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ABSTRACT

Dramatic advances in sequencing technology and
sophisticated experimental assays that interrogate
the cell, combined with the public availability of the
resulting data, herald the era of systems biology.
However, the biological functions of more than 40%
of the genes in sequenced genomes are unknown,
posing a fundamental barrier to progress in systems
biology. The large scale and diversity of available data
requires the development of techniques that can
automatically utilize these datasets to make quanti-
fied and robust predictions of gene function that can
be experimentally verified.Wepresentaservicecalled
the VIRtual Gene Ontology (VIRGO) that (i) constructs
a functional linkage network (FLN) from gene expres-
sion and molecular interaction data, (ii) labels genes
in the FLN with their functional annotations in the
Gene Ontology and (iii) systematically propagates
these labels across the FLN in order to precisely pre-
dict the functions of unlabelled genes. VIRGO assigns
confidence estimates to predicted functions so that a
biologist can prioritize predictions for further experi-
mental study. For each prediction, VIRGO also pro-
vides an informative ‘propagation diagram’ that
traces the flow of information in the FLN that led to
the prediction. VIRGO is available at http://whipple.cs.
vt.edu:8080/virgo.

MOTIVATION

More than 250 complete genome sequences are now available,
including those of 35 eukaryotes (1). Increasingly sophistic-
ated high-throughput biological experiments provide a wide
range of functional genomic information about cell state.
These advances, combined with the public availability of
these datasets, herald the era of systems biology (2,3). How-
ever, a fundamental roadblock to progress in systems biology
is the poor state of knowledge about the biological functions of

the genes in sequenced genomes (4,5). Using sequence
similarity to predict gene function provides annotations
only for about 40% of eukaryotic genes (6). Some of these
annotations may also be incorrect, as they are transmitted from
one genome to another via weak chains of inference (7). Genes
of unknown function might support important cellular
functions. Discovering the functions of these genes will
provide critical insights into the biology of many organisms.
In addition, discovering these functions will improve our
ability to annotate genomes sequenced in the future. The
large scale and diversity of available functional genomic
data requires the development of novel computational tools
that can automatically integrate these data in order to compute
quantified and testable predictions of the functions of poorly
understood genes.

In this paper, we provide a powerful interface called ‘the
VIRtual Gene Ontology’ (VIRGO) that enables a biologist to

(i) integrate gene expression data collected in the laboratory
with molecular interaction networks,

(ii) construct a functional linkage network (FLN) from these
datasets,

(iii) label the genes in the FLN with functional annotations
from the Gene Ontology (GO) (8) and

(iv) systematically propagate these labels across the FLN in
order to predict the functions of unlabelled genes.

The biologist can query VIRGO for predictions of interest
and prioritize them using confidence values assigned by
VIRGO. VIRGO also provides informative ‘propagation dia-
grams’ that trace the flow of information in the FLN. These
diagrams may assist the biologist in ascertaining the rationale
behind a prediction. A number of powerful methods have been
published for predicting gene function by integrating different
types of functional genomic data (9–16). As far as we are
aware, VIRGO is the first web server that makes such a pre-
diction engine widely available.

THE VIRGO SYSTEM

Figure 1 displays the VIRGO system. We describe its main
components below.
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Functional Linkage Networks

A promising basis for predicting gene function identifies func-
tional associations of genes of unknown function with genes of
known function. Diverse sources of biological data contain
evidence for such associations. For instance, two genes may
have the same function if their protein products interact
(17,18) or if they have very similar patterns of gene expression
(19,20). An FLN (21–24) is a powerful framework for repres-
enting and analysing such relationships. An FLN is a graph in
which each node corresponds to a gene; the node is labelled by
the set of functions that annotate the gene. An edge in an FLN
connects two genes if some experimental or computational
procedure suggests that these genes might share the same
function. Each edge in the FLN has a real-valued weight;
the sign of the weight indicates whether the connected
genes share or do not share the function, while the magnitude
of the weight reflects our confidence in the edge.

A number of on-line databases (24–34) have assembled
large collections of functional links between genes by curating
the literature or by combining multiple experimental and com-
putational procedures. Other authors have proposed tech-
niques for constructing FLNs that integrate multiple sources
of data (22,35) or FLNs that are based on gene expression data
analysed across multiple species (19,36). Although these data-
bases and algorithms are highly valuable sources of functional
associations, many of them focus on constructing FLNs and do
not address the question of using FLNs for automatically pre-
dicting gene functions.

The GAIN algorithm

VIRGO uses the ‘Gene Annotation using Integrated Networks’
(GAIN) (21) algorithm as its function prediction engine.
GAIN automatically and robustly suggests putative functions
by systematically propagating functional annotations across
the FLN while exploiting the constraints imposed by the topo-
logy of the FLN. In earlier work (21), we evaluated GAIN by

integrating a protein–protein interaction network for
S. cerevisiae based on the GRID database (30) and a gene
expression dataset with 300 conditions (gene knockouts and
chemical treatments) (37). The protein–protein interaction net-
work provided the edges of the FLN. We assigned each edge in
the FLN a weight equal to the absolute value of the Pearson’s
correlation coefficient of the expression profiles of the genes
incident on the edge. We used the GO functional annotations
for S. cerevisiae as of December 1, 2002. We considered those
GO functions that annotated at most 10% of the genes in the
FLN and for which GAIN achieved at least 75% precision
and recall on average on leave-one-out cross validation. We
restricted our attention to those predicted gene-function pairs
where the function belonged to this set of 485 functions. Since
GAIN may predict multiple functions for a gene, one predicted
function may be an ancestor of another predicted function in
the GO directed acyclic graph (DAG). Therefore, if GAIN
predicted a gene as having two functions where one function
is an ancestor of the other, we discarded the ancestor as a
prediction. These steps yielded 207 predicted gene-function
pairs spanning 130 distinct genes, 98 distinct functions and all
three GO categories. We compared these 207 predictions to
the GO annotations for S. cerevisiae as of March 24, 2006. We
computed the distance in the GO DAG between each function
predicted by GAIN for a gene (based on the 2002 dataset) and
the correct annotation in the same GO category as the pre-
dicted function (if one existed in the 2006 dataset). For each
gene, we selected the predicted function (in each GO category)
that achieved the smallest distance to a true annotation for
that gene. We calculated that 11 predictions are correct,
12 predicted functions are either parents or children of the
true function in the GO DAG, 36 predicted functions are at
a distance two in the GO DAG from the true function, and
3 predicted functions are at a distance three from the true
function. These 62 predictions span 52 genes (GAIN predicted
functions in multiple GO categories for some genes). The
78 genes involved in the remaining predictions continue to
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Figure 1. The VIRGO system. Solid arrows indicate a biologist’s interaction with VIRGO. Dotted arrows indicate flow of information and computation within
VIRGO. Dashed lines indicate generation of biological hypotheses and experimental data that we hope VIRGO will inspire.
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have no biologically validated functions in the same GO
category as the predicted function. A table listing all the
comparisons we performed is available in the Supplementary
Data. The validated predictions include nucleolus, chromatin
remodeling complex, snoRNA binding RNA binding and
vesicle-mediated transport. These results demonstrates
GAIN’s ability to make accurate predictions of gene function.

The VIRGO pipeline

VIRGO is implemented in Java 1.4 and uses the Apache
Jakarta Tomcat web server. The VIRGO database uses a
PostgreSQL backend. GAIN is implemented in C++. A typical
session for a biologist with VIRGO involves the following
steps:

(i) The biologist collects a gene expression data set in the
laboratory and uploads the data to VIRGO. At this stage,
the biologist has option of telling VIRGO to make the
resulting predictions public, i.e. available to all users of
VIRGO. VIRGO’s default policy is to keep the predic-
tions private.

(ii) VIRGO invokes GAIN to integrate the gene expression
dataset with molecular interactions to construct an FLN.

(iii) GAIN processes the FLN in two separate steps. The first
step uses the FLN and existing annotations in GO to

compute new predictions of gene function. In the optional
second step, the biologist can measure GAIN’s perfor-
mance using leave-one-out cross validation.

(iv) At the end of each step, VIRGO parses GAIN’s output
files, stores the results in the VIRGO’s database and
informs the biologist by email that the step has
completed.

(v) The biologist queries VIRGO to find high-quality predic-
tions using propagation diagrams, confidence estimates,
and other statistics as aids. Figure 2 displays a typical
propagation diagram.

In the long run, we hope that a biologist will be able to use
VIRGO to develop new hypotheses and perform new experi-
ments which will yield further datasets for analysis by VIRGO.

Supported organisms and datasets

Currently, VIRGO supports analysis for S. cerevisiae and
H. sapiens. We chose these two organisms since they have
large and diverse collection of protein–protein interaction
datasets and gene expression measurements. We periodically
download these interactions from the respective websites and
functional annotations from the GO website. We use the GRID
dataset (30) for S. cerevisiae. For H. sapiens, we obtained
31610 interactions between 7393 human proteins from the

Figure 2. This propagation diagram supports the prediction that gene YNL016W (PUB1) is annotated with the biological process ‘RNA binding’ (GO:0000023). Red
rectangles denote genes annotated with this function. Blue diamonds represent genes annotated with a different function. Octagons represent genes that either have no
known function or are annotated with a function that is an ancestor of ‘RNA binding.’ Of these, the red octagon is the gene of interest. Other blue octagons represent
genes that are also predicted to have this function. Red edges are incident on annotated nodes and help to visualize the flow of information in this network. The
propagation diagram generated by VIRGO also displays edge weights, which we do not show in this picture.
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IDSERVE database (29). We also included 3270 human inter-
actions derived using large scale yeast two-hybrid experiments
from Stelzl et al. (38), and 6726 human PPIs from Rual et al.
(39). Overall, this human PIN contains 6274 proteins and
34087 interactions and represents interactions from a diverse
variety of sources.

CONCLUSIONS AND FUTURE WORK

We have developed VIRGO, a web server for automated pre-
diction of gene functions. A biologist can use VIRGO to obtain
predictions for a system of interest by analysing relevant gene
expression data integrated with molecular interactions.
VIRGO provides useful auxiliary information to the biologist
to assess the quality of the predictions and to prioritize them
for further analysis. It is easy to extend VIRGO to other organ-
isms for which gene expression data and functional annota-
tions exist. We anticipate adding support for D. melanogaster,
C. elegans, and P. falciparum and in the near future. VIRGO
will also support functional predictions in organisms for
which there are no publicly-available datasets of molecular
interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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