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conditions with cutaneous manifestations
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Summary
Neural networks have shown strong potential in research and in healthcare. Mainly due to the need for large datasets, these applications

have focused on common medical conditions, where more data are typically available. Leveraging publicly available data, we trained a

neural network classifier on images of rare genetic conditions with skin findings. We used approximately 100 images per condition to

classify 6 different genetic conditions. We analyzed both preprocessed images that were cropped to show only the skin lesions as well as

more complex images showing features such as the entire body segment, the person, and/or the background. The classifier construction

process included attributionmethods to visualize which pixels were most important for computer-based classification. Our classifier was

significantly more accurate than pediatricians or medical geneticists for both types of images and suggests steps for further research

involving clinical scenarios and other applications.
Introduction

Neural network models have demonstrated strong poten-

tial to improve the practice of healthcare. For example,

‘‘artificial intelligence’’ may help detect breast cancer via

mammography or COVID-19 based on computed tomog-

raphy (CT) scans.1,2 In this type of computer vision

approach, because medical datasets are typically small

compared to other types of publicly available datasets,

the neural network is first pretrained on a large, general im-

age dataset to help identify major features, such as edges or

basic shapes. Next, the neural network is fine-tuned to

address a more specific question, such as the recognition

of certain diseases. For this approach to work well, the pre-

trained data must either be similar in type to the medical

data or the size of the medical dataset must be relatively

large.3

Due to these limitations, neural network applications in

healthcare have focused on relatively common conditions,

where sufficiently large datasets are more readily collected.

Genetic conditions, though common in aggregate, are

largely individually rare.4 A recent meta-analysis identified

82 studies comparing deep learning performance to that of

healthcare professionals in disease detection using medical

imaging. None of the conditions in this meta-analysis were

genetic, though some (e.g., breast cancer) involve clear ge-

netic underpinnings in a subset of individuals.5 Other rela-

tively recent studies have examined skin lesions (especially

skin cancer), though they did not focus on genetic condi-

tions.6–8 A recent scoping review identified a total of 211

papers about specific rare conditions that were analyzed

via machine learning; by our count, 59 of these papers

focused on genetic conditions (versus other rare condi-

tions).9
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Despite this lack of representation, neural network ap-

proaches have been used in some genetic areas.10 With ef-

forts to collect adequate training data, these methods

could be especially useful in clinical genetics, where there

is a lack of trained individuals to help determine whether

a person may be affected by a genetic condition, what

that conditionmay be, and what testing strategy andman-

agement steps are indicated.11,12With the expansion of ge-

nomics into diverse fields of medicine,13 an alternative

strategy of training non-geneticist clinicians has not kept

pace.14 Developing computational methods could help ge-

neticists and other clinicians manage the large numbers of

affected individuals.

To explore the use of these techniques in proof-of-prin-

ciple exercises using small datasets, we collected images

of a selected group of rare genetic conditions that manifest

with characteristic skin findings. We chose clinically im-

pactful conditions that can be nontrivial to diagnose.15

We built neural network classifiers both for images that

were cropped to focus on the lesions of interest, similar

to previous studies,16,17 as well as uncropped images. These

uncropped images can be more difficult for a neural

network model to analyze but may more closely mimic

real-life, unprocessed images, such as those a clinician

might encounter ormight share with a colleague to request

advice. During the classifier construction process, we used

an attribution method for image recognition to help visu-

alize how the classifier weighted image pixels. Last, we

compared the classifier performance to clinicians.

To summarize, our contributions include: (1) evaluation

of a neural network classifier’s performance on a small da-

taset of esoteric genetic conditions, and (2) comparison of

how focused and panoramic images affect human and the

neural network model’s accuracy.
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Material and methods

Ethics review
The study was reviewed by National Human Genome Research

Institute (NHGRI) bioethicists and the National Institutes of

Health (NIH) Institutional Review Board (IRB). The main analyses

were considered not human subjects research; a waiver of consent

was granted by the NIH IRB (NIH protocol: 000285) for the work

involving the surveys of medical professionals, as described below.
Data collection
Using condition and gene names, we searched Google and PubMed

to identify publicly available images showing the following six con-

ditions: hypomelanosis of Ito (HMI [MIM: 300337]), incontinentia

pigmenti (IP [MIM: 308300]), McCune-Albright syndrome (MA

[MIM: 174800]), neurofibromatosis type 1 (NF1 [MIM: 162200]),

Noonan syndrome with multiple lentigines (ML; formally known

as LEOPARD syndrome [MIM: 151100]), and tuberous sclerosis

complex (TSC [MIM: 191100, 613254]) (see Table S1 for more de-

tails about these conditions). Our clinician investigators also

selected and reviewed images of other skin conditions (e.g., basal

cell carcinoma, blue nevus, other congenital nevi, erythema

migrans, halo nevus, hemangioma, ichthyosis, melanoma, mollus-

cum contagiosum, piebaldism, port wine stain, psoriasis, tinea ver-

sicolor, vitiligo, etc.) that are unrelated to the six aforementioned

genetic conditions (the sources for all images are available in Table

S2). Some of these other conditions can be clinically relevant and

may also be evaluated by clinicians seeing individuals with the ge-

netic conditions we analyzed. For example, a pediatrician might be

expected to recognize the presence of a variety of congenital skin

findings, including those related to genetic conditions. Though

difficult to quantify due to lack of available comprehensive infor-

mation for many images, we endeavored to collect images from in-

dividuals of diverse ancestral backgrounds. This was done by

manual review, using images from sources that focus on ancestrally

diverse individuals (such as journals devoted to the presentation of

medical conditions in diverse geographic locations) and perform-

ing searches in multiple languages.

As defined below (see Initial image processing), the images we

used included focused images (n ¼ 1,032 [total]: 96 HMI, 116 IP,

122MA, 105ML, 230NF1, 119 TSC, 244 other) and panoramic im-

ages (n ¼ 798 [total]: 87 HMI, 85 IP, 100 MA, 83 ML, 120 NF1, 88

TSC, 235 other). All focused images were derived from the pano-

ramic images. The reason that there are more focused images is

that some panoramic images (e.g., where there were multiple,

discrete lesions) could be split into more than one focused image.

Two board-certified clinicians (one medical geneticist and one ge-

netic counselor) reviewed images and data in the source websites

to help ensure accuracy of diagnoses based on clinical descriptions

and the information described. For example, if a publication

showed an image of a person described as having NF1, our team

reviewed the image and the description of that person to ensure

that there was strong evidence for the diagnosis and that there

was not contradictory evidence, such as a statement that the indi-

vidual, on ultimate genetic testing, had an alternate molecular

explanation. All images and URLs used in classification are listed

in Table S2.
Initial image processing
First, following the conventions of other large-scale neural

network studies on images of skin cancer,16–18 we cropped images
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to contain just the lesions of interest. We refer to this dataset as

focused images. For conditions with multiple skin or other find-

ings, we focused on the relatively early, main skin manifestations

that may first bring the person to clinical attention, before there

are other, more obvious signs of the underlying diagnosis. For

example, for NF1, we focused on café-au-lait macules (CALMs).

This is because, in this condition, CALMs are often the first mani-

festation, preceding other more obvious signs of the condition,

such as cutaneous neurofibromas.19,20 In HMI and IP, individuals

may have othermanifestations in addition to skin findings later in

life, such as developmental delay, while people with MA may

demonstrate precocious puberty later in life. We chose to analyze

stage 3 (hyperpigmented stage) of IP, as we hypothesized that this

stage may be harder to differentiate from the other conditions. See

Table S1 for more details and further references related to these

conditions. We also used the photos as they were captured,

some of which show an entire person’s face or body segment

(e.g, an arm or the entire back) with the genetic conditions, and

with other features such as clothes or a background, though we

cropped out words, such as a heading indicating the image num-

ber. We refer to this second dataset as panoramic images.

A single panoramic image can have multiple corresponding

focused images. For example (Figure 1), an image of a person

with NF1 may include multiple CALMs. We did not want the

model to capture anything related to the test images during

training. Hence, for the test set, from each of the 7 categories

(the 6 genetic conditions and the ‘‘other’’ category), we selected

20 panoramic images and corresponding focused images. Each

panoramic test image has exactly one corresponding focused im-

age. In total, the panoramic test set and the corresponding focused

test images contained 140 images each. The remaining images

were used to train the model.
Classifier
We chose the EfficientNet-B4 classifier, which achieved good per-

formance on the ImageNet data with a relatively low number of

parameters.21 We initialized EfficientNet-B4 with the parameter

values pretrained on ImageNet and continued training the entire

model, not just the last few fully connected layers.3 Combining

and then jointly training a small dataset of interest with a larger

auxiliary dataset often helps the prediction accuracy.22,23 For the

auxiliary dataset, we downloaded the publicly available SIIM-

ISIC Melanoma Classification Challenge Dataset from 2018 to

2020.16,24 This dataset contains 58,459 images of 9 skin cancer

diseases: actinic keratosis, basal cell carcinoma, benign keratosis,

dermatofibroma, melanoma, melanocytic nevus, squamous cell

carcinoma, vascular lesion, and other unknown skin cancer cases.

The SIIM-ISIC images are focused images; however, due to our rela-

tively low sample size, we opted to train the models using focused

SIIM-ISIC images with both our focused and panoramic images.

We trained our model with the SIIM-ISIC dataset where we clas-

sified an image as one of the 16 diseases (7 from our genetic þ
other disorders dataset and 9 from the SIIM-ISIC dataset). We

conducted two experiments, the first with our focused and SIIM-

ISIC images and the second with our panoramic and SIIM-ISIC im-

ages. Both experiments used 450 by 450 pixel images and the same

layers of data augmentation: transposition, vertical and horizontal

flip, random brightness and contrast, motion and Gaussian blur,

optical and grid distortion, hue saturation, and shift and rescale

rotation. Key hyperparameters were learning rates and sample

weights for the loss functions. We set learning rates at 0.00003
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Figure 1. Example panoramic and
focused images for each pair of condi-
tions
Hypomelanosis of Ito (HMI) (A), inconti-
nentia pigmenti (IP) (B), McCune-Albright
syndrome (MA) (C), tuberous sclerosis
complex (TSC) (D), Noonan syndrome
with multiple lentigines (ML; formally
known as LEOPARD syndrome) (E), and
neurofibromatosis type 1 (NF1) (F). See Ta-
ble S1 for more details on these conditions.
Images sources (all are used with appro-
priate permission) are listed in the Web
resources.
and 0.00001 and weighed our datasets 5 and 10 times more than

the SIIM-ISIC dataset for our focused and panoramic models,

respectively. We used batch size 64 and Adam optimizer with 30

epochs for both focused and panoramic images. We trained all

the models on the NIH High Performance Computing Cluster us-

ing P100 16 GB Nvidia graphic card. Our code is available at

GitHub.

For our focused images, a 5-fold cross-validation was used to

build 5 different classifiers (one for each fold). To create an

ensemble predictor, we used each classifier to estimate the pre-

dicted probabilities for the labels of a test image. The average of

these probabilities was calculated for the 5 classifiers. When aver-

aging, we considered only the classifiers that produced a

maximum predicted probability (over all the labels) of at least

0.5. The same procedure was used for training the model on our

panoramic images. To visualize which parts of an image the classi-

fier considered to be important, we applied Integrated Gradient to

identify pixels of an image that most affect the classifier’s

outcome.25

Comparison to clinicians
We compared the classifier to board-certified or board-eligible

medical geneticist physicians and pediatricians. We chose these

specialties because, in our experience, these types of clinicians

more frequently encounter these individuals (versus, for example,

dermatologists, who may more often assess other skin condi-

tions).26 That is, a typical path involves an initial encounter by a

pediatrician, followed by referral to a medical geneticist.

We generated surveys using Qualtrics (Provo, UT, USA). Each

survey has 4 panoramic images and their corresponding focused

versions for each of the 7 conditions (6 genetic conditions þ other

conditions). As there are 140 panoramic test images, 5 surveys can

cover all the test images. We created 6 sets of these 5 surveys, such

that each test image would be seen 6 times. In each survey, we

showed the focused images first and then the panoramic images.

In total, there were 30 unique surveys. For fair comparison, a med-

ical geneticist and a pediatrician completed the same survey, and

paired t test was be used to compare their outcomes.
Human Genetics and Genomic
When responding to the survey, partici-

pants were directed not to use any external

resources for help and to select the genetic

condition best represented by the image

presented. Although this does not mirror

standard medical practice (in which clini-

cians might use textbooks or web sources

when assessing an individual), we hypoth-

esized that these procedures would help

with standardization. The surveys also

included 3 demographic questions (medi-
cal specialty, number of years in practice, and location of current

practice), which were only used for verification purposes, rather

than for analyses.

Following previous methods,16,17 we estimated that 30 partici-

pants for each clinician type would provide a statistical power of

95% to detect a 10% difference. For each of the 30 surveys, one

board-certified or board-eligible medical geneticist physician and

one board-certified or board-eligible pediatrician was recruited

via e-mail. To identify survey respondents, we obtained e-mail ad-

dresses through professional networks, departmental websites,

journal publications, and other web-available lists. A total of 105

medical geneticists were contacted; 37 agreed to participate, and

32 completed the survey. A total of 379 pediatricians were con-

tacted; 37 agreed to participate, and 32 completed the survey. Sur-

veys were considered complete if >95% of the multiple-choice

questions were answered. If multiple medical geneticists or pedia-

tricians completed the same survey, only the first survey was used

for analysis.

Results

Clinician demographics

A range of experience levels was reported for both themed-

ical geneticist and pediatrician participants, with the me-

dian participant in both groups reporting greater than 10

years of experience. Of the 30 medical geneticist respon-

dents, 6.7% had less than 1 year of experience, 13.3%

had 1 to 5 years of experience, 20% had 5 to 10 years of

experience, and 60% had more than 10 years of experi-

ence. Of the 30 pediatrician respondents, 10% had less

than 1 year of experience, 13.3% had 1 to 5 years of expe-

rience, and 76.7% had greater than 10 years of experience.

All clinicians in the pediatrician group reported currently

practicing in North America. One of the clinicians in the

medical geneticist group reported practicing in Asia

(thoughmay have trained or practiced elsewhere), whereas
s Advances 3, 100053, January 13, 2022 3



Figure 2. Performance of physicians compared to deep learning
classifier
We trained two classifiers, one on focused images and the other on
panoramic images.We compared the performance of the classifiers
to that of pediatricians and medical geneticists. In the boxplots,
each point represents the accuracy difference between the classi-
fier and the human performance for a single survey, with the
ranges for each group of respondents shown by the lines extend-
ing from each boxplot. The red line indicates the baseline accuracy
for the classifier.
the other 29 reported practicing in North America. See

Data S1 for a copy of the survey and table displaying clini-

cian demographic data (Table S4).

Classifier

We first assessed the classifiers’ performances when jointly

trained on our dataset and the SIIM-ISIC dataset. None of

our focused and panoramic test images were classified as

one of the cancer conditions in the SIIM-ISIC dataset.

This was expected, because SIIM-ISIC diseases are dissimi-

lar to our genetic conditions, and the pose-style and

ancestry (SIIM-ISIC largely represents individuals of Euro-

pean descent) in the SIIM-ISIC images are different from

those in our images. When evaluated on the same 30 sur-

veys described in Material and methods, under Compari-

son to clinicians, the classifier trained on focused images

and the classifier trained on panoramic images obtained

the same average accuracy on all 30 surveys: 0.814 (SD,

0.083) and 0.814 (SD, 0.72), respectively (2-sided paired t

test, p ¼ 1).

We evaluated the reliability of our surveys using the in-

traclass (within-class) correlation coefficient (ICC) in two

ways. First, we computed the agreement ICC score for

the three groups: classifier, medical geneticists, pediatri-

cians. Because we have different participants for each sur-

vey, we used a one-way random effects model to compute

the agreement ICC score. For surveys with focused images,

the ICC score for these three groups is 0.315 (95% confi-

dence interval [CI]:�0.393,�0.176). The ICC score for sur-

veys with panoramic images is �0.090 (95% CI: �0.244,

0.137), indicating that the three groups do not agree

well.27 Second, we computed the clinicians’ agreement

and consistency ICC scores across all surveys for focused

and panoramic images. We computed the 2-way random

effects ICC scores on agreement and consistency on the ac-

curacy of focused and panoramic images for the medical

geneticist and pediatrician group separately. For the genet-

icists, the agreement ICC is 0.543 (95% CI: 0.034, 0.794),

indicating that the medical geneticists do not often give

the same answers for focused and panoramic images.27

However, the consistency ICC is 0.682 (95% CI: 0.431,

0.835), which indicates that, over all the surveys, the ge-

neticists are often better at classifying panoramic versus

focused images. For the pediatricians, the agreement and

consistency ICC scores are 0.693 (95% CI: 0.194, 0.874)

and 0.792 (95% CI: 0.608, 0.895), respectively, indicating

that pediatricians aremore likely to obtain similar accuracy

for both focused images and their corresponding pano-

ramic versions.27

ICC scores do not compare whether one group (e.g., the

classifier) is better than another (e.g., the medical geneti-

cists or pediatricians) at classifying the diseases. Following

previous studies,17 we used 2-sided paired t test to compare

our classifier’s accuracy to that of medical geneticists and

pediatricians. Group results for accuracy for classification

are shown in Figure 2. Overall, the computer classifier

performed 37.3% (p ¼ 3.87 3 10�13) and 28.7% (p ¼
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2.81 3 10�11) better than pediatricians for focused and

panoramic images, respectively. Overall, the computer

classifier performed 21.8% (p ¼ 1.52 3 10�10) and 12.7%

(p ¼ 4.57 3 10�7) better than medical geneticists for

focused and panoramic images, respectively.

Medical geneticists performed better than pediatricians

on focused and panoramic images by 15.6% (p ¼ 3.63 3

10�4) and 16.0% (p ¼ 1.44 3 10�4), respectively. On

average, humans performed better with panoramic than

focused images. For both the medical geneticist and pedia-

trician groups, the accuracy for panoramic images was

higher than for focused images by 9.05% (p ¼ 2.55 3

10�5) and 8.57% (p ¼ 6.60 3 10�5), respectively. The re-

sults for each of the individual genetic conditions are

shown in Figure 3. For the panoramic images, the condi-

tion with the lowest accuracy (80%) for the classifier was

NF1, still higher than the average for the physicians

(77.5% and 61.7% for medical geneticists and pediatri-

cians, respectively). The most difficult condition for both

pediatricians and medical geneticists to classify based on

panoramic images was MA, with 28.3% and 49.2%

accuracy, respectively. The classifier identified 75% of MA

panoramic images accurately. As shown in Figure 3, the cli-

nicians had more difficulty differentiating conditions that

have similar skin manifestations than the classifier. For
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Figure 3. Confusion matrices
Confusion matrix comparing our classifier (left) versus the two different clinician types (middle and right) for classification of focused
and panoramic images. Rows represent the correct label, while columns represent the label chosen by the classifier or the clinicians. The
diagonal numbers represent the percent accuracy for each category (the percentage of time the correct label was identified), while the off-
diagonal numbers representmisclassifications, with the number corresponding to the percentage of time the label for a given image type
was ascribed to another, incorrect category.
example, the clinicians had more difficulty differentiating

HMI from IP and MA from ML or NF1.

We validated that our classifier obtains adequate accu-

racy because it weights important parts of an image in

the classification process. That is, the attribution method

(Figure 4) helped us determine which pixels most affect

the classifier’s decision making. This helped ensure that

intuitively important pixels were being weighted more

frequently than potential common artifacts, such as recur-

rent background types or articles of clothing in the pano-

ramic images.29 This approach was used in our classifier

development process to subjectively examine which com-

binations of training datasets provided the best output.
Discussion

Our overarching goal was to use neural networks to

demonstrate how these and related methods can be lever-

aged in potentially useful and interesting ways with data-

sets involving genetic conditions. Our aimwas not to build

the most accurate classifier possible. We could achieve bet-

ter accuracy with additional (computationally expensive)

modifications, such as further modifying the model’s hy-

perparameters or by incorporating larger or different data-

sets for training. We note that the availability of larger,

centralized, and freely available datasets relevant to genetic

diseases such as those we analyzed is currently lacking

compared to more common conditions.
Human
Our classifier outperformed both pediatricians and genet-

icists for both focused and panoramic images. This does not

imply that the classifier canor should replacehumanexperts

or that our methods represent clinical practice. To help

reduce potential bias in our surveys, and to allow us to effi-

ciently gather more information from respondents, we did

not allow clinicians to access materials (such as textbooks

or the internet) that theymight employ in real-life scenarios.

We also asked clinicians to classify images without incorpo-

rating other information that is often important in clinical

practice, such as family history and other clinicalmanifesta-

tions (e.g., the presence or absence of developmental delay

or certain types of cancer). These data could be incorporated

into a computer-based classifier, though such a model was

not part of our objectives, in part because we did not have

uniform access to these data. Despite this, our experimental

set-up did allow us to estimate how well the physicians

perform when provided with the more holistic panoramic

images versus the focused images. This estimation was not

done in some other studies involving skin images.6,24

The fact that our classifier worked relatively well may

demonstrate possible use cases. For example, this type of

approach could help primary care doctors determine

which individuals should be prioritized for evaluation by

subspecialists like geneticists. In settings—both in the

United States and in other countries—with less access to

specialists, these tools could help identify the most

efficient genetic testing strategies. Even for experienced ge-

neticists, these classifiers could be used as a back-up or
Genetics and Genomics Advances 3, 100053, January 13, 2022 5



Figure 4. Attribution images
The attribution images show which pixels the classifier weights when ‘‘deciding’’ how to categorize. As shown, the classifier uses pixels
involved in the skin finding but may also use other pixels as well, some of whichmay represent confounders.28 Our research team exam-
ined these attribution methods during stages of classifier training and testing to determine how to improve performance, such as by
incorporating other datasets for training, or when adjusting the neural network hyperparameters. Clockwise, from top left: NF1, TSC,
ML, and MA. Images sources (all are used with appropriate permission) are listed in the Web resources.
additional tool to augment their assessment of certain

characteristics of an individual they see.

We observed a range of accuracy for the clinicians. This is

logical: some clinicians may be more experienced with

these specific conditions or may simply be more gifted at

this type of task. The fact that the classifier does relatively

well across different conditions, in addition to the overall

accuracy, is notable. As an example, the confusionmatrices

(Figures 3 and S1) show that the clinicians classify certain

conditions better than others. This may relate to the rarity

of certain conditions that may be clinically important but

are rarely encountered in training or clinical practice. This

is one advantage of computerized methods, where a very

rare condition can be included if adequate overall data

can be gathered. Interestingly, the clinicians had more dif-

ficulty discerning conditions that can appear similar to

each other, such as HMI and IP, than the classifier.

We built a potentially useful method using small data-

sets; we were able to build the classifying algorithm using

a minimum of about 100 images per condition. This is

important when considering methods for conditions that

are relatively rare. We also endeavored to include individ-

uals of diverse ancestral backgrounds when collecting our

training datasets. As the ancestral background of most in-

dividuals whose images we used was not described in the

primary literature, this was difficult to quantify and re-

quires further testing and attention in this type of
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work.30,31 However, we do not want to overstate our ability

to quantify the diversity of the images in this dataset, as

these data were often not available. We also did not want

to assume the ancestry of an individual where that was

not specifically mentioned. We plan to pursue this impor-

tant question in prospective studies.

The methods we built can also be readily modified. For

example, other conditions could be incorporated by col-

lecting additional images and retraining our classifier,

which can be done quickly using the code we provide.

We also applied related techniques on our current dataset

to generate new images via generative adversarial networks

(see Supplemental methods), which may be useful for

improving classifier performance.

One concern about neural network and related methods

is that they are a ‘‘black box’’ that is opaque to human intu-

ition or explanation. Our attribution methods show that

one can correlate which features are important for the

computer classifier to make decisions. This has recently

been used to explore confounders in analysis of X-rays

from individuals with COVID-19.28 This was useful during

the classifier building process to ensure that pixels were

weighted in what would be considered a logical fashion.

This is not dissimilar to how a human might identify

which condition a person has. That is, the human may

pay more attention to certain informative features, such

as the shape of a skin lesion or the angle of a bone on an
022



X-ray. A key clinical skill learn is learning which features

deserve attention and which are less important. Using

computer-based attribution methods can similarly help

understand which features a model uses. We plan to

explore objective quantification of these methods in future

studies.

While our work provides insights into the use of

advanced computational approaches in the study of rare

diseases, our study has limitations. In collecting a large

enough dataset, we relied on publicly available data. Our

clinical team vetted each image, but it is possible that

some data were inaccurate. For example, some depicted im-

ages could derive from people affected bymore than one ge-

netic condition,32 which could complicate the phenotype.

The conditions analyzed can also have genetic heterogene-

ity (can occur due to different genetic causes) or can involve

distinct genotype-phenotype correlations.33,34 As we

treated each condition collectively (as a single entity), we

were not able to parse out unique attributes to a given ge-

netic variant or subset of a condition. Additionally, our

approach did not account for possible overlaps between

the conditions, such as might occur in the two RASopathies

(NF1 and ML).35 As our major focus of our approach is to

build methods that can be useful with smaller datasets,

our accuracy was not as high as it would be with a larger da-

taset. We anticipate that as publicly available datasets are es-

tablished for rare diseases, work in this area will approach

the accuracy of that described for more common condi-

tions. Our work with morphing and style mixing is highly

exploratory. We plan to study how these and other tech-

niques can aid trainees and healthcare practitioners. We

compared our classifier to two types of physicians, clinicians

who most frequently encounter these types of conditions

collectively. However, other clinicians may have different

(better or worse) abilities to classify some conditions. For

example, dermatologists, family practitioners, neurologists,

and other specialists may yield different results. Finally, we

emphasize that these results do not predict real-life perfor-

mance, where clinicians often have access to more informa-

tion or have access to additional resources. The point of our

classification comparison was not to devise a head-to-head

competition but rather to use our approaches to explore

the utility of how advanced analytics and large publicly

available datasets may augment the identification of rare ge-

netic diseases.
Data and code availability

Source data are available in files deposited at Figshare (see web re-

sources) and described in Tables S2 and S3. Code to classify labels

and generate images (see also supplemental information for addi-

tional explanations and examples) is available on GitHub (see web

resources).
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