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Summary
Background Adolescent idiopathic scoliosis (AIS) is the most common spinal disorder in children, characterized by
insidious onset and rapid progression, which can lead to severe consequences if not detected in a timely manner.
Currently, the diagnosis of AIS primarily relies on X-ray imaging. However, due to limitations in healthcare access
and concerns over radiation exposure, this diagnostic method cannot be widely adopted. Therefore, we have devel-
oped and validated a screening system using deep learning technology, capable of generating virtual X-ray images
(VXI) from two-dimensional Red Green Blue (2D-RGB) images captured by a smartphone or camera to assist spine
surgeons in the rapid, accurate, and non-invasive assessment of AIS.

Methods We included 2397 patients with AIS and 48 potential patients with AIS who visited four medical institutions
in mainland China from June 11th 2014 to November 28th 2023. Participants data included standing full-spine X-ray
images captured by radiology technicians and 2D-RGB images taken by spine surgeons using a camera. We
developed a deep learning model based on conditional generative adversarial networks (cGAN) called Swin-pix2pix
to generate VXI on retrospective training (n = 1842) and validation (n = 100) dataset, then validated the
performance of VXI in quantifying the curve type and severity of AIS on retrospective internal (n = 100), external
(n = 135), and prospective test datasets (n = 268). The prospective test dataset included 268 participants treated in
Nanjing, China, from April 19th, 2023, to November 28th, 2023, comprising 220 patients with AIS and 48
potential patients with AIS. Their data underwent strict quality control to ensure optimal data quality and consistency.

Findings Our Swin-pix2pix model generated realistic VXI, with the mean absolute error (MAE) for predicting the
main and secondary Cobb angles of AIS significantly lower than other baseline cGAN models, at 3.2◦ and 3.1◦ on
prospective test dataset. The diagnostic accuracy for scoliosis severity grading exceeded that of two spine surgery
experts, with accuracy of 0.93 (95% CI [0.91, 0.95]) in main curve and 0.89 (95% CI [0.87, 0.91]) in secondary
curve. For main curve position and curve classification, the predictive accuracy of the Swin-pix2pix model also
surpassed that of the baseline cGAN models, with accuracy of 0.93 (95% CI [0.90, 0.95]) for thoracic curve and
0.97 (95% CI [0.96, 0.98]), achieving satisfactory results on three external datasets as well.
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Interpretation Our developed Swin-pix2pix model holds promise for using a single photo taken with a smartphone or
camera to rapidly assess AIS curve type and severity without radiation, enabling large-scale screening. However,
limited data quality and quantity, a homogeneous participant population, and rotational errors during imaging
may affect the applicability and accuracy of the system, requiring further improvement in the future.
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Science Foundation, Nanjing Medical Science and Technology Development Foundation, Jiangsu Provincial Key
Research and Development Program, and Jiangsu Provincial Medical Innovation Centre of Orthopedic Surgery.
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Research in context

Evidence before this study
PubMed was searched on January 28, 2024 for all research
articles containing the keywords “artificial intelligence” OR
“deep learning” AND “radiation-free” OR “no-radiation” AND
“scoliosis”, without any date or language restrictions. Further
searches were conducted for references cited in the articles.
Nine relevant studies were identified, which used techniques
including RGBD images, 2D-RGB images, raster stereographic
back images, ultrasound images, and point clouds of the back
for radiation-free identification of scoliosis. These studies
mostly had limitations due to (1) limited data volume; (2) the
need for specialized equipment for collection and analysis;
(3) accuracy or visualization levels not meeting clinical needs;
and (4) insufficient multi-centre external data validation. 2D-
RGB images are the easiest type of data for patients to obtain
in daily life, and currently, only a few studies have attempted
to use deep learning techniques to classify and predict using
2D-RGB images, and no teams have successfully used 2D-RGB
images to generate medical images.

Added value of this study
To our knowledge, this study represents the first
development of an innovative cGAN system capable of

generating realistic spin X-ray images from 2D-RGB images
captured by common 2D cameras or smartphones, achieving
results comparable to those generated from RGBD images in
previous research. It holds promise for future screening in
medical centres, schools, communities, and homes,
significantly enhancing the accessibility of scoliosis screening.

Implications of all the available evidence
The radiation-free scoliosis detection platform developed in
this study, based on 2D photographs, can efficiently,
accurately, and conveniently assess the curve type and
severity of scoliosis. However, firstly, there is room for
improvement in both the quantity and quality of the dataset
used in this study, which may affect the accuracy and
generalizability of the model. Secondly, this study only
includes the Han Chinese population from different regions,
lacking application data from other ethnic groups, hence it is
uncertain whether the procedure can be extended to other
ethnicities. Finally, due to the inability to completely
eliminate rotational errors during imaging, this may be a
contributing factor to the remaining differences between fake
X-rays and real X-rays.
Introduction
Adolescent Idiopathic Scoliosis (AIS) is a three-
dimensional spinal deformity that occurs in in-
dividuals aged 10–18 years and is characterized by a
spinal curvature of 10◦ or more. AIS is the most com-
mon spinal disorder among adolescents, with a preva-
lence rate of 1%–4% in this age group, and female
adolescents are more susceptible. The exact etiology of
AIS is not fully understood.1–4 Mild scoliosis often pre-
sents no noticeable symptoms. However, moderate to
severe scoliosis progression can lead to back de-
formities, respiratory dysfunction, paralysis, and, in
extreme cases, can be life-threatening.5–7 Therefore,
early screening and follow-up treatment are crucial for
patients with AIS, which allow spine surgeons to
intervene promptly and control the rapid progression of
the curvature.6,8

Currently, the clinical diagnosis of AIS primarily re-
lies on full-spine standing X-ray imaging. However,9 this
diagnostic method has several drawbacks:① it may cause
radiation exposure damage to adolescents; ② in most
primary healthcare facilities, only chest radiographs can
be taken, potentially leading to missed diagnoses,
particularly of lumbar curvature; ③ patients may be un-
able to undergo screening or regular follow-up due to
factors such as economic, transportation, healthcare re-
sources, and epidemics. To solve these problems,
radiation-free scoliosis assessment methods have been
extensively researched and developed, which include
traditional methods like appearance inspection, forward
www.thelancet.com Vol 75 September, 2024
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bending tests, scoliometer measurements, and Moiré
topography.10–13 However, these traditional assessment
methods not only require significant human resources
but also lead to large measurement errors and high rates
of missed diagnoses.

In recent years, with the rapid development of deep
learning technologies, this challenge is likely to be over-
come. Conditional Generative Adversarial Networks
(cGAN)14 have demonstrated remarkable performance in
the medical imaging field,15–17 with one of the key advan-
tages being their ability to learn data distributions and
mapping relationships, facilitating powerful image gen-
eration capabilities beneficial for tasks requiring data
transformation in the absence of data. To our knowledge,
the application of cGAN in the field of spine deformity is
very limited. Zhang et al.18 was the first to propose using
deep cameras to collect the RGB-Depth (RGBD) images of
the backs of patients with AIS and generate radiograph-
comparable images (RCI) through anatomical point
identification registration and style transfer methods for
precise scoliosis assessment, significantly improving
screening efficiency and accuracy. However, this method
still requires professionals to use specialized equipment
for screening, which is not available in most underdevel-
oped areas. In the extant models, paired datasets were not
employed, meaning there was no direct correlation be-
tween the patients’ X-ray images and the two-dimensional
Red Green Blue (2D-RGB) back images. Nonetheless, we
maintain that this foundation is amenable to facilitating a
significant technological innovation. Could we further
break through on this basis, use correlated information
and develop a system that allows patients or their guard-
ians without professional knowledge to assess themselves
without the aid of other special equipment?

In this study, we aim to develop the first AIS
screening system for use by general population or pro-
fessionals in more schools, communities and hospitals,
using commonly available 2D cameras to capture the
2D-RGB images of the backs of patients with AIS, and
generating Virtual X-ray Images (VXI) to assist spine
surgeons in rapidly, accurately, and non-invasively
assessing the severity and type of scoliosis in patients
with AIS, along with providing treatment recommen-
dations. We built a paired dataset and for the first time
developed an innovative Swin-pix2pix network structure.
Experiments conducted on retrospective and prospective
paired datasets of 2D-RGB back appearance images and
X-ray images (ground truth X-ray image, GT) from four
hospitals in Mainland China have shown that our
method can produce high-quality VXI, featuring optimal
assessment accuracy and robustness.
Methods
Study design and participants
This manuscript adhered to STROBE guidelines. We
collected retrospective multi-centre data from four
www.thelancet.com Vol 75 September, 2024
medical institutions in China from June 11th 2014 to
March 17th 2022: Nanjing Drum Tower Hospital
(NJDTH), Peking Union Medical College Hospital
(PUMCH), Xinhua Hospital Affiliated to Shanghai
Jiaotong University School of Medicine (XHASJU), and
the Second Affiliated Hospital Zhejiang University
School of Medicine (SAHZU). The inclusion criteria
were as follows: (1) diagnosed with AIS; (2) underwent
standing full-spine posterior-anterior, lateral, and
bending X-ray; (3) had bare back 2D-RGB images taken.
The exclusion criteria included: (1) age under 11 years
or over 18 years; (2) having any disease that could affect
standing posture; (3) history of spine surgery; (4) ob-
structions in the back area in the 2D-RGB images or any
appearance abnormalities other than AIS; (5) unequal
leg lengths; (6) incomplete clinical or imaging data.
Some patients, although their main curve Cobb angle
was less than 10◦ after conservative treatment, were
diagnosed as AIS and included in this study to supple-
ment the insufficient number of samples of mild
scoliosis in the training dataset.

Additionally, from April 19th 2023 to November
28th 2023, we prospectively recruited consecutive par-
ticipants from NJDTH. The inclusion criteria were as
follows: (1) diagnosed with AIS or potential AIS (“Po-
tential AIS” is defined as adolescents with a Cobb angle
of less than 10◦ who do not meet the diagnostic criteria
for AIS. These patients are usually identified during
school physical examinations when doctors suspect
AIS and are then referred for X-ray examinations at the
request of their guardians); (2) underwent standing
full-spine posterior-anterior and lateral X-ray, and
additional bending X-rays for patients with AIS.
(3) willing to have bare back 2D-RGB images taken.
The exclusion criteria included: (1) age under 11 years
or over 18 years; (2) having any disease that could affect
standing posture; (3) history of spine surgery; (4) back
area abnormalities other than AIS; (5) unequal leg
lengths; (6) patients with AIS who could not undergo
Lenke classification due to the absence of spine
bending X-rays. The specific collection requirements
for prospective and retrospective data are detailed in
the eAppendix 1.

After careful review and screening, a total of 2177
retrospective patients with AIS and 268 prospective
participants were included. Among the retrospective
patients with AIS, 2042 were from NJDTH, 50 from
PUMCH, 20 from XHASJU, and 65 from SAHZU
(Fig. 1). The baseline demographic characteristics of the
included patients are shown in Table 1.

Nanjing University Medical School Affiliated Drum
Tower Hospital has obtained approval from the
authoritative institutional medical ethics committee
(approval number 2022-609-01), following the unified
protocol of the ethics committee. It is also registered in
the National Medical Research Registration Information
System (registration number MR-32-23-049234). All
3
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Internet datasets

2451 patients
2451 X-ray
2451 back images

32 patients excluded
20 not AIS
12 with history of spinal surgery

197 X-ray excluded
143 DICOM data missing
54 not standing full-spine X-rays 

2254 patients
2254 X-ray
2254 back images

212 back images excluded
105 back not fully exposed
107 environment not bright enough

2483 patients
2483 X-ray
2483 back images

2042 patients
2042 X-ray
2042 back images

Internal Test(5%)
100 patients
100 X-ray
100 back images

Validation(5%)
100 patients
100 X-ray
100 back
images

Training(90%)
1842 patients
1842 X-ray
1842 back images

154 patients
154 X-ray
154 back images

135 patients
135 X-ray
135 back images

270 Participants
270 X-ray
270 back images

268 Participants
268 X-ray
268 back images

patients
143 X-ray
143 back images

11 X-ray excluded
DICOM quality did not meet the standard

8 back images excluded
Back not fully exposed

External Test
135 patients
135 X-ray
135 back images

Prospective Test
268 Participants
268 X-ray
268 back images

2 Participants with potential AIS excluded
Requested to withdraw from the group actively

External datasets Prospective datasets

Fig. 1: Study flow diagram of participant enrolment. The final cohort included 2445 participants. For training, validation, and internal
testing, 1842, 100, and 100 participants were included, respectively. The external testing and prospective testing included 135 and 268
participants, respectively.
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recruited participants and their guardians provided
informed consent for this trial.

Datasets distribution
All included patients with AIS from the four medical
institutions underwent standing full-spine X-ray exami-
nations by radiology technicians and were photographed
by spine surgeons with a 2D camera, obtaining the cor-
onal X-ray images and back appearance 2D-RGB images.
All X-ray images were in the Digital Imaging and Com-
munications in Medicine (DICOM) format. The two sets
of image data were paired and named using the same ID
number. After data annotation, the retrospective dataset
from NJDTH was randomly divided into training, vali-
dation, and internal testing datasets. The retrospective
datasets from PUMCH, XHASJU, and SAHZU were all
used as external testing datasets. The prospective dataset
from NJDTH was used as testing dataset too. The specific
dataset distribution is as follows:

(1) Training dataset: Uses X-ray images and back 2D-
RGB images of 1842 patients with AIS from
NJDTH to train the model.

(2) Validation dataset: Uses X-ray images and back 2D-
RGB images of 100 patients with AIS from NJDTH
to validate the model and select the best
hyperparameters.

(3) Internal testing dataset: Uses X-ray images and
back 2D-RGB images of 100 patients with AIS
from NJDTH for internal testing of the model.

(4) External testing dataset 1: Uses X-ray images and
back 2D-RGB images of 50 patients with AIS from
PUMCH for external testing of the model.

(5) External testing dataset 2: Uses X-ray images and
back 2D-RGB images of 20 patients with AIS from
XHASJU for external testing of the model.

(6) External testing dataset 3: Uses X-ray images and
back 2D-RGB images of 65 patients with AIS from
SAHZU for external testing of the model.
(7) Prospective testing dataset: Uses X-ray images and
back 2D-RGB images of 220 patients with AIS and
48 potential patients with AIS from NJDTH for
prospective testing of the model.

Data preprocessing
To enhance the Signal-to-Noise Ratio (SNR), computa-
tional efficiency, interpretability, and accuracy of the
input images (back 2D-RGB and X-ray images), we
established an elaborate automated data preprocessing
workflow (Fig. 2, eAppendix 3), with manual adjust-
ments made for data that failed automatic processing.
The specific steps are as follows:

(1) Collection of back 2D-RGB images: The quality of
X-ray generation is susceptible to variables such as
the patient’s posture, rotational deviations, and
environmental conditions. Although the retro-
spective datasets from the four centres did not
adhere to strict shooting protocols, they were
collected by designated personnel following stan-
dardized procedures to ensure a certain degree of
data consistency. In contrast, the prospective
datasets had stringent requirements for shooting
equipment, distance, height, lighting conditions,
and trunk rotation (eAppendix 1), which were
aimed at reducing the impact of environmental
differences on shooting errors. Additionally, dur-
ing image processing, precise cropping around key
anatomical landmarks (such as the acromion and
pelvic regions) on the 2D-RGB photos and X-rays
was performed to standardize scales and align the
datasets. Including images obtained under various
environmental conditions also increased the di-
versity of the training dataset, thereby enhancing
the model’s feature recognition capabilities and
robustness across different settings.

(2) Object detection in X-ray images: We used a
portion of the X-ray image data to train a
www.thelancet.com Vol 75 September, 2024
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Datasets (number) Training (1842) Validation (100) Internal
test (100)

External test Prospective
test (268)

P

PUMCH(50) XHASJU (20) SAHZU (65)

Gender (male/female) 411/1431 29/71 23/77 12/38 4/16 12/53 47/221 0.34

Age (years) 14.4 ± 2.3 14.7 ± 1.9 14.8 ± 2.1 14.3 ± 2.2 14.8 ± 1.6 14.3 ± 1.7 14.5 ± 2.4 0.57

Risser 3.3 ± 1.7 3.0 ± 1.9 3.4 ± 1.7 3.5 ± 1.7 3.3 ± 2.2 2.8 ± 1.6 3.1 ± 1.5 0.10

BMI (kg/m2) 18.5 ± 2.4 18.8 ± 2.2 18.6 ± 2.1 18.4 ± 1.4 18.6 ± 1.9 18.9 ± 1.6 18.6 ± 1.4 0.15

Cobb angle (degree)

Main curve 50.1 ± 12.9 50.5 ± 13.3 49.1 ± 13.1 38.5 ± 20.7 31.3 ± 16.9 49.9 ± 9.1 40.6 ± 20.3 <0.01

Secondary curve 30.3 ± 10.8 30.8 ± 10.1 29.8 ± 11.4 23.2 ± 15.6 21.3 ± 14.5 30.7 ± 9.2 25.4 ± 10.4 <0.01

Scoliosis severity grading

Main curve

1 42 3 2 11 7 0 58 <0.01

2 131 5 7 18 5 4 68

3 1346 72 75 13 6 50 89

4 248 16 13 5 2 11 38

5 75 4 3 3 0 0 15

Secondary curve

1 356 21 19 18 9 3 118 <0.01

2 1141 59 63 22 9 53 105

3 303 16 16 4 2 8 35

4 32 2 2 3 0 1 7

5 10 2 0 0 0 0 3

Main curve position

T 1253 69 67 25 11 43 182 0.18

TL/L 589 31 33 25 9 22 86

Curve classification

1 927 55 51 16 9 35 127 0.72

2 120 5 6 4 0 1 15

3 125 8 7 2 2 4 27

4 61 4 3 3 0 2 13

5 560 26 30 24 8 22 77

6 49 2 3 1 1 1 9

Continuous value was presented with mean ± standard deviation.

Table 1: Demographic information of the datasets.
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YOLOv8 model for object detection on X-ray
images. This process extracted bounding box
coordinates for the entire spine (T1-L5) to the
pelvic region from the X-ray images, cropping
the images based on these coordinates to ensure
that the primary information (i.e., spinal curva-
ture in the X-ray images) was highlighted while
reducing or eliminating other unnecessary in-
formation and noise (Supplementary eFig. S2
and eTable S2).

(3) Instance segmentation of back 2D-RGB images:
An enhanced Swin-YOLOv8 model (eAppendix 3),
trained on a subset of back 2D-RGB image data,
was employed for instance segmentation of back
2D-RGB images. This identified and segmented
the back and pelvic regions from the back 2D-RGB
images, cropping these images to match the spatial
occupancy ratio of the human body in X-ray im-
ages. This ensured that the main information (i.e.,
ww.thelancet.com Vol 75 September, 2024
the spine in the back 2D-RGB images) was high-
lighted, while other unnecessary information and
noise were reduced or removed. These initial two
steps significantly improved the SNR of the data
images and enhanced performance upon applica-
tion. The cropped back 2D-RGB images and X-ray
images were then aligned to ensure spatial con-
sistency, minimizing differences between the two
image types and enhancing the quality of the
transformation (Supplementary eFig. S3 and
eTable S2).

(4) Image resizing and stitching: To meet the model
input data requirements and ensure uniform input
image scale, all back 2D-RGB images and X-ray
images underwent standardization, being uni-
formly resized to 512 × 1280 pixels. Subsequently,
the processed back RGB images and correspond-
ing X-ray images were horizontally stitched along
the width direction.
5
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a b c

Fig. 2: The pipeline of system for radiation-free evaluation of scoliosis based on back 2D-RGB images. This system comprises several
components: a) Data Collection Module: Back image data of patients with AIS are collected using smartphones and a posterior-anterior X-
ray machine and uploaded to the server. b) Preprocessing Module: A portion of the collected data is annotated, and the YOLOv8 model is
trained to complete segmentation and detection tasks, cropping and standardizing 2D-RGB and X-ray images. c) Model Development
Module: The preprocessed image data are input into the cGAN model for training. The assessment performance of the model is improved
by discriminating between the generated VXI and real X-ray images. Abbreviations: YOLOv8: You Only Look Once Version 8; VXI: Virtual
X-ray images are defined as synthetic X-rays generated by a model from back photographs. Clinically meaningful VXI includes key
anatomical landmarks such as vertebrae, shoulders, and pelvis. These X-rays allow doctors to identify and assess AIS by measuring these
landmarks.
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Model development
In this study, we developed a cGAN named Swin-
pix2pix, which can convert the back 2D-RGB images
into standing full-spine posterior-anterior X-ray im-
ages and accurately predict the curve type and severity
of patients with AIS. In our proposed Swin-pix2pix
model, we innovatively replaced the downsampling
convolutional layers of the generator UNet-256 struc-
ture in the original pix2pix19 with Swin modules
(Fig. 3), which are implemented by the Swin Trans-
former in the mmseg package.20–22 Due to the limited
scale of our dataset, we did not employ the full Swin
Transformer model. Instead, we meticulously selected
the most critical component—the Swin block—to
construct a network architecture tailored to our spe-
cific needs. This innovative network structure en-
hances the model’s performance on small datasets by
reducing the number of parameters and incorporating
local window attention mechanisms and hierarchical
feature fusion. Additionally, Liu et al., the authors of
Swin Transformer, have also showcased its perfor-
mance across multiple datasets,20 including smaller
datasets like CIFAR-10 and CIFAR-100. They reported
that Swin Transformer achieves highly competitive
results on these datasets, further confirming the
effectiveness of the Swin Transformer architecture for
small datasets.
These Swin modules can capture long-distance
dependencies by using self-attention mechanisms,
thus enhancing the global receptive field of the
generator and learning more rich feature information
on the back 2D-RGB images. The datasets that per-
formed well on the original pix2pix model have
different surface appearances for the input and
output, but they share the same basic structure. For
our study, the back 2D-RGB images and X-ray images
have a huge structural span, so theoretically,
improving the global receptive field can help capture
more back appearance information (trunk contour,
back texture, etc.) and strengthen the connection be-
tween the two datasets.

(1) Training:
In the training phase, we first preprocessed the input
dataset and resized it to 512 × 1280 pixels. Given the
input back image X and X-ray image Y of size
512 ×1280 ×3, we denoted the generator as G( ⋅) and the
discriminator as D( ⋅). The model learned the mapping
G : x→ y from the back image x ∈ X to the X-ray image
y ∈ Y . We fed the processed back 2D-RGB image and
X-ray image pairs into the model for training. The
generator transformed the back image into a VXI, and
passed the VXI and the back image to the discrimi-
nator, which judged whether the image pair was real or
www.thelancet.com Vol 75 September, 2024
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Fig. 3: The network architecture of the generator within the swin-pix2pix model. Innovatively, this study replaces the down sampling
convolutional layers in the original pix2pix generator’s UNet-256 structure with Swin Transformer blocks. These Swin modules use the self-
attention mechanism to capture long-range dependencies, thereby enhancing the generator’s global receptive field. This allows for learning
richer feature information on back 2D-RGB images, improving the model’s ability to generate detailed and accurate VXI from the input 2D-RGB
images. Abbreviations: VXI: Virtual X-ray Image.

Articles
not. To make the generator fool the discriminator and
make the discriminator believe that the generated im-
age pair was real, we used a loss function LG that
consisted of two parts:

LG = Ladv + λ × Lpix

= −Ex[log(D(G(x), y))] − λ × Ex,y[‖B −G(x)‖1]
Here, Ladv is a binary cross-entropy loss function that

is opposite to the discriminator, giving a high proba-
bility to the generated image pair. Lpix is an L1 norm
loss function that measures the difference between the
generated and real images. The generator’s loss func-
tion LG is controlled by the weight λ.

The discriminator’s task is to judge whether the
output image is a real X-ray image or a virtual X-ray
image generated by the generator, given the input
image. To make the generator give a high probability to
the real image pair and a low probability to the
www.thelancet.com Vol 75 September, 2024
generated image pair, we use a binary cross-entropy
loss function:

LD = Ex,y[log(D(y, x))] + Ex[log(1 −D(G(x), x))]
Here, the discriminator’s loss function LD is the

sum of the losses for the real and generated image
pairs.

The generator and the discriminator have a
competitive and cooperative relationship. Based on
the generator’s loss function and the discriminator’s
loss function, the weights of the generator WG and the
discriminator WD are updated until the generator can
generate output images that match the target images.

(2) Inferencing
In the inference phase, the back 2D-RGB images are fed
to the generator, which transforms it into a VXI. The VXI
and the back 2D-RGB image are then fed to the
7
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discriminator, which determines whether they are a
matching pair. If the pair matches, the discriminator
considers it as a real image. Otherwise, it considers it as a
fake image. This process is repeated until the generator
produces a VXI that matches the back image. After the
inference phase is over, the output real back 2D-RGB
image and VXI are resized to the pixel size before the
resizing step in the preprocessing step (3), and the real X-
ray image is resized to the original X-ray image pixel size.

(3) Experiment setup
We implemented all the experiments using the
PyTorch toolkit. During the training process, we used
the Adam optimizer with momentum parameters β1 =
0.5 and β2 = 0.999, and an initial learning rate of
0.0002. We divided the training process into 200
epochs, keeping the learning rate constant for the first
100 epochs and linearly decaying it for the next 100
epochs. We chose a batch size of 1 and a lambda of 10
for the experimental setting, because the experimental
results on the validation dataset showed that the quality
of VXI was the highest when when choosing this set of
hyperparameters.

We employed a grid search approach to precisely
select the hyperparameters, optimizing them based on
computational metrics and the Cobb angle of images.
Furthermore, the number of training epochs was
determined by observing the trend of the loss curve
(eAppendix 5 and Supplementary eFig. S6).

Definition of scoliosis severity grading, main curve
position and curve classification
To assess the clinical significance of this project, we
defined three classification standards based on the clin-
ical treatment strategies for AIS: scoliosis severity
grading, main curve position, and curve classification
(eAppendix 2).

(1) Scoliosis Severity Grading: Participants are classi-
fied into five levels based on the Cobb angle: Level
1: 0–19◦; Level 2: 20–39◦; Level 3: 40–59◦; Level 4:
60–79◦; Level 5: ≥80◦.

(2) Main Curve Position: Participants are classified into
two categories based on the location of the main
curve: T (thoracic curve) where the apex is located
between T2 and T11/T12 intervertebral discs; TL/L
(thoracolumbar/lumbar curve) where the apex is
located at T12-L1 for thoracolumbar or between
L1/L2 intervertebral disc and L4 for lumbar.

(3) Curve Classification: Since this system can only
generate coronal VXI and cannot produce sagittal or
bending position images, to assess the accuracy of
the cGAN model in diagnosing curve types, we pro-
pose the curve classification as follows: If the Cobb
angle of the curve (X) in the GT coronal X-ray image
is ≥ 25◦, and the Cobb angle of the same curve (Y) in
the bending position image does not improve to
<25◦, we consider the curve in the GT as structural.
Otherwise, it is considered non-structural. Similarly,
if in the VXI, the same curve’s Cobb angle (Z)
is ≥ 25◦, and Z-(X–Y) is ≥ 25◦, then the curve in the
VXI is also considered structural; otherwise, it is non-
structural. Based on the position of structural and
non-structural curves in the upper T, T, and TL/L,
AIS can be categorized into six types (eAppendix 2,
Supplementary eFig. S1 and eTable S1).

Statistical analysis
To quantitatively evaluate the linear correlation between
the actual Cobb angle on GT and the predicted Cobb
angle on VXI, and to analyse the independent risk factors
affecting the mean absolute error (MAE), we used linear
regression analysis. Linear regression analysis is one of
the most commonly used statistical methods, which is
used to establish a linear relationship model between one
or more independent variables and a dependent variable.
It estimates the model parameters by minimizing the
sum of squared residuals, thus finding the best fitting
line or hyperplane.

To further compare the consistency between the
actual Cobb angle on GT and the predicted Cobb angle
on VXI, we also used Bland–Altman analysis. Bland–
Altman analysis (or difference-mean plot) is a graph-
ical method for measuring the agreement between two
sets of measurements. It compares the measurements
of the two methods, identifies the systematic and
random errors, and evaluates the consistency of the two
methods.

For scoliosis severity grading, main curve position
and curve classification, we calculated five diagnostic
test parameters, including accuracy, sensitivity, PPV and
NPV, which are defined and calculated as follows, where
TP is True Positives, TN is True Negatives, FP is False
Positives, and FN is False Negatives:

(1) Accuracy: The proportion of correctly classified
samples (whether positive or negative) out of the
total number of samples.

Accuracy = TP + TN

TP + TN + FP + FN

(2) Sensitivity: The proportion of positive samples that
are correctly identified as positive out of all the
actual positive samples.

Sensitivity = TP

TP + FN
www.thelancet.com Vol 75 September, 2024
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(3) Specificity: The proportion of negative samples that
are correctly identified as negative out of all the
actual negative samples.

Specificity = TN

TN + FP

(4) PPV: The proportion of actual positive samples out
of all the samples that are identified as positive.

PPV = TP

TP + FP

(5) NPV: The proportion of actual negative samples
out of all the samples that are identified as
negative.

NPV = TN

TN + FN

All the statistical analyses were performed using
Python (v3.8.16) and several Python packages, including
Numpy (v1.23.5), SciPy (v1.10.1), Statsmodels (v0.14.0),
OpenCV (v4.7.0.72), PyTorch (v1.12.1), Matplotlib
(v3.7.1), and Pandas (v1.5.3).

Demographic data analysis was performed using
SPSS 25.0 statistical software (SPSS Inc., Chicago, IL).
The Chi-square test was utilized to compare categorical
variables, including gender, Risser, scoliosis severity
grading, main curve position and curve classification,
across seven different datasets. Repeated measures
ANOVA was employed to compare continuous vari-
ables. A P value less than 0.05 was considered statisti-
cally significant.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. All authors had full access to the data in
the study and had final responsibility for the decision to
submit for publication.
Results
Datasets
This study included a total of 2445 participants,
comprising 1842 in the training dataset, 100 in the in-
ternal test dataset, 135 in the external test datasets, and
268 in the prospective datasets (Fig. 1). We recorded
patient demographics including gender, age, Risser
sign, BMI, Cobb angles (for both the main and sec-
ondary curves), scoliosis severity grading (levels 1–5 for
www.thelancet.com Vol 75 September, 2024
both the main and secondary curves), main curve posi-
tion (T and TL/L), and curve classification (levels 1–6).
Detailed demographic information is available in
Table 1. The analysis of variance conducted on various
datasets revealed statistically significant differences in
Cobb angle and scoliosis severity grading. Most notably,
the prospective test dataset exhibited a considerably
wider distribution of Cobb angles compared to other
groups. The significant variability in Cobb angles allows
for a more rigorous assessment of the model’s perfor-
mance. By evaluating the model against a dataset that
mirrors the diverse characteristics of the broader pop-
ulation, we can better understand its effectiveness in
real-world scenarios. This is particularly important in
clinical applications where the ability to accurately pre-
dict outcomes across diverse patient groups is
paramount.

Performance of our Swin-pix2pix and three
baseline models for VXI synthesis
We evaluated the performance of Swin-pix2pix against
three baseline models—pix2pix,19 pix2pixHD,23 and
cycleGAN24 in synthesizing VXI on the internal test,
external, and prospective dataset. Representative VXI
generated by these models are shown in Fig. 4. The
paired back 2D-RGB images and spinal X-ray images,
after preprocessing with the You Only Look Once
version 8 (YOLOv8) model, showed strong consistency
and corresponding internal structures. The pre-
processed back 2D-RGB images were input into Swin-
pix2pix and the three baseline models. Except for
CycleGAN, all models generated clinically meaningful
VXI. Swin-pix2pix has demonstrated exceptional
comprehensive performance (Supplementary
eTable S3), notably securing the top position in
retrospective datasets and sharing the lead in pro-
spective datasets. In both datasets, it achieved the
highest scores for peak signal-to-noise ratio (PSNR)
and learned perceptual image patch similarity
(LPIPS), indicating its superior accuracy in image
reconstruction and its outstanding visual quality. The
model also excelled in maintaining structural infor-
mation, as evidenced by its top-tier ranking in struc-
tural similarity index (SSIM) for retrospective datasets
and a strong second place in prospective datasets.
Furthermore, its Fréchet inception distance (FID)
scores were second-best in both datasets, significantly
outperforming the third-ranked model, showcasing its
robust capabilities in content and style consistency of
images. Although its natural image quality evaluator
(NIQE) scores were second in retrospective and third
in prospective datasets, they were closely competitive
with the top-ranked model, reflecting the model’s
high-level performance in image naturalness. Overall,
these metrics collectively affirm the model’s excep-
tional performance across multiple critical aspects
(eAppendix 6).
9
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Fig. 4: Comparison of representative VXI generated by swin-pix2pix and three baseline models. Each column of images is from the same
patient. The first row (Raw photos) shows the collected original back 2D-RGB images. The second row (Preprocessed photos) displays the back
2D-RGB images after preprocessing with the YOLOv8 model. The third row (ground truth) presents the spine X-ray images post-preprocessing
with the YOLOv8 model. The fourth to the seventh rows depict the VXI generated by our Swin-pix2pix, pix2pix, pix2pixHD, and CycleGAN,
respectively. Abbreviations: YOLOv8: You Only Look Once version 8; VXI: Virtual X-ray Image.
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We measured the main and secondary Cobb angles
of spinal curvature in the VXI produced by the three
groups of models with internal, external and prospective
test datasets (Fig. 5, Fig. 6) and calculated the MAE,
root mean squared error (RMSE), coefficient of
determination (R2), and correlation coefficient (r) values
between the VXI and the GT. Detailed results are shown
in Table 2 (eAppendix 6). Compared to the two baseline
models, Swin-pix2pix achieved the best results across all
three datasets. Specifically, it performed the best on the
www.thelancet.com Vol 75 September, 2024
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Fig. 5: Measurement results of representative VXI generated by Swin-pix2pix. Each subplot represents a case of a patient with AIS, with the
first row for patients whose main curve is located at T (thoracic curve) and the second row for patients whose main curve is located at TL/L
(thoracolumbar/lumbar curve). Each subplot, from left to right, displays the preprocessed photos, GT, and VXI. The images show that GT and
VXI have almost identical main and secondary Cobb angles and consistent main curve positions and scoliosis classifications, indicating that our
Swin-pix2pix generated VXI can accurately assess the type and severity of scoliosis in patients with AIS. Abbreviations: GT: Ground Truth X-ray
Image; VXI: Virtual X-ray Image; T: Thoracic Curve; TL/L: Thoracolumbar/Lumbar Curve.

Articles
prospective test set, with the MAE and RMSE between
the GT and VXI for the main curve being 3.2◦ and 4.1◦,
respectively, and for the secondary curve being 3.1◦ and
4.1◦, respectively. In the internal test set, the MAE and
RMSE between the GT and VXI for the main curve were
3.3◦ and 4.5◦, respectively, and for the secondary curve
were 3.3◦ and 4.3◦, respectively. In the external test set,
the MAE and RMSE between the GT and VXI for the
main curve were 3.8◦ and 5.1◦, respectively, and for the
secondary curve were 3.9◦ and 4.9◦, respectively.
Compared to the prospective dataset, the Swin-pix2pix
model’s performance was slightly less impressive on
the retrospective test sets. This may be due to the lack of
strict control over factors such as imaging equipment,
shooting distance, shooting height, and lighting condi-
tions. Additionally, we conducted linear regression
analysis and Bland-Altman analysis on the internal test
set, external test set, and prospective test set. The Swin-
pix2pix model exhibited the highest R2 and the smallest
standard deviation (SD) in all three datasets. This in-
dicates that the model demonstrated the best goodness-
of-fit and consistency between the GT and the generated
VXI for the scoliosis Cobb angle in all three datasets
(Fig. 7).

A multivariate linear regression analysis was con-
ducted on the MAE to assess the impact of demographic
information on the accuracy of VXI generated by Swin-
pix2pix. Among the six included variables (age, gender,
Risser sign, BMI, Cobb angle, curve classification),
gender, BMI, and Cobb angle were identified as
www.thelancet.com Vol 75 September, 2024
independent risk factors affecting the accuracy of VXI.
Females, larger BMI, and larger Cobb angles were
associated with increased discrepancies between VXI
and GT (Supplementary eTable S4).

Performance on scoliosis severity grading, main
curve position, and curve classification
For scoliosis severity grading, we presented the quanti-
tative performance of three models and two spine sur-
gery experts across the five grades and total (Level 1:
0–19◦; Level 2: 20–39◦; Level 3: 40–59◦; Level 4: 60–79◦;
Level 5: ≥80◦) (Supplementary eTable S5). We evaluated
the predictive performance for scoliosis severity
grading, main curve position, and curve classification on
the internal test dataset, external test dataset, and pro-
spective test dataset, recording the evaluation results
using confusion matrices (Fig. 8, Fig. 9). Overall, the
model’s performance on the prospective test set was
superior to that on the internal test set, both of which
outperformed the external test set. Given that the pro-
spective test set was collected in a real-world setting, we
use it as an example. For scoliosis severity grading, we
presented the quantitative performance of three models
and two spine surgery experts across the five grades and
total (Level 1: 0–19◦; Level 2: 20–39◦; Level 3: 40–59◦;
Level 4: 60–79◦; Level 5: ≥80◦) (Supplementary
eTable S5). Total results show that, for the main
curve, Swin-pix2pix achieved the best results in accuracy
(0.93 [0.91, 0.95]), sensitivity (0.81 [0.75, 0.87]), speci-
ficity (0.95 [0.94, 0.96]), PPV (0.86 [0.81, 0.89]), and NPV
11
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Fig. 6: Cobb angle assessment of VXI generated by Swin-pix2pix and two baseline models. The first to third columns in the figure
respectively represent the assessment results of Swin-pix2pix, pix2pix, and pix2pixHD. The top three rows show the results for the main curve,
and the bottom three rows show the results for the secondary curve, each containing the results for the internal test set, external test set, and
prospective test set. In each subplot, the x-axis represents the participant ID number, the y-axis represents the Cobb angle, the blue line in-
dicates the Cobb angle for GT, the red line represents the Cobb angle for VXI, and the green line represents the Absolute Error (AE) between the
two. The figure demonstrates that for both the main and secondary curves, the Cobb angle curves for GT and VXI in our Swin-pix2pix model
almost overlap, with AE significantly lower than that of pix2pix and pix2pixHD. When the Cobb angle increases, the AE in VXI of all three
models also increases. Abbreviations: GT: Ground Truth X-ray Image; VXI: Virtual X-ray Image.
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Evaluation metrics Model Test datasets Cobb angle (degree) MAE RMSE R2 r

GT VXI

Main curve Swin-pix2pix Internal 49.1 ± 13.1 47.6 ± 11.4 3.3 4.5 0.88 0.95

External 43.0 ± 15.6 41.0 ± 14.9 3.9 5.2 0.91 0.97

Prospective 40.6 ± 20.3 39.3 ± 18.9 3.2 4.1 0.94 0.95

pix2pix Internal 49.1 ± 13.1 43.5 ± 10.0 8.1 11.0 0.29 0.69

External 43.0 ± 15.6 42.1 ± 15.8 8.7 11.9 0.53 0.71

Prospective 40.6 ± 20.3 35.4 ± 19.4 7.6 10.4 0.44 0.77

pix2pixHD Internal 49.1 ± 13.1 46.1 ± 10.4 6.1 8.1 0.61 0.81

External 43.0 ± 15.6 41.8 ± 14.8 6.5 8.2 0.67 0.78

Prospective 40.6 ± 20.3 37.8 ± 20.5 5.9 7.5 0.67 0.86

Secondary curve Swin-pix2pix Internal 29.8 ± 11.4 31.5 ± 10.3 3.3 4.3 0.86 0.94

External 26.5 ± 12.8 27.0 ± 11.6 3.9 4.9 0.88 0.91

Prospective 25.4 ± 10.4 25.5 ± 10.3 3.1 4.1 0.91 0.93

pix2pix Internal 29.8 ± 11.4 28.5 ± 11.9 6.0 7.3 0.59 0.78

External 26.5 ± 12.8 29.2 ± 13.2 8.7 7.9 0.33 0.73

Prospective 25.4 ± 10.4 26.2 ± 12.3 5.7 7.4 0.57 0.77

pix2pixHD Internal 29.8 ± 11.4 29.0 ± 8.9 5.5 6.7 0.65 0.81

External 26.5 ± 12.8 28.3 ± 13.6 6.3 7.2 0.60 0.79

Prospective 25.4 ± 10.4 25.0 ± 9.6 4.9 5.8 0.83 0.85

GT: Ground truth image; VXI: Virtual X-ray image; MAE: Mean absolute error; RMSE: Root mean squared error; R2: Coefficient of determination; r: Pearson correlation
coefficient.

Table 2: Evaluation metrics on cobb angle prediction between VXI from three models and GT.

Articles
(0.95 [0.94, 0.97]), surpassing pix2pix, pix2pixHD, and
both spine surgery experts. Assessing the secondary
curve is more challenging than the main curve; none-
theless, Swin-pix2pix achieved the best results in accu-
racy (0.89 [0.87, 0.91]), sensitivity (0.79 [0.61, 0.86]),
specificity (0.91 [0.72, 0.93]), PPV (0.78 [0.60, 0.86]), and
NPV (0.92 [0.72, 0.93]), with accuracy, specificity, and
NPV close to those of human 1, and other metrics
significantly better than the baseline models. For the
main curve position, we presented the quantitative
performance for T, TL/L, and total (Table 3). Total re-
sults indicate that Swin-pix2pix achieved the best results
in accuracy (0.93 [0.90, 0.95]), sensitivity (0.94 [0.90,
0.97]), specificity (0.92 [0.86, 0.97]), PPV (0.96 [0.93,
0.98]), and NPV (0.88 [0.81, 0.94]) for thoracic curve,
slightly higher than the two baseline models. For curve
classification, we displayed the quantitative performance
across the six grades and total (Table 3), with Swin-
pix2pix achieving the best total accuracy (0.97 [0.96,
0.98]), sensitivity (0.90 [0.83, 0.96]), specificity (0.98
[0.97, 0.99]), PPV (0.87 [0.80, 0.93]), and NPV (0.98
[0.97, 0.99]), where sensitivity and PPV showed a
noticeable advantage over the two baseline models.

Comparison of Swin-pix2pix performance across
three external test datasets
We compared the results among the external paired
datasets from the three spine deformity centres to further
evaluate the performance of the Swin-pix2pix model. We
input the back 2D-RGB images from these three hospitals
into the trained Swin-pix2pix and compared the output
www.thelancet.com Vol 75 September, 2024
VXI with the collected GT, with test results shown in
Supplementary eFig. S7. We measured the main and
secondary Cobb angles of spinal curvature in the VXI
generated from the three datasets (Supplementary
eFig. S8) and calculated the MAE, RMSE, R2, and r
values between the VXI and GT, with detailed results
presented in Supplementary eTable S6. The predictive
MAE for the main curve on PUMCH, XHASJU, and
SAHZU were 4.6◦, 2.4◦, and 3.8◦, respectively, and for the
secondary curve were 3.5◦, 3.4◦, and 4.1◦, respectively.

We also assessed the predictive performance for
scoliosis severity grading, main curve position, and
curve classification on the three external test sets,
recording the evaluation results using confusion
matrices (Supplementary eFigs. S9 and S10). For scoli-
osis severity grading, the accuracy rates for the main
curve predictions on PUMCH, XHASJU, and SAHZU
were 0.89 [0.82, 0.95], 0.94 [0.91, 0.96], and 0.92 [0.87,
0.95], respectively, and for the secondary curve were
0.98 [0.97, 0.99], 0.94 [0.91, 0.96], and 0.96 [0.94, 0.97],
respectively (Supplementary eTable S7). For the main
curve position, the accuracy rates on PUMCH,
XHASJU, and SAHZU were 0.84 [0.77, 0.92], 0.79 [0.67,
0.92], and 0.86 [0.81, 0.90], respectively. For curve clas-
sification, the accuracy rates on PUMCH, XHASJU, and
SAHZU were 0.92 [0.88, 0.97], 0.91 [0.87, 0.94], and 0.94
[0.92, 0.96], respectively (Supplementary eTable S8).

Discussion
This study introduced an X-ray image generation system
based on back 2D-RGB images, comprising an image
13
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Fig. 7: Linear regression analysis and bland–altman analysis of cobb angle. a. Linear Regression Analysis of Cobb Angle: The first to third
columns in the figure respectively represent the assessment results of Swin-pix2pix, pix2pix, and pix2pixHD. The top three rows show the
results for the main curve, and the bottom three rows show the results for the secondary curve, each containing the results for the internal test
set, external test set, and prospective test set. In each subplot, the x-axis corresponds to the Cobb angle measurements from the GT, and the y-
axis to those from the VXI. The blue dots denote individual data points for each participant, with the black line indicating the regression line. b.
Bland-Altman Analysis of Cobb Angle: The first to third columns in the figure respectively represent the results from Swin-pix2pix, pix2pix, and
pix2pixHD. The top three rows show the results for the main curve, and the bottom three rows show the results for the secondary curve, each
containing the results for the internal test set, external test set, and prospective test set. Each subplot’s x-axis shows the average Cobb angle
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measurements between GT and VXI, while the y-axis shows the difference between the GT and VXI measurements. The figures illustrate that in
all three datasets, for both the main and secondary curves, the VXI produced by Swin-pix2pix shows the best fitting and consistency with the
GT Cobb angle measurements. Abbreviations: GT: Ground Truth X-ray Image; VXI: Virtual X-ray Image.

Fig. 7: (continued)
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Fig. 8: Confusion matrices for scoliosis severity grading. The first to third columns in the figure represent the evaluation results for Swin-
pix2pix, pix2pix, and pix2pixHD, respectively, while the fourth and fifth columns correspond to the evaluation results of two spine surgery
experts. The top three rows show the assessment results for the main curve, and the bottom three rows show the results for the secondary
curve, each containing the results for the internal test set, external test set, and prospective test set. In each subplot, the x-axis represents the
predicted labels, and the y-axis represents the true labels. Scoliosis severity grading categorizes the Cobb angle into five levels: Level 1: 0–19◦;
Level 2: 20–39◦; Level 3: 40–59◦; Level 4: 60–79◦; Level 5: ≥80◦.
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preprocessing module and an X-ray image generation
module. The image preprocessing module is capable of
removing background noise and optimizing image
quality. The X-ray generation module can efficiently
generate corresponding VXI based on input back seg-
mentation images. Our system demonstrated good
generalizability and robustness across different datasets,
indicating its applicability to various real-world
scenarios.

Given that scoliosis has become the third major
health threat to adolescents after obesity and myopia,
the Chinese Ministry of Education announced in 2021
the inclusion of spinal examinations in the routine
physical examinations for primary and secondary
schools. Following this, the National Health Commis-
sion released the “Technical Guidelines for the Pre-
vention and Control of Abnormal Spinal Curvature in
Children and Adolescents” to guide the screening of
scoliosis. The cumulative radiation exposure caused by
traditional radiographic examination methods have
been significantly correlated with an increased risk of
cancer, especially in children and adolescents, who are
www.thelancet.com Vol 75 September, 2024
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Fig. 9: Confusion matrices for main curve position and curve classification. a. Displays the results for predicting the main curve position in
the three datasets by Swin-pix2pix and the two baseline models. b. Shows the results for curve classification in the three datasets by Swin-
pix2pix and the two baseline models. In both a and b, the first to third columns represent the evaluation results of Swin-pix2pix, pix2pix,
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more sensitive to radiation exposure due to higher
cellular metabolic activity.25–27 Thus, current screening
methods still primarily rely on surface appearance
screening. However, the lack of specialized spinal sur-
geons in many regions limits the widespread adoption
of scoliosis screening.

Previous studies applying deep learning methods to
evaluate AIS on back appearance 2D-RGB images have
shown promising results. Yang et al.28 developed a deep
learning-based AIS classification system that uses
Faster-RCNN to automatically locate regions of interest
and then applies a Resnet model to identify and classify
image features. Patients were divided into four groups
based on the size of the Cobb angle for scoliosis, and the
system was validated on three tasks: 1) binary classifi-
cation of scoliosis (≥10◦) vs. non-scoliosis (0–9◦); 2) bi-
nary classification of brace treatment (20◦–44◦) vs.
surgical treatment (≥45◦); and 3) multi-class classifica-
tion among the four groups. The system achieved an
80.0% accuracy rate for task 3 on an internal dataset.
The system also outperformed human experts in
external dataset comparisons, though accuracy
remained lower for multi-class tasks, and the system
only output scoliosis severity labels without aiding in the
visual assessment of curvature morphology. Zhang
et al.29 further conducted research and developed a
multi-layer convolutional neural network featuring an
attention mechanism and a multi-task strategy. The re-
searchers categorized patients based on the size of the
scoliosis Cobb angle into three groups: ① no or mild
(≤20◦); ② moderate (>20◦, ≤40◦); ③ severe (>40◦); and
according to curve type into: single T, single TL/L, and
mixed curve; and based on whether the scoliosis Cobb
angle progression was >5◦ within six months into:
progressive and nonprogressive. In the prospective test
set, the model’s accuracy for predicting no or mild and
severe cases was 73.26% and 79.84%, respectively. The
accuracy for predicting the three types of curves ranged
between 72.51% and 74.07%, and the accuracy for pre-
dicting scoliosis progression was 70.49%, indicating a
further improvement in the model’s performance. The
two aforementioned studies use classification models to
evaluate the severity of scoliosis, which have great
application value in large-scale screenings. However, the
evaluation of spine deformity should not only focus on
the Cobb angle. Shoulder balance, pelvic balance, and
coronal balance are also important indicators that affect
scoliosis progression and treatment outcomes30–32 (these
anatomical points are also the labels selected in our
study for the registration of photos and X-rays). The
and pix2pixHD, respectively, while the first to third rows represent the
subplot, the x-axis represents the predicted labels, and the y-axis represe
curve; TL/L denotes a thoracolumbar/lumbar curve. Curve classification cat
methods section.
generated X-rays provide doctors with richer disease
information to enhance the comprehensiveness of AIS
assessments. Zhang et al.18 continued by collecting
RGBD images of patients with AIS, predicting
anatomical landmarks with HRNet, and generating RCI
through CycleGAN, demonstrating strong correlations
between RCI and GT Cobb angles. This groundbreaking
study was the first to generate virtual X-rays, signifi-
cantly improving the accuracy and reliability of AIS
diagnosis. However, the study did not compare its re-
sults with other cGAN models or expert evaluations and
lacked sufficient external validation. Additionally, the
high cost of the depth camera equipment and the
associated learning curve for its use limited its wide-
spread adoption.

Our study aims to generate X-rays equivalent to those
produced by depth cameras using a 2D camera,
enabling almost everyone to obtain an accurate AIS
assessment for free. This approach offers more options
for economically underdeveloped countries and regions
and has the potential to become the mainstream method
for AIS screening and follow-up in the future. However,
we found that the CycleGAN model, which performs
excellently on RGBD images, did not perform well in
our 2D-RGB scenario. The model attempts to learn the
mapping between 2D-RGB images and X-ray images,
but its performance is limited due to the absence of one-
to-one correspondence. It is believed that the challenge
in evaluating AIS on back appearance 2D-RGB images
lies in the fact that the Cobb angle of spinal curvature is
often less apparent on RGB images than on X-rays due
to the obstruction of back soft tissues, creating a com-
plex nonlinear mapping relationship between 2D-RGB
images and X-rays. This poses a significant challenge to
the model’s architecture design.

Classic Generative Adversarial Networks (GANs)
consist of a Generator and a Discriminator, where
through their mutual competition, the Generator
eventually produces high-quality data.33,34 Conditional
GANs (cGANs), an extension of GANs, incorporate
additional conditional information, enabling the
generated data to be not only visually realistic but also
to meet specific conditions or attributes.35 Pix2pix was
the first framework to successfully apply cGAN to a
variety of image-to-image translation tasks, with many
subsequent studies like cycleGAN and pix2pixHD
improving upon it.19 Pix2pix is widely applicable,
learning the conditional information provided by
paired data to accurately capture the mapping between
input and output in an end-to-end manner, thus
internal test set, external test set, and prospective test set. In each
nts the true labels. In the main curve position, T indicates a thoracic
egorizes the morphology of scoliosis into six levels, as detailed in the

www.thelancet.com Vol 75 September, 2024

http://www.thelancet.com


Evaluation metrics Model Test datasets Main curve position Curve classification

T TL/L Total 1 2 3 4 5 6 Total

Accuracy Swin-pix2pix Internal 0.92 0.94 0.99 0.97 1.00 0.93 0.97 0.97

External 0.84 0.84 0.98 0.96 0.97 0.85 0.98 0.93

Prospective 0.93 0.94 0.96 0.99 0.99 0.96 0.99 0.97

pix2pix Internal 0.93 0.85 0.96 0.89 0.97 0.92 0.99 0.93

External 0.77 0.79 0.96 0.94 0.97 0.80 0.97 0.91

Prospective 0.91 0.91 0.96 0.97 0.96 0.94 0.98 0.95

pix2pixHD Internal 0.87 0.84 0.97 0.91 0.95 0.92 0.95 0.92

External 0.80 0.81 0.93 0.96 0.98 0.81 0.97 0.91

Prospective 0.91 0.89 0.94 0.95 0.95 0.93 0.97 0.93

Sensitivity Swin-pix2pix Internal 0.91 0.94 0.92 0.90 0.83 1.00 1.00 0.87 1.0 0.93

External 0.97 0.66 0.82 0.97 0.60 0.75 0.40 0.67 0.33 0.62

Prospective 0.94 0.92 0.93 0.96 0.80 1.00 0.85 0.96 0.89 0.90

pix2pix Internal 0.95 0.88 0.92 0.90 0.50 0.29 0.00 0.87 0.67 0.54

External 0.92 0.55 0.74 0.93 0.40 0.63 0.20 0.59 0.33 0.51

Prospective 0.91 0.88 0.90 0.83 0.73 0.89 0.77 0.95 0.67 0.81

pix2pixHD Internal 0.92 0.76 0.84 0.88 0.50 0.14 1.00 0.83 0.00 0.56

External 0.95 0.59 0.77 0.95 0.40 0.63 0.4 0.59 0.33 0.55

Prospective 0.91 0.91 0.91 0.80 0.60 0.78 0.85 0.92 0.44 0.73

Specificity Swin-pix2pix Internal 0.94 0.91 0.92 0.98 1.00 0.97 1.00 0.96 0.97 0.98

External 0.66 0.97 0.74 0.73 0.99 0.97 0.99 0.98 0.99 0.94

Prospective 0.92 0.94 0.93 0.99 0.97 0.99 0.99 0.95 0.99 0.98

pix2pix Internal 0.88 0.95 0.92 0.80 0.99 0.93 1.00 0.94 1.00 0.94

External 0.55 0.92 0.82 0.68 0.98 0.96 1.00 0.94 0.98 0.92

Prospective 0.88 0.91 0.90 0.99 0.97 0.98 0.97 0.94 0.99 0.97

pix2pixHD Internal 0.76 0.92 0.84 0.80 1.00 0.97 0.95 0.96 0.98 0.94

External 0.59 0.95 0.77 0.71 0.95 0.98 1.0 0.95 0.98 0.93

Prospective 0.91 0.91 0.91 0.97 0.96 0.97 0.95 0.93 0.99 0.96

PPV Swin-pix2pix Internal 0.97 0.83 0.90 0.98 1.00 0.70 1.00 0.90 0.50 0.85

External 0.80 0.95 0.88 0.74 0.75 0.60 0.67 0.95 0.50 0.70

Prospective 0.96 0.88 0.92 0.98 0.63 0.96 0.85 0.89 0.89 0.87

pix2pix Internal 0.94 0.91 0.92 0.82 0.75 0.25 0.00 0.87 1.00 0.61

External 0.74 0.84 0.79 0.70 0.50 0.50 1.00 0.86 0.33 0.65

Prospective 0.94 0.84 0.90 0.98 0.58 0.80 0.55 0.86 0.75 0.75

pix2pixHD Internal 0.88 0.83 0.86 0.81 1.00 0.25 0.38 0.89 0.00 0.56

External 0.77 0.89 0.83 0.72 0.25 0.71 1.0 0.89 0.33 0.65

Prospective 0.95 0.82 0.89 0.96 0.47 0.72 0.48 0.84 0.57 0.67

NPV Swin-pix2pix Internal 0.84 0.97 0.90 0.91 0.99 1.00 1.00 0.94 1.00 0.97

External 0.95 0.80 0.88 0.96 0.98 0.98 0.98 0.81 0.98 0.95

Prospective 0.88 0.96 0.92 0.91 0.99 0.99 0.99 0.98 0.99 0.98

pix2pix Internal 0.91 0.94 0.92 0.89 0.97 0.95 0.97 0.94 0.99 0.95

External 0.84 0.74 0.79 0.93 0.98 0.98 0.97 0.78 0.98 0.94

Prospective 0.84 0.94 0.90 0.87 0.98 0.99 0.99 0.98 0.99 0.97

pix2pixHD Internal 0.83 0.88 0.86 0.87 0.97 0.94 1.00 0.93 0.97 0.95

External 0.89 0.77 0.83 0.95 0.98 0.98 0.98 0.78 0.98 0.93

Prospective 0.82 0.95 0.89 0.84 0.98 0.97 0.99 0.97 0.98 0.96

Table 3: Quantitative performance on main curve position and curve classification.
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generating realistic, relevant images. Although later
models like CycleGAN have made significant progress
in image-to-image translation tasks with unpaired data,
experimental results sometimes show a difficult-to-
overcome gap compared to training results based on
paired data.24 The performance of the cGAN generator
directly affects the quality and accuracy of the
www.thelancet.com Vol 75 September, 2024
generated images. Pix2pix’s generator uses the UNet-
256 segmentation model, which can generally learn
and understand the structural information in images
well. Haiderbhai et al.36 developed pix2xray based on
the pix2pix architecture, successfully synthesizing X-
ray images from 2D-RGB images of hand gestures. Lu
et al.37 were the first to integrate the advantages of Swin
19
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Transformer into both the encoder and decoder of the
standard UNet, enhancing the representation of se-
mantic features.37,38 Inspired by this, we integrated
Swin blocks into the encoder of pix2pix’s generator, not
only improving 1) the ability to capture details and
contextual information in images; 2) the ability to
capture features at different scales; 3) the ability to
effectively process long-distance pixel dependencies
but also helping to lighten the network structure and
increase computational efficiency. Through the visu-
alized feature maps, it can be observed that compared
to pix2pix, Swin-pix2pix demonstrates better perfor-
mance in extracting features of the spine and trunk
edges (eAppendix 7, Supplementary eFig. S13).

To our knowledge, in this study, we built a paired
dataset of routine back 2D-RGB images and standing
full-spine X-rays of patients with AIS, and for the first
time developed an innovative Swin-pix2pix network
structure that integrates the self-attention mechanism,
successfully training a VXI generation system. The
greatest advantage of this system is its ability to accu-
rately generate VXI using routine back 2D-RGB images,
overcoming traditional screening’s limitations in
personnel and location. Since no special equipment is
required, screening can be conducted in medical in-
stitutions, schools, communities, and homes, signifi-
cantly increasing the prevalence of scoliosis screening.
Based on the excellent performance of our Swin-pix2pix
system, we developed an end-to-end workstation that
allows uploading back 2D-RGB images using personal
computers or smartphones and obtaining generated
VXI within seconds (eAppendix 4, Supplementary
eFigs. S4 and S5). We recorded a video showcasing
the system development environment and its real-world
application: a doctor with no prior training in using the
system takes a photograph of the patient’s back. Without
any complex operations, the photo is uploaded to the
website, and a generated VXI image is obtained. The
collected photo and VXI image are then uploaded to our
developed database for further evaluation, details of
which can be found in the Supplementary materials.

From our observations, regardless of demographic
differences, we believe the quality of 2D-RGB images,
standing posture, and lighting environment signifi-
cantly impact VXI generation. Specifically, these factors
directly affect the YOLOv8 model’s segmentation of the
torso outline during preprocessing and the Swin-pix2-
pix’s ability to capture back texture features during
generation. Increasing the internal structural similarity
between input and target images, thus generating more
accurate spinal curvature. In our study, our training set
comprises retrospective 2D-RGB photo data without
strict environmental control, which poses both chal-
lenges and opportunities. These photos cover a variety of
everyday scenes and commonly used photography
equipment, allowing the model to adapt to the hetero-
geneity of multi-centre data and enhancing its
robustness. Furthermore, rich 3D information can be
embedded even in 2D photos including depth infor-
mation and rotational-related information, which helps
minimize rotational errors and optimizes the repre-
sentation of scoliosis forms. However, we must
acknowledge that data heterogeneity does affect the
model’s performance. We found that the results from
PUMCH closely matched our expectations, less than the
systemic error produced by manual Cobb angle mea-
surement,39 due to good lighting, appropriate shooting
angles, and better consistency with the training dataset.
On the other hand, the dataset from SAHZU performed
poorly because the photos were taken in poor lighting
conditions and from a greater distance, which signifi-
cantly differed from the scenarios in the training set.
This presents a higher demand for the model’s gener-
alization ability. The fact that the model performed
better on the prospective test dataset than on all other
test datasets further confirms the above findings. We are
exploring ways to improve the model to enhance the
quality and accuracy of image generation for such data.

Overall, our Swin-pix2pix model demonstrated uni-
versality and robustness in comprehensive evaluations,
achieving satisfactory synthetic results, which can be
attributed to the use of paired datasets and the model’s
lightweight and refined architectural innovations. These
innovations allow the model to perform exceptionally
well in processing more complex scenarios. Our exper-
imental results also prove that the generated VXI is
clinically relevant for predicting the severity and type of
spinal curvature in patients with AIS. Thus, our study
empirically demonstrated the significant advantages of
applying the Transformer model to pix2pix for the first
time. The innovative applications of these models not
only enhanced the practicality of the outcomes but also
achieved diagnostic levels comparable to professional
medical practitioners. Notably, the recent success of the
model Sora in the field of video further confirms the
effectiveness of applying Transformer modules in
generative networks. The foundation of the Sora model
is the Diffusion Transformer (DiT),40 an advanced al-
gorithm that integrates diffusion models with Trans-
former architecture. DiT effectively preserves the spatial
information and coherence of images, enabling the
generative model to capture both local details and overall
structure more accurately, thereby significantly
enhancing the model’s overall performance.

Despite the encouraging results of this study, there
are some limitations. First, Our data volume and quality
still need improvement. In the future, we will establish
strict data collection standards and continue increasing
the data volume of normal adolescents, mild scoliosis,
and severe scoliosis cases. Second, all participants in
this study were Han Chinese from different regions,
and the system trained on this dataset may not accu-
rately apply to other ethnic groups. Lastly, despite strict
quality control measures, we cannot completely
www.thelancet.com Vol 75 September, 2024
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eliminate the error caused by trunk rotation during
imaging, which may potentially affect the experimental
results to some extent.

In summary, we have developed the first X-ray image
generation system based on back 2D-RGB images using
deep learning technology. This system can efficiently
and radiation-free assess the severity and type of scoli-
osis in patients with AIS, performing superior to all
known cGAN models and spinal surgery experts. We
believe this system has the potential for widespread
screening and assessment of scoliosis in the future,
significantly reducing the rates of missed diagnoses and
misdiagnoses.
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