, R.; Sorrentino, P.; Sparaco, M.; Capuano, R.; Minino, R.; Lavorgna, L.; Agosti, V.; Sorrentino,
G.; et al. Gait Abnormalities in Minimally Disabled People with Multiple Sclerosis: A 3D-Motion Analysis Study. Mult. Scler.
Relat. Disord. 2019, 29, 100–107. [CrossRef]

24. Saxe, R.C.; Kappagoda, S.; Mordecai, D.K.A. Classification of Pathological and Normal Gait: A Survey. arXiv 2020,
arXiv:2012.14465.

25. Santinelli, F.B.; Sebastião, E.; Kuroda, M.H.; Moreno, V.C.; Pilon, J.; Vieira, L.H.P.; Barbieri, F.A. Cortical Activity and Gait
Parameter Characteristics in People with Multiple Sclerosis During Unobstructed Gait and Obstacle Avoidance. Gait Posture 2021,
86, 226–232. [CrossRef]

26. Tajali, S.; Mehravar, M.; Negahban, H.; van Dieën, J.H.; Shaterzadeh-Yazdi, M.-J.; Mofateh, R. Impaired Local Dynamic Stability
During Treadmill Walking Predicts Future Falls in Patients with Multiple Sclerosis_ A Prospective Cohort Study. Clin. Biomech.
2019, 67, 197–201. [CrossRef]

27. Scholz, M.; Haase, R.; Trentzsch, K.; Stölzer-Hutsch, H.; Ziemssen, T. Improving Digital Patient Care: Lessons Learned from
Patient-Reported and Expert-Reported Experience Measures for the Clinical Practice of Multidimensional Walking Assessment.
Brain Sci. 2021, 11, 786. [CrossRef] [PubMed]

28. Dilsizian, S.E.; Siegel, E.L. Artificial Intelligence in Medicine and Cardiac Imaging: Harnessing Big Data and Advanced Computing
to Provide Personalized Medical Diagnosis and Treatment. Curr. Cardiol. Rep. 2014, 16, 441. [CrossRef]

29. Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare:
Past, Present and Future. Stroke Vasc. Neurol. 2017, 2. [CrossRef]

30. Piryonesi, S.M.; Rostampour, S.; Piryonesi, S.A. Predicting Falls and Injuries in People with Multiple Sclerosis using Machine
Learning Algorithms. Mult. Scler. Relat. Disord. 2021, 49, 102740. [CrossRef] [PubMed]

31. Ravi, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-perez, J.; Lo, B. Deep Learning for Health Informatics. IEEE J. Biomed.
Health Inform. 2017, 21, 4–21. [CrossRef]

32. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros,
J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs. JAMA J. Am. Med. Assoc. 2016, 316, 2402–2410. [CrossRef]

33. Trentzsch, K.; Weidemann, M.L.; Torp, C.; Inojosa, H.; Scholz, M.; Haase, R.; Schriefer, D.; Akgun, K.; Ziemssen, T. The Dresden
Protocol for Multidimensional Walking Assessment (DMWA) in Clinical Practice. Front. Neurosci. 2020, 14. [CrossRef]

34. McDonough, A.L.; Batavia, M.; Chen, F.C.; Kwon, S.; Ziai, J. The Validity and Reliability of the GAITRite System’s Measurements:
A Preliminary Evaluation. Arch. Phys. Med. Rehabil. 2001, 82, 419–425. [CrossRef]

35. Bilney, B.; Morris, M.; Webster, K. Concurrent Related Validity of the GAITRite®Walkway System for Quantification of The
Spatial and Temporal Parameters of Gait. Gait Posture 2003, 17, 68–74. [CrossRef]

36. Webster, K.E.; Wittwer, J.E.; Feller, J.A. Validity of the GAITRite®Walkway System for The Measurement of Averaged and
Individual Step Parameters of Gait. Gait Posture 2005, 22, 317–321. [CrossRef]

37. Electronic Gaitr. GAITRite Electronic Walkway Technical Reference. Tech. Ref. 2013, 1–50. Available online: https://www.
procarebv.nl/wp-content/uploads/2017/01/Technische-aspecten-GAITrite-Walkway-System.pdf (accessed on 5 June 2021).

38. Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance and Gait with
Synchronized Body-worn Sensors. J. Bioeng. Biomed. Sci. 2011, 7. [CrossRef]

39. Schmitz-Hübsch, T.; Brandt, A.U.; Pfueller, C.; Zange, L.; Seidel, A.; Kühn, A.A.; Friedermann, P.; Minnerop, M.; Doss, S. Accuracy
and Repeatability of Two Methods of Gait Analysis-GaitRiteTM und Mobility LabTM-in Subjects with Cerebellar Ataxia. Gait
Posture 2016, 48, 194–201. [CrossRef] [PubMed]

http://doi.org/10.3389/fimmu.2021.669811
http://www.ncbi.nlm.nih.gov/pubmed/34012452
http://doi.org/10.3389/fneur.2017.00708
http://www.ncbi.nlm.nih.gov/pubmed/29449825
http://doi.org/10.1016/j.autrev.2020.102512
http://doi.org/10.1371/journal.pone.0172112
http://www.ncbi.nlm.nih.gov/pubmed/28192522
http://doi.org/10.1016/j.msard.2017.10.005
http://doi.org/10.2519/jospt.2019.8420
http://doi.org/10.1186/s13643-018-0918-z
http://www.ncbi.nlm.nih.gov/pubmed/30621765
http://doi.org/10.3390/brainsci11020180
http://www.ncbi.nlm.nih.gov/pubmed/33540640
http://doi.org/10.1016/j.msard.2019.01.028
http://doi.org/10.1016/j.gaitpost.2021.03.026
http://doi.org/10.1016/j.clinbiomech.2019.05.013
http://doi.org/10.3390/brainsci11060786
http://www.ncbi.nlm.nih.gov/pubmed/34198702
http://doi.org/10.1007/s11886-013-0441-8
http://doi.org/10.1136/svn-2017-000101
http://doi.org/10.1016/j.msard.2021.102740
http://www.ncbi.nlm.nih.gov/pubmed/33450500
http://doi.org/10.1109/JBHI.2016.2636665
http://doi.org/10.1001/jama.2016.17216
http://doi.org/10.3389/fnins.2020.582046
http://doi.org/10.1053/apmr.2001.19778
http://doi.org/10.1016/S0966-6362(02)00053-X
http://doi.org/10.1016/j.gaitpost.2004.10.005
https://www.procarebv.nl/wp-content/uploads/2017/01/Technische-aspecten-GAITrite-Walkway-System.pdf
https://www.procarebv.nl/wp-content/uploads/2017/01/Technische-aspecten-GAITrite-Walkway-System.pdf
http://doi.org/10.4172/2155-9538.s1-007
http://doi.org/10.1016/j.gaitpost.2016.05.014
http://www.ncbi.nlm.nih.gov/pubmed/27289221


Brain Sci. 2021, 11, 1049 20 of 21

40. Solomon, A.J.; Jacobs, J.V.; Lomond, K.V.; Henry, S.M. Detection of Postural Sway Abnormalities by Wireless Inertial Sensors
in Minimally Disabled Patients with Multiple Sclerosis: A Case-Control Study. J. Neuroeng. Rehabil. 2015, 12, 1–9. [CrossRef]
[PubMed]

41. APDM Inc. Wearable Technologies. In User Guide Mobility Lab; APDM Inc.: Portland, OR, USA, 2020.
42. Spain, R.; St George, R.; Salarian, A.; Mancini, M.; Wagner, J.M.; Horak, F.B.; Bourdette, D. Body-Worn Motion Sensors Detect

Balance and Gait Deficits in People with Multiple Sclerosis Who Have Normal Walking Speed. Gait Posture 2012, 35, 573–578.
[CrossRef] [PubMed]

43. Mancini, M.; Horak, F.B. Potential of APDM Mobility Lab for The Monitoring of The Progression of Parkinson’s Disease. Expert
Rev. Med. Devices 2016, 13, 455–462. [CrossRef] [PubMed]

44. Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A Sensitive, Valid and Reliable
Measure of Postural Control. J. Neuroeng. Rehabil. 2012, 9, 1. [CrossRef]

45. Killeen, T.; Elshehabi, M.; Filli, L.; Hobert, M.A.; Hansen, C.; Rieger, D.; Brockmann, K.; Nussbaum, S.; Zörner, B.; Bolliger, M.;
et al. Arm Swing Asymmetry in Overground Walking. Sci. Rep. 2018, 8, 1–10. [CrossRef]

46. Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and Repeatability of Inertial Measure-
ment Units for Measuring Gait Parameters. Gait Posture 2017, 55, 87–93. [CrossRef]

47. Werner, C.; Heldmann, P.; Hummel, S.; Bauknecht, L.; Bauer, J.M.; Hauer, K. Concurrent Validity, Test-Retest Reliability, and
Sensitivity to Change of a Single Body-Fixed Sensor for Gait Analysis During Rollator-Assisted Walking in Acute Geriatric
Patients. Sensors 2020, 20, 4866. [CrossRef] [PubMed]

48. Cooper, K.H. A Means of Assessing Maximal Oxygen Intake. JAMA 1968, 203, 135–138. [CrossRef]
49. Butland, R.J.A.; Pang, J.; Gross, E.R.; Woodcock, A.A.; Geddes, D.M. Two-, Six-, and 12-Minute Walking Tests in Respiratory

Disease. Br. Med. J. 1982, 284, 1607–1608. [CrossRef]
50. Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of The Six-Minute Walk in Multiple Sclerosis Subjects and Healthy Controls.

Mult. Scler. 2008, 14, 383–390. [CrossRef]
51. Brooks, D.; Parsons, J.; Tran, D.; Jeng, B.; Gorczyca, B.; Newton, J.; Lo, V.; Dear, C.; Silaj, E.; Hawn, T. The Two-Minute Walk Test

as a Measure of Functional Capacity in Cardiac Surgery Patients. Arch. Phys. Med. Rehabil. 2004, 85, 1525–1530. [CrossRef]
52. Gijbels, D.; Eijnde, B.O.; Feys, P. Comparison of the 2- and 6-Minute Walk Test in Multiple Sclerosis. Mult. Scler. 2011, 17,

1269–1272. [CrossRef]
53. Rossier, P.; Wade, D.T. Validity and Reliability Comparison of 4 Mobility Measures in Patients Presenting with Neurologic

Impairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [CrossRef]
54. Scalzitti, D.A.; Harwood, K.J.; Maring, J.R.; Leach, S.J.; Ruckert, E.A.; Costello, E. Validation of the 2-Minute Walk Test with

the 6-Minute Walk Test and Other Functional Measures in Persons with Multiple Sclerosis. Int. J. MS Care 2018, 20, 158–163.
[CrossRef]

55. Degenhardt, B.F.; Starks, Z.; Bhatia, S. Reliability of the DIERS Formetric 4D Spine Shape Parameters in Adults without Postural
Deformities. Biomed. Res. Int. 2020, 2020, 1796247. [CrossRef] [PubMed]

56. Liu, X.; Yang, X.S.; Wang, L.; Yu, M.; Liu, X.G.; Liu, Z.J. Usefulness of a Combined Approach of DIERS Formetric 4D®and
QUINTIC Gait Analysis System to Evaluate the Clinical Effects of Different Spinal Diseases on Spinal-Pelvic-Lower Limb Motor
Function. J. Orthop. Sci. 2020, 25, 576–581. [CrossRef]

57. Tabard-Fougère, A.; Bonnefoy-Mazure, A.; Hanquinet, S.; Lascombes, P.; Armand, S.; Dayer, R. Validity and Reliability of Spine
Rasterstereography in Patients with Adolescent Idiopathic Scoliosis. Spine 2017, 42, 98–105. [CrossRef]

58. Hübner, S. Manual DIERS Products; DIERS International GmbH: Schlangenbad, Germany, 2021; pp. 1–50.
59. Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A.J. Measuring the Impact of MS on Walking Ability: The

12-Item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [CrossRef] [PubMed]
60. Ziemssen, T.; Phillips, G.; Shah, R.; Mathias, A.; Foley, C.; Coon, C.; Sen, R.; Lee, A.; Agarwal, S. Development of the Multiple

Sclerosis (MS) Early Mobility Impairment Questionnaire (EMIQ). J. Neurol. 2016, 263, 1969–1983. [CrossRef] [PubMed]
61. D’Amico, E.; Haase, R.; Ziemssen, T. Review: Patient-Reported Outcomes in Multiple Sclerosis Care. Mult. Scler. Relat. Disord.

2019. [CrossRef]
62. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef]

[PubMed]
63. Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
64. Webb, G.I.; Zheng, Z. Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques. IEEE

Trans. Knowl. Data Eng. 2004, 16, 980–991. [CrossRef]
65. Tang, S.; Zheng, Y.T.; Wang, Y.; Chua, T.S. Sparse Ensemble Learning for Concept Detection. IEEE Trans. Multimed. 2012, 14, 43–54.

[CrossRef]
66. Pudil, P.; Novovieova, J.; Kittler, J. Floating Search Methods in Feature Selection. Pattern Recognit. Lett. 1994, 15, 1119–1125.

[CrossRef]
67. Ojala, M.; Garriga, G.C. Permutation Tests for Studying Classifier Performance. J. Mach. Learn. Res. 2010, 11, 1833–1863.
68. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-learn: Machine learning in Python. J. Mach.

Learn. Res. 2011, 12, 2825–2830.

http://doi.org/10.1186/s12984-015-0066-9
http://www.ncbi.nlm.nih.gov/pubmed/26324067
http://doi.org/10.1016/j.gaitpost.2011.11.026
http://www.ncbi.nlm.nih.gov/pubmed/22277368
http://doi.org/10.1586/17434440.2016.1153421
http://www.ncbi.nlm.nih.gov/pubmed/26872510
http://doi.org/10.1186/1743-0003-9-59
http://doi.org/10.1038/s41598-018-31151-9
http://doi.org/10.1016/j.gaitpost.2017.04.013
http://doi.org/10.3390/s20174866
http://www.ncbi.nlm.nih.gov/pubmed/32872168
http://doi.org/10.1001/jama.1968.03140030033008
http://doi.org/10.1136/bmj.284.6329.1607
http://doi.org/10.1177/1352458507082607
http://doi.org/10.1016/j.apmr.2004.01.023
http://doi.org/10.1177/1352458511408475
http://doi.org/10.1053/apmr.2001.9396
http://doi.org/10.7224/1537-2073.2017-046
http://doi.org/10.1155/2020/1796247
http://www.ncbi.nlm.nih.gov/pubmed/32104678
http://doi.org/10.1016/j.jos.2019.09.015
http://doi.org/10.1097/BRS.0000000000001679
http://doi.org/10.1212/WNL.60.1.31
http://www.ncbi.nlm.nih.gov/pubmed/12525714
http://doi.org/10.1007/s00415-016-8210-4
http://www.ncbi.nlm.nih.gov/pubmed/27393117
http://doi.org/10.1016/j.msard.2019.05.019
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://doi.org/10.1002/widm.1249
http://doi.org/10.1109/TKDE.2004.29
http://doi.org/10.1109/TMM.2011.2168198
http://doi.org/10.1016/0167-8655(94)90127-9


Brain Sci. 2021, 11, 1049 21 of 21

69. Raschka, S. MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python’s Scientific Computing
Stack. J. Open Source Softw. 2018, 3, 638. [CrossRef]

70. Chee, J.N.; Ye, B.; Gregor, S.; Berbrayer, D.; Mihailidis, A.; Patterson, K.K. Influence of Multiple Sclerosis on Spatiotemporal Gait
Parameters: A Systematic Review and Meta-Regression. Arch. Phys. Med. Rehabil. 2021. [CrossRef] [PubMed]

71. Plotnik, M.; Wagner, J.M.; Adusumilli, G.; Gottlieb, A.; Naismith, R.T. Gait Asymmetry, and Bilateral Coordination of Gait during
a Six-Minute Walk Test in Persons with Multiple Sclerosis. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

72. Wu, X.; Kumar, V.; Ross, Q.J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in
Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

73. Domingos, P.; Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning. Mach.
Learn. 1997, 29, 103–130. [CrossRef]

74. Hand, D.J.; Yu, K. Idiot’s Bayes-Not So Stupid After All? Int. Stat. Rev. 2001, 69, 385–398. [CrossRef]
75. Russek, E.; Richard, A.; Fisher, K.D.; Fisher, L. The Effect of Assuming Independence in Applying Bayes’ Theorem to Risk

Estimation and Classification in Diagnosis *. Comput. Biomed. Res. 1983, 16, 537–552. [CrossRef]
76. Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Emerg. Artif. Intell. Appl. Comput. Eng.

2007, 160, 249–268. [CrossRef]
77. Murthy, S.K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Min. Knowl. Discov. 1998, 2,

345–389. [CrossRef]
78. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
79. Schaffer, C. Overfitting Avoidance as Bias. Mach. Learn. 1993, 10, 153–178. [CrossRef]
80. Cost, S.; Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Mach. Learn. 1993, 10, 57–78.

[CrossRef]
81. Wettschereck, D.; Aha, D.W.; Mohri, T. A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy

Learning Algorithms. Artif. Intell. Rev. 1997, 11, 273–314. [CrossRef]
82. Sánchez, V.D.A. Advanced Support Vector Machines and Kernel Methods. Neurocomputing 2003, 55, 5–20. [CrossRef]
83. Joachims, T. Text Categorization with SVM: Learning with Many Relevant Features. Eur. Conf. Mach. Learn. Springer Berl. 2009, 4,

137–142. [CrossRef]
84. Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167.

[CrossRef]
85. Bohannon, R.W. Normative Reference Values for The Two-Minute Walk Test Derived by Meta-Analysis. J. Phys. Ther. Sci. 2017,

29, 2224–2227. [CrossRef] [PubMed]
86. Wolf, I.; Bridenbaugh, S.A.; Gschwind, Y.J.; Kressig, R.W. Gangveränderungen und Sturzrisiko. Prax. Verl. Hans Huber 2012, 101,

175–181. [CrossRef] [PubMed]
87. Oh-Park, M.; Holtzer, R.; Xue, X.; Verghese, J. Conventional and Robust Quantitative Gait Norms in Community-Dwelling Older

Adults. J. Am. Geriatr. Soc. 2010, 58, 1512–1518. [CrossRef]
88. Duan, K.; Keerthi, S.; Poo, A. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing

2003, 51, 41–59. [CrossRef]
89. Wolpert, D.H. On Overfitting Avoidance as Bias; Technical Report SFI TR 92-03-5001; The Santa Fe Institute: Santa Fe, NM, USA,

1993.
90. Gu, X.; Guo, Y.; Deligianni, F.; Lo, B.; Yang, G.-Z. Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern

Recognition. IEEE Trans. Neural Netw. Learn Syst. 2020, 32, 546–560. [CrossRef] [PubMed]

http://doi.org/10.21105/joss.00638
http://doi.org/10.1016/j.apmr.2020.12.013
http://www.ncbi.nlm.nih.gov/pubmed/33460576
http://doi.org/10.1038/s41598-020-68263-0
http://www.ncbi.nlm.nih.gov/pubmed/32709914
http://doi.org/10.1007/s10115-007-0114-2
http://doi.org/10.1023/A:1007413511361
http://doi.org/10.1111/j.1751-5823.2001.tb00465.x
http://doi.org/10.1016/0010-4809(83)90040-X
http://doi.org/10.1007/s10462-007-9052-3
http://doi.org/10.1023/A:1009744630224
http://doi.org/10.1007/BF00116251
http://doi.org/10.1007/BF00993504
http://doi.org/10.1007/BF00993481
http://doi.org/10.1023/A:1006593614256
http://doi.org/10.1016/S0925-2312(03)00373-4
http://doi.org/10.1007/bfb0026683
http://doi.org/10.1023/A:1009715923555
http://doi.org/10.1589/jpts.29.2224
http://www.ncbi.nlm.nih.gov/pubmed/29643611
http://doi.org/10.1024/1661-8157/a000827
http://www.ncbi.nlm.nih.gov/pubmed/22294303
http://doi.org/10.1111/j.1532-5415.2010.02962.x
http://doi.org/10.1016/S0925-2312(02)00601-X
http://doi.org/10.1109/TNNLS.2020.3009448
http://www.ncbi.nlm.nih.gov/pubmed/32726285

	Introduction 
	Materials and Methods 
	Study Design 
	Basic Statistics 
	Machine Learning Approaches 

	Results 
	Descriptive Analyses 
	Machine Learning Techniques 

	Discussion 
	Conclusions 
	
	References

