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Abstract: Computational identification of special protein molecules is a key issue in understanding
protein function. It can guide molecular experiments and help to save costs. I assessed 18 papers
published in the special issue of Int. J. Mol. Sci., and also discussed the related works.
The computational methods employed in this special issue focused on machine learning, network
analysis, and molecular docking. New methods and new topics were also proposed. There were in
addition several wet experiments, with proven results showing promise. I hope our special issue will
help in protein molecules identification researches.
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1. Introduction

With the development of next generation sequencing technologies, the size of biological databases
have increased dramatically in terms of the number of samples. It is fast and cheap to obtain biological
sequences but relatively slow and expensive to extract function information because of limitations
of traditional biological experimental technologies. Protein, as the product of gene expression and
the important material basis of life activity, participates in almost all life activities and biological
processes. For some special protein molecules, the detection of new ones is time-consuming and costly.
Some special proteins are present, such as cytokines, enzymes, cell-penetrating peptides, anticancer
peptides, cancerlectins, and G protein-coupled receptors. In order to save the wet experimental costs,
researches first select some candidates through computer programs. The “computer program” is the
key step in selecting candidates. High false positive software would lead to high spending on the
validation process.

In this special issue, these “computer program” approaches and algorithms are discussed.
Numerous sequence-based “golden features” have been proposed for these problems, such as Chou’s
PseAAC. Ever since the concept of PseAAC was proposed, it has penetrated into nearly all fields
of protein identification. However, it is suggested that special features and classification methods
should be proposed for special protein molecular. “Golden features” could hardly apply to all kinds of
proteins. In this special issue, submissions focused on a kind of special protein molecules, collected
related data sets, got better prediction performance (especially low false positive), and developed
friendly software tools or web servers.

We received 36 submissions. After rigorous reviewing process, 18 papers were published.
They come from different countries, including China, Russia, Canada, Australia, USA, Poland, etc.
These papers could be categorized into three subtopics. As shown in Figure 1.

Int. J. Mol. Sci. 2018, 19, 536; doi:10.3390/ijms19020536 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-6406-1142
http://dx.doi.org/10.3390/ijms19020536
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 536 2 of 9

Figure 1. Subtopics of our special issue [38,52,63].

2. Machine Learning Related Researches

2.1. Protein–Protein Interaction Prediction

The first subtopic is to identify or predict protein function with machine learning methods.
Two papers focused on protein–protein interaction prediction. Protein–protein interactions (PPIs)
play crucial roles in almost all cellular processes. Correctly predicting protein–protein interactions
contributes to precise protein function prediction [1,2]. Most of them focus on the PPIs predictions
from various data types, including 3D structural information, gene ontology and annotations, and gene
fusion. Wang et al. [3] proposed a sequence-based approach (DNN-LCTD) combining deep neural
networks (DNN) and Local Conjoint Triad Description (LCTD) feature representation. Experimental
results showed that DNN-LCTD is very promising for predicting PPIs. Wang et al. [4] using the
Zernike moments (ZM) descriptor on the PSSM combined with Probabilistic Classification Vector
Machines (PCVM) classifier developed the PCVMZM predictor for predicting the PPIs from protein
amino acids sequences. It was proved to be a robust, powerful and feasible PPI prediction method.
Ding et al. [5] developed a random forest algorithm based predictor using a multivariate mutual
information feature representation scheme and normalized Moreau-Broto Autocorrelation information
from protein sequence. Another work [6] is a novel matrix-based protein sequence representation
approach to identify PPIs, using an ensemble learning method for classification. The matrix of Amino
Acid Contact (AAC) was constructed based on the statistical analysis of residue-pairing frequencies in a
data-set of 6323 protein–protein complexes. The feature vector was extracted by applying algorithms of
Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the Substitution
Matrix Representation (SMR) matrix of protein sequence.

Drug-target interaction is a special PPI. Because the experimental prediction of drug-target
interaction (DTIs) is time-consuming and expensive, computational technology with high accuracy
plays a crucial rule in the large-scale rapid prediction of DTIs. Shen et al. [7] proposed DAWN a kind
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of Drug-target interactions predictor combining discrete Wavelet transform and Network features.
Most importantly, DAWN as a kind of machine learning approach of feature vector-based method,
has the desired effect under the condition of without network information. In the same year, they
also developed the second tool [8] using molecular substructure fingerprints, Multivariate Mutual
Information (MMI) of proteins, and network topology.

Hotspot has important significance in the determination of protein–protein interactions [9]. Many
methods have been developed for the hotspot predictions [10,11] and even protein binding site
predictions [12]. Most of the works focused on the hotspot predictions from a curated small partial
dataset of the whole protein sequences [13]. In Jiang’s work [14], the issue of hotspot determination
was approached from whole natural protein sequences, and a random projection ensemble system
based on k nearest neighbor algorithm to identify hotspot residues by sequence information alone was
developed. Experimental results showed that although this method did not perform well enough in
the real applications of hotspots, it was very promising in the determination of hotspot residues from
whole sequences.

2.2. Special Proteins Identification

Besides protein–protein interaction, DNA binding proteins, ion channel proteins, and amyloids
have also attracted researchers’ attentions. DNA binding protein is a kind of special protein molecule,
whose identification is one of the most important tasks in studying the function of proteins. In this
regard, many computational predictors have been proposed [15–21]. In a special issue, Zhang et al. [22]
proposed a new approach to extract evolutionary information from the Position Specific Frequency
Matrix (PSFM) and incorporate the evolutionary information, and a computational predictor was
proposed for DNA binding protein identification. Experimental results showed that this predictor
outperformed some existing state-of-the-art approaches in this field. DNA-protein interactions play a
key role in a variety of biological processes, especially in cellular metabolism. Endowed with a ditto
multi-scale idea in essence, Shen et al. [23] addressed a kind of competitive method called Multi-scale
Local Average Blocks (MLAB) algorithm. Different from the structure-based route, MLAB exploited a
strategy that not only extracted local evolutionary information from primary sequence, but also used
predicted solvent accessibility. Moreover, the construction on the predictor of DNA-protein binding
sites wields an ensemble weighted sparse representation model with random under-sampling.

Ion channels are membrane proteins which are widely distributed in all cells. They have been
shown to be extensively involved in various physiological and pathological processes, including
regulating neuronal and cardiac excitability, muscle contraction, hormone secretion, fluid movement,
and immune cell activation. Different ion channels play their unique roles in different biological
processes. With the rapid development of next-generation sequencing technologies, the accumulation
of proteomic data provides uswith a platform to systematically investigate and predict ion channels
and their types. Several studies have focused on the prediction of ion channels and their types [24–26].
The paper published in the special issue [27] proposed a new prediction model to quickly predict
ion channels and their types. An improved feature extraction method combining dipeptide
composition with the physicochemical property correlation between two residues was developed
to formulate protein samples. Subsequently, the analysis of variance (ANOVA) combined with
the incremental feature selection (IFS) was employed to find out the optimal features which
can produce the maximum accuracy. As a result, authors achieved the overall accuracies of
87.8% for discriminating ion channels from non-ion channels, 94.0% for distinguishing between
voltage-gated ion channel and ligand-gated ion channels and 92.6% for four types of voltage-gated
ion channels, respectively. Based on the proposed models, a web server called IonchanPred 2.0
(http://lin.uestc.edu.cn/server/IonchanPredv2.0) was established. The free predictor will be most
useful to most wet-experimental scholars. A few groups have focused on the outer membrane protein
recently, Wang et al. introduced the predicted topology structure as a mainly structure-specific
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feature to this classical type of ion channel protein, improved the precision of outer membrane
identification [28], inter-barrel contact prediction [29] and fold recognition [30].

In this special issue, Antonets et al. [31] detected amyloidogenic proteins in the proteomes of
plants. Amyloids are protein fibrils with characteristic spatial structure. The main computational
method for them was phylogenetic analysis together with machine learning techniques. This kind of
protein also includes DNA and RNA binding ones, which showed that different kinds of proteins have
comment characters. To summarize, effective protein features and machine learning techniques are
still essential and challenging in the future.

2.3. Protein Subcellular Localization and Function Analysis

Besides PPI, special proteins, protein subcellular localization, and function prediction are
traditional challenges and attract researchers. In general, only when the protein is located in the
correct subcellular location, can the protein function normally. Therefore, prediction of protein
subcellular localization is an important component of proteomics, and it can aid the identification
of drug targets. Due to the technical limitation and high cost of time and money in traditional
experimental methods, research on protein subcellular location annotation with the machine learning
technique has become a focused research problem in bioinformatics. When we use machine learning
technologies to predict protein subcellular location, we need to extract the features of protein sequences,
and then use the classifier to realize the protein classification. Thus feature extraction and dimension
reduction are important techniques for analyzing the complex and high dimensional biological data
in protein subcellular location. In order to improve the prediction accuracy of protein subcellular
location, an appropriate algorithm for reducing data dimension should be used before classification.
Wang et al. [32] proposed two feature fusion expressions and then used the linear discriminant analysis
(LDA) method for dimension reduction. Considering the general nonlinear property in protein
sequence data, they [33] introduced the nonlinear kernel discriminant analysis (KDA) method to
reduce the high dimensionality in some feature data in this special issue. In this paper, an improved
Gauss kernel parameter selection algorithm was proposed to predict subcellular location. It was
proposed by maximizing the differences of reconstruction errors between edge normal samples and
internal normal samples. The proposed method did not only show the same effect as traditional
methods, but also reduced the computational time and improved the efficiency. It should be noted
that LDA and KDA methods cannot only reduce the data dimensionality, but also take use of some
classification information in the data, resulting in an ideal classification effect. Besides, there have been
some new dimensional reduction algorithms which have been tried in other pattern recognition fields,
such as face recognition [34].

Knowledge of protein function is the key to the understanding of the biological process and
disease development and to the discovery of new therapeutic targets [35]. Various in-silico methods
have been developed for protein function prediction [36], which complement one another due to their
distinct underlying theory [37]. A comprehensive comparison of the performances between those
popular prediction algorithms was conducted based on the information from 93 functional protein
families [38], which observed a substantially higher sensitivity of BLAST and a significantly reduced
false discovery rate of machine learning.

Since machine learning is a key issue in protein research, it is essential to extract numerical features
from the protein primary sequence. Some recent studies showed that evolutionary information and
the sequence-order effects are very important for extracting the features of proteins [39,40]. In their
special issue, Du et al. [41] developed the UltraPse program to convert biological sequences into
digital features. Unlike the PseAAC-Builder [42] or PseAAC-General [43], the UltraPse program can
be used on DNA/RNA sequences as well as protein sequences. The program is a good starting point
in predicting special protein functional characters, especially the exact subcellular localization of
proteins [44].
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3. Network Techniques Related Researches

Network analysis is also an important technique for protein identification and function research.
Identification of disease genes is very important in medicine. For a disease, extracting its disease
genes as completely as possible is helpful in understanding its pathogenesis, thereby designing
effective treatments. To date, several network methods have been proposed to identify genes related
to different diseases, such as the guilt by association (GBA) based method [45], the shortest path
algorithm based method [46–48], the flow propagation algorithm [49], and the random walk with
restart (RWR) algorithm based method [50]. In view of the fact that the RWR algorithm can make
full use of the whole network, a RWR algorithm based method was proposed by Lu et al. [51] to
identify disease genes of uveitis, a serious eye disease that may cause blindness in both young and
middle-aged people. The method first applied the RWR algorithm on a protein–protein interaction
(PPI) network using validated uveitis-related genes as seed nodes. Second, the obtained genes were
filtered by a permutation test that can exclude false positive genes produced by the PPI network.
Finally, they extracted important genes from the remaining genes by evaluating their associations to
validate genes. Several putative genes were accessed and some have been determined to be important
for the pathogenesis of uveitis.

Li et al. [52] employed the advanced network clustering algorithm for protein complex
identification. Their method could detect the overlapping complex from the PPI network. Cluster
analysis of biological networks is an important topic in systems biology. Up to now, a number
of computational methods and tools have been proposed for analyzing biological networks and
identifying protein complexes [53]. Various plugins based on cytoscape, such as CytoNCA [54],
ClusterViz [55], DyNetViewer [56], CytoCtrlAnalyser [57], were developed to analyze biological
networks from different perspectives. CytoCluster [58] in our special issue is a popular clustering tool
which integrates six clustering algorithms and BinGO function. Since it was established in July 2013,
CytoCluster has been downloaded more than 11,200 times from the Cytoscape App Store and has been
applied to different biological networks analyses.

4. Docking and Wet Experiments Researches

Docking is still an interesting and hot topic in protein structure and function analysis, especially in
the drug design process. Adenosine monophosphate-activated protein kinase (AMPK) plays a critical
role in the regulation of energy metabolism. Huang et al. [59] employed molecular docking to get
potential β1-selective AMPK activators. Finally, 12 novel compounds were selected as potential starting
points for the design of direct β1-selective AMPK activators. Hou et al. [60] investigated the relationship
between scopoletin structure and TcPMCA1(a gene name)-inhibiting activity of scopoletin and other
30 coumarin derivatives by employing docking and three-dimensional quantitative structure-activity
relationships (3D-QSAR). This work offers additional insights into the mechanism underlying the
interaction of scopoletin with TcPMCA1 gene. Together with this work, the other three works in this
special issue also carried out wet experiments. Besides wet experiments, Ding et al. [61] completed
bioinformatics analysis and molecular dynamics simulation on glucose 1-dehydrogenase (GDH).
Chandler et al. [62] extracted insulin-binding protein and insulin-like peptides in the Eastern spiny
lobster, Sagmariasus verreauxi. Molecular modelling, including docking, showed various interaction
and regulation. Futoma-Koloch et al. [63] laid special stress on analyzing the relationship between
triamine-biocide tolerance of Salmonella enterica serovar Senftenberg with antimicrobial susceptibility,
serum resistance, and outer membrane proteins.

To conclude, papers in this special issue cover several emerging topics of computational
identification and bioinformatics analysis of special protein molecules. We fervently hope that this
particular issue will attract considerable interest in the relevant fields. We are grateful to Int. J. Mol. Sci.
for providing the chance to organize this special issue. We also thank the reviewers for their efforts in
guaranteeing the high quality of this special issue. Finally, we thank all those who contributed to this
special issue. Int. J. Mol. Sci. has promised to continue with the same topic as a new special issue in
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2018. Besides special protein molecules, nucleic acids with special modifications identification (such as
RNA m6A [64], protein phosphorylation [65] and methylation, etc.) will also be welcomed in the 2018
special issue. I hope more authors and readers will contribute, especially to the follow-up works from
this special issue.
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