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Diabetic cardiomyopathy (DMCM) is the leading cause of mortality and morbidity
among diabetic patients. DMCM is characterized by an increase in oxidative stress
with systemic inflammation that leads to cardiac fibrosis, ultimately causing diastolic
and systolic dysfunction. Even though DMCM pathophysiology is well studied, the
approach to limit this condition is not met with success. This highlights the need for
more knowledge of underlying mechanisms and innovative therapies. In this regard,
emerging evidence suggests a potential role of non-coding RNAs (ncRNAs), including
micro-RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)
as novel diagnostics, mechanisms, and therapeutics in the context of DMCM. However,
our understanding of ncRNAs’ role in diabetic heart disease is still in its infancy. This
review provides a comprehensive update on pre-clinical and clinical studies that might
develop therapeutic strategies to limit/prevent DMCM.
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IMPACT OF DIABETES AND OBESITY ON THE BODY AND THE
GLOBE CURRENTLY

Obesity is presently a pandemic problem affecting both developed and developing countries (Ng
et al., 2014). The projected prevalence of obesity in adults in the United States is estimated
to be 49.8%, indicating that one in two individuals will have obesity (Ward et al., 2019). The
United States’s most common body mass index (BMI) category will be severe obesity by 2030. In
children and adolescents, obesity has risen 10-fold over the past 40 years, taking 124 million from
11 million (World Health Organization, 2018). Though the rise in children’s BMI has plateaued
over decades, the trend is still alarming in South Asia, the Middle East, and North Africa, where the
prevalence is more than 20% (Abarca-Gómez et al., 2017). In children with class 3 obesity, less than
26 h of intensive behavioral therapy mechanisms, lasting between 6 and 12 months, was shown to
be associated with higher systolic and diastolic blood pressures, higher odds for hypertension, type
2 diabetes mellitus (T2DM), and obstructive sleep apnea (Tsao-Wu et al., 2019). The overweight
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trend in adolescence is associated with higher cardiovascular
(CV) and all-cause mortality in men after a 55-year follow-up
(Must et al., 1992).

Large community-based follow-up studies have shown that a
higher BMI is associated with heart failure (HF), more for women
(7%) compared with men (5%) (Kenchaiah et al., 2002). The
duration of obesity is important and for every two additional
years living with obesity, the hazard ratio for all-cause and CV
mortality was 1.06 and 1.07, respectively (Kenchaiah et al., 2002).
The relative risk of CV death among the heaviest individuals
was 1.57 in comparison with the category with the lowest BMI
in meta-analytic studies (Jiang et al., 2013). Within different
classes of obesity, independent of gender, smoking status, and
educational level, CV mortality was 1.29 among class 1, 1.87
among class 2, and 2.2 among class 3 of obesity (Jiang et al.,
2013). Obesity and hyperglycemia in C57BL/6J db/db mice were
found to be associated with hypertrophy of the cardiac myocyte,
thickening of the perimysial collagen, vascular rarefaction, and
mild fibrosis of the endomysium and perivascular region, mainly
by the addition of the extracellular matrix via fibroblasts in the
interstitium (Alex et al., 2018).

A meta-analysis showed that an obesity paradox exists in HF,
and the nadir was seen in overweight subjects (Mahajan et al.,
2020). The obese and overweight subjects, classified based on
their pre-HF BMI, had lower mortality rates when admitted for
HF (Pokharel et al., 2017). Mahajan et al. (2020) also showed that
intentional weight loss in obese subjects without established HF
was associated with significant improvement in left ventricular
(LV) diastolic dysfunction and reduced LV size. Though there
is a decline in the incidence of T2DM in the United States,
which is primarily attributed to the decline in Hispanic whites,
the global prevalence of diabetes among adults over 18 years
of age rose from 4.7% in 1980 to 8.5% in 2014, with a 5%
increase in premature mortality due to diabetes between 2000
and 2016 (Centers for Disease Control and Prevention, 2020).
South Asians have a high-fat percentage for any given BMI,
making them vulnerable to metabolic diseases (Lear et al., 2007).
About 19 million adults ages 20–79 were living with diabetes in
the International Diabetes Federation of Africa Region in 2019,
and the number is estimated to increase to 47 million by 2045.
Another 45 million adults (20–79) in this region have impaired
glucose tolerance (IGT), and the figure is expected to reach 110
million by 2045 (Cho et al., 2018).

Diabetic cardiomyopathy (DMCM) denotes LV dysfunction in
diabetic subjects (Figure 1) with or without preserved ejection
fraction (pEF) due to interstitial fibrosis and repercussions
of LV hypertrophy caused by a myriad of factors (Lorenzo-
Almoros et al., 2017). Leyden was the first to postulate that
diabetes can cause HF in his journal, Asthma, and Diabetes
Mellitus, in as early as 1881 (Leyden, 1881). Shirley Rubler and
team first used the term DMCM and HF in the absence of
significant coronary artery disease in four patients with T2DM
and glomerulosclerosis. There is a two- to four-fold increase in
HF incidence rates in diabetic individuals compared with non-
diabetic individuals (Dunlay et al., 2019). The histopathology
revealed diffuse fibrotic strands extending between myocardial
muscle bundles and myofibrillar hypertrophy (Rubler et al.,

FIGURE 1 | Major contributors to diabetic heart disease—oxidative stress,
ncRNAs; miRNA, lncRNA, circRNA, the upregulation of Ang-II and AGEs,
insulin resistance, ER stress, cardiomyocyte death, cardiomyocyte
hypertrophy, endothelial damage, microvascular dysfunction, myocardial
ischemia, and inflammation—all affect the heart and contribute to the
development of DMCM. ncRNAs, non-coding RNAs; miRNAs, micro-RNAs;
lncRNA, long non-coding RNA; circRNA, circular RNA; Ang II, angiotensin II;
ER, endoplasmic reticulum; DMCM, diabetic cardiomyopathy.

1972). The strong heart study showed that subjects of T2DM had
statistically significant, 6–12%, higher LV mass corrected for body
surface area, inter-ventricular and posterior wall thickness, 5%
lower stress corrected mid-wall shortening, and arterial stiffness
as demonstrated by a 13% increase in pulse pressure to stroke
volume ratio (Devereux et al., 2000). Streptozotocin (STZ)-
induced diabetes in male Sprague–Dawley (SD)-derived rats,
which led to lipid accumulation in the myocardium associated
with a breach in myocardial integrity, characterized by the
loss of contractile proteins, sarcoplasmic reticulum swelling,
myocytolysis, the formation of myelin, and contractual bands
(Jackson et al., 1985). There was a decrease in myosin ATPase
enzyme in the myocardium, with the slow V3 electrocardiogram
electrode isoform predominating as early as 2 weeks after the
induction of diabetes (Malhotra et al., 1981). A 1 mmol/L
increase in fasting plasma glucose was associated with a 1.23-
fold increase in risk for hospitalization for HF (Held et al., 2007).
Rising glycosylated hemoglobin was associated with a higher
hospitalization rate for HF in middle-aged subjects without
diabetes (HbA1c 5.5–6%), implicating that HF begins even
before the development of overt diabetes (Matsushita et al.,
2010). Doppler studies showed diastolic dysfunction in up to
33% of young asymptomatic diabetic subjects (Zarich et al.,
1988). Animal models provided insights that the presence of
hypertension can aggravate the myocardial injury in rat models,
evidenced by a greater heart weight to body weight ratio and
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severe interstitial fibrosis than diabetes or hypertension alone
(Factor et al., 1981). Another study conducted in veterans with
diabetes showed mortality to follow a U-shaped pattern with the
achieved HbA1c level (7.1% to 7.8%) (Aguilar et al., 2009). In
India, diabetes prevalence varies between 5% and 10% as per
the gross domestic product of states, and a large proportion
of patients (47.3%) diagnosed with diabetes during the study
were unaware of their diabetic status (Anjana et al., 2017).
The maternal nutrition study conducted in India showed that
the babies born in an unfavorable intrauterine environment
are thinner and have smaller muscle mass and preserved
subcutaneous fat than their European counterparts (Yajnik et al.,
2003). A subsequent defect in calcium transportation in the
isolated sarcoplasmic reticulum has been recorded in DMCM
(Ganguly et al., 1983). While treatment with insulin showed
reversibility of alterations in myocardial function, contractile
protein biochemistry was as early as 10 days of therapy
(Fein et al., 1984).

THE TREATMENT APPROACH TO TYPE
1 DIABETES MELLITUS AND
CARDIOMYOPATHY

Type 1 diabetes mellitus (T1DM) is an autoimmune disease
in which pancreatic β cells that produce insulin are destroyed.
The absence of β cells/insulin impairs breakdown of sugar in
the bloodstream and use it for energy (DiMeglio et al., 2018).
Using STZ-induced diabetes rat models (Malhotra et al., 1981),
Malhotra et al. (1981) showed the efficacy of intensive glycemic
control in mitigating the structural and molecular changes
in cardiomyopathy. Abnormal diastolic functioning correlated
with glycemic control in T1DM subjects (Shishehbor et al.,
2003). When T1DM subjects were intensively treated thrice or
four times with insulin daily, the reduction of inflammatory
markers was not reassuring (Schaumberg et al., 2005). There
was a decrease in soluble intercellular adhesion molecule type
1 (sICAM). Still, soluble tumor necrosis factor-α receptor 1
(sTNR-R1) and high-sensitivity C-reactive protein (hs-CRP) had
increased, especially in subjects who gained weight (Schaumberg
et al., 2005). There was an improvement in LV echocardiographic
parameters: peak lengthening rate, the peak wall thinning rate,
E/A ratio, and reduction in the E wave deceleration time (Grandi
et al., 2002). Another study failed to replicate these findings
but has found a reduction in LV mass and interventricular
thickness irrespective of diabetic nephropathy (Aepfelbacher
et al., 2004; Weinrauch et al., 2005; Grandi et al., 2006). The
Diabetes Control and Complication Trial (DCCT)/Epidemiology
of Diabetes Interventions and Complications (EDIC) study,
aimed at intensive glycemic control in T1DM subjects, showed a
significant reduction in any CV disease (CVD) by 30% and major
CV events by 32% in the initial 6.5 years of follow-up. The effect
on HF prevention was not specifically looked upon (Control and
Trial, 2016). Angiotensin-converting enzyme (ACE) inhibitors
effectively reduced mortality and prevented hospitalization for
HF in T1DM (Lewis and Lewis, 2004). The SGLT2 inhibitors
empagliflozin and ipragliflozin normalized the endothelium of

STZ-induced rat models, which may prove useful in human
subjects if used along with a reasonable dosage of insulin
(Oelze et al., 2014; Salim et al., 2016). Prospective randomized
clinical trials are needed to assess whether this translates to
clinical benefits.

TYPE 2 DIABETES MELLITUS AND
CARDIOMYOPATHY MANAGEMENT:
EVIDENCE AND PROSPECTS

Type 2 diabetes mellitus is a metabolic disorder, unlike T1DM.
β cells are not destroyed; they still produce insulin, but T2DM
subjects are resistant and cannot respond to insulin (Fletcher
et al., 2002). ACE inhibitors, angiotensin receptor blockers,
aldosterone antagonists, spironolactone, and β blockers are the
most common medications used to treat HF in individuals with
or without diabetes. The recent addition to the armamentarium
is the valsartan/sacubitril combination. Valsartan–sacubitril,
compared with enalapril, significantly prevented death due to
CVD and all-cause mortality, while also reducing the number
of hospitalizations for HF by 21% in subjects with reduced
ejection fraction (PARADIGM–HF trial) (McMurray et al., 2014).
However, it failed to achieve any significant benefits in subjects
with pEF compared with valsartan alone (PARAGON-HF trial)
(Solomon et al., 2019). High fasting plasma glucose and HbA1c
predicted the rate of hospitalizations for HF in subjects with
abnormal glucose regulation. Intensive glucose lowering with
insulin and sulfonylureas did not improve the CV outcomes.
Despite achieving adequate glycemic control, HbA1c reduction
was not shown to be associated with improvement in CV
mortality in the United Kingdom Prospective Diabetes Study
(UKPDS) and the ADVANCE Collaborative Group trial (Group,
1998; Advance Collaborative Group, Patel et al., 2008). The
15-year follow-up study of the Veterans Affairs Diabetes Trial
(VADT) showed no legacy effect of initial intensive glycemic
control. This study showed prevention of CV events during
the initial and prolonged phase of the study, but not in the
long-term 15 years follow-up (Reaven et al., 2019). Another
large meta-analysis of eight trials with 37,229 subjects showed
that intensive glycemic control was not associated with lower
incidences of HF (Castagno et al., 2011). Pioglitazone use was
associated with a decline in significant CV events including
stroke, fatal, and non-fatal myocardial infarction (MI), but it was
associated with a higher incidence of HF due to renal sodium
retention in the PROACTIVE study (Dormandy et al., 2005;
Kernan et al., 2016). Though there was a higher incidence of
edema in the IRIS study, subjects who experienced a stroke
and had insulin resistance did not show an increased risk of
HF (Dormandy et al., 2005; Kernan et al., 2016). Acarbose
prevented new-onset diabetes, hypertension, and CV adverse
events in subjects with IGT in the Study to Prevent Non-Insulin
Dependent Diabetes (STOP-NIDD) but did not reduce the
incidence of HF in the ACE study (Delorme and Chiasson, 2005;
Holman et al., 2017b). Metformin improved passive stiffness
of the LV chamber and preserved exercise capacity in rat
models experiencing HF with pEF (HFpEF) (Slater et al., 2019).
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A recent retrospective study conducted in Taiwan revealed
that metformin usage in T2DM was associated with a 40%
decrease in hospital admissions for HF (Tseng, 2019). A meta-
analysis of 40 studies by Han et al. (2019), comprising more
than 10,000,000 subjects, showed that metformin use for MI
and HF was associated with reduced mortality. The incidence
of CV events in HF was also reduced (adjusted hazard ratio:
0.79/0.83/0.84, respectively) in subjects with diabetes, but not
in subjects without diabetes (Han et al., 2019). The activation
of AMP kinase (AMPK) by metformin was shown to inhibit
the TNF-α expression. The upregulation of the ABCG1 gene
attenuates the conversion of a monocyte-macrophage into a
foam cell (Hattori et al., 2006; Isoda et al., 2006); knockdown of
AMPK-α abolishes this anti-inflammatory effect of metformin.
AMPK activation prevents cardiac hypertrophy predominantly
by inhibiting O-GlcNAcylation of cardiac troponin T when
inhibiting the phosphorylation of the same glutamine:fructose-
6-phosphate aminotransferase enzyme (GFAT) (Gélinas et al.,
2018). DPP4 inhibitor saxagliptin (SAVOR-TIMI 53) increased
hospitalization for HF in patients with diabetes and established
CVD or multiple CV risk factors. While sitagliptin (TECOS),
alogliptin (EXAMINE), and linagliptin (CARMELINA) were all
found to be safe, with regard to HF (Packer, 2018). DDP4
inhibition causes sympathetic nervous system overactivity via
enhanced stromal cell-derived factor-1 (SDF-1), neuropeptide Y,
and substance P leading to myocyte apoptosis (Packer, 2018).
Though DPP4 inhibitors have received a green signal, these
studies give a cautionary notice to clinicians. At the same time,
they opt for this class of medications, especially in subjects with a
high risk for HF.

In small-scale studies, glucagon-like peptide 1 (GLP-1) analog
infusion was associated with improved LV function in HF
subjects. The LEADER trial showed a non-significant, 13%
reduction in HF hospitalizations, but the FIGHT trial did
not offer post-admission stability in subjects admitted with
HF and reduced ejection fraction (Margulies et al., 2016;
Marso et al., 2016b). Experimental studies showed liraglutide
could render energy-deprived cardiomyocytes and lead to
cardiac function deterioration (Shiraki et al., 2019). However,
in clinical trials, GLP-1 agonists dulaglutide, albiglutide, and
injectable/oral semaglutide showed a significant reduction of CV
events than did the placebo (Marso et al., 2016a; Hernandez
et al., 2018; Gerstein et al., 2019; Husain et al., 2019).
Lixisenatide and weekly exenatide did not show any CV
beneficial advantage over the placebo (Pfeffer et al., 2015;
Holman et al., 2017a).

Recent evidence suggests the use of novel dual glucose-
dependent insulinotropic polypeptide (GIP) and GLP-1 receptor
agonist play a beneficial role in patients of T2DM (Holst and
Rosenkilde, 2020). In pre-clinical trials, LY3298176, a novel dual
GIP and GLP-1 receptor agonist, demonstrated activation of
both receptors (GIP and GLP-1) led to insulin secretion. In vivo
study revealed glucose tolerance and reduced body weight and
food intake in GLP-1R and GIPR null C57BL/6 mice. These
cumulative effects were significantly higher with the comparison
GLP-1 agonist alone, suggesting that activation of both GIP and
GLP-1 receptors is crucial for controlling blood glucose level and

body weight. Further, Coskun et al. (2018) performed a phase
1 clinical trial using LY3298176 on T2DM patients and found a
significant decrease in fasting blood glucose.

Further, the same group took the drug LY3298176 to a phase
2 clinical trial and found better management of glucose levels
and significant weight loss in T2DM patients than dulaglutide
(Frias et al., 2018). These results highlight a novel dual incretin
receptor agonist’s promising role as a better drug candidate
in managing T2DM patients. Future studies are warranted
to validate this novel dual incretin receptor agonist in the
management of DMCM.

The EMPA-REG outcome trial’s dramatic results were that
the SGLT2 inhibitor empagliflozin showed a 35% reduction of
HF in subjects with established CVD. This brought a paradigm
shift in the management of glycemic control (Zinman et al.,
2015). The CANVAS (canagliflozin) and the DECLARETIMI 58
(dapagliflozin) trial followed a similar decline in hospitalizations
for HF in subjects with and without established CVD (Neal et al.,
2017; Wiviott et al., 2019). The HF trials done subsequently
in subjects with or without diabetes showed a statistically
significant, 25% reduction in HF hospitalization, with reduced
ejection fraction by empagliflozin (EMPEROR-REDUCED trial)
(McMurray et al., 2019). The study subjects had severe LV
dysfunction and were on optimal anti-failure medications,
including aldosterone antagonists and neprilysin inhibitors.
The DAPA-HF (dapagliflozin) trial (in which the enrolled
subjects had a better median ejection fraction and were not on
aldosterone antagonists nor neprilysin inhibitors) also showed
a reduction in HF events irrespective of their diabetic status
(Packer et al., 2020). SGLT2 inhibitors are more promising than
any other medication group in managing diabetes and HF’s
deadly duo. The key mechanism by which SGLT2 inhibitors
modifies HF risk is that they bind the sodium binding sites of
sodium-hydrogen exchanger (NHE-1) and attenuate the cytosolic
sodium and calcium, improving calcium concentration in the
sarcoplasmic reticulum (Uthman et al., 2018). Dapagliflozin
attenuates inflammasome NRLP3, mediates inflammation, and
improves hyperglycemia-induced LV dysfunction in mouse
models (Ye et al., 2017).

SGLT1 is a vital transporter of glucose in the myocardium,
and its overexpression was associated with pathologic cardiac
hypertrophy, while its knockdown attenuated cardiomyopathy
in PRKAG2 knockout murine models (Banerjee et al., 2009;
Ramratnam et al., 2014). In db/db mice models, the SGLT1
inhibitor, phlorizin, preserved the typical cardiac structure
(Cai et al., 2013). The first dual SGLT1 and SGLT2 blocker,
sotagliflozin, improves postprandial glucose in patients with
diabetes (Powell et al., 2020). Whether sotagliflozin and similar
molecules will have an added advantage over selective SGLT2
inhibitors in the prevention and management of DMCM needs
to be further investigated (Table 1).

Overall, future studies should identify a potential
pharmacological agent that improves insulin resistance and
β cell dysfunction, does not induce hypoglycemia, attenuates
inflammation, and improves the myocardium’s fuel kinetics.
This strategy seems to be the brightest potential in preventing
DMCM. Further, that pharmacological agent should not activate
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TABLE 1 | List of clinical trials associated with treatment of DMCM.

Name of the
trial (number
of subjects)

Molecule studied (dose
and route of
administration)

MACE HR
(CI/p value)

CV death Heart failure
HR (95% CI)

Outcomes Limitations of study References

PARADIGM-HF
(8442)

LCZ696 (200 mg twice
daily) and enalapril (10 mg
daily)

0.80
(0.73–0.87)
p < 0.001

0.80
(0.71–0.89)
p < 0.001

0.79
(0.71–0.89)
p < 0.001

LCZ696 performed better in
comparison of enalapril to reduce risk of
death and hospitalization in heart failure

LCZ696 showed the hypotension in
patients

McMurray et al.
(2014)

PARAGON-HF
(4822)

Sacubitril–valsartan (97 mg
sacubitril and 103 mg
valsartan twice daily) and
valsartan (160 mg twice
daily)

0.87
(0.75–1.01)

0.95
(0.79–1.16)

0.85
(0.72–1.00)

Sacubitril–valsartan did not significantly
lowered the risk of death due to HF and
hospitalization in heart failure

Did not shown any cardiovascular
benefits in patients of heart failure with
preserved ejection fraction

Solomon et al.
(2019)

PROACTIVE
STUDY (5238)

Pioglitazone (15–45 mg
orally OD)

0.96
(0.78–1.18)

NA NA Reduced the all kind of mortality
including non-fatal MI and stroke in
T2DM patients

NA Dormandy et al.
(2005)

LEADER (9340) Liraglutide (1.8 mg s/c OD) 0.87
(0.78–0.97)
p < 0.015

0.78
(0.66–0.93)
p < 0.007

0.87
(0.73–1.05)
p < 0.14

Liraglutide reduces the event of death
due to cardiovascular causes and
non-fatal stroke T2DM patients with the
comparison of placebo group

Safety and efficacy data need further
validation due to short time period of
study on patients (3.5–5 years study)

Marso et al.
(2016b)

SUSTAIN-6
(3297)

Semaglutide (0·5 or 1 mg
s/c per week)

0.74
(0.58–0.95)
p < 0.016

0.98
(0.65–1.48)
p < 0.92

1.11
(0.77–1.61)
p < 0.57

Semaglutide significantly reduces the
event of cardiovascular death and
non-fatal MI in patients of T2DM with
the placebo group

Patients were studied for shorter time
period (2.1 years) and events of
gastrointestinal abnormality reported

Marso et al.
(2016a)

EXSCEL
(14752)

Exenatide (2 mg s/c weekly) 0.91
(0.83–1.00)
p < 0.061

0.88
(0.76–1.02)
p < 0.096

0.94
(0.78-1.13)

No significant difference in key adverse
cardiovascular occurrence in both
groups (exenatide vs. placebo)

Loss to follow up rate was high. First
generation injection device was
complex. There was no run-in period
determined by researcher. Not a
standardized method of care

Holman et al.
(2017a)

Harmony
outcomes
(9463)

Albiglutide (30 or 50 mg s/c
weekly)

0.78
(0.68–0.90)
p < 0.0001

0.93
(0.73–1.19)
p < 0.58

0.85
(0.70–1.04)
p < 0.113

Reduced the potential of CV
complications. Improved cardiovascular
outcomes for T2DM patients.

Short follow up. 25% of participants
discontinued the study prior to
completion. Microvascular
complications were not noted. Urinary
albumin excretion and lipids were no
measured.

Hernandez
et al. (2018)
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TABLE 1 | Continued

Name of the
trial (number
of subjects)

Molecule studied (dose
and route of
administration)

MACE HR
(CI/p value)

CV death Heart failure
HR (95% CI)

Outcomes Limitations of study References

REWIND (9901) Dulaglutide (1.5 mg per
week s/c)

0.88
(0.79–0.99)
p < 0.026

0.91
(0.78–1.06)
p < 0.21

0.93
(0.77–1.12)
p < 0.46

Lowers CV outcomes within 5 years.
Lowers blood pressure. Increases
weight loss. Lowers glucose levels
while preventing risk of hypoglycemia

Over 25% of participants stopped using
dulaglutide before study was
completed.

Gerstein et al.
(2019)

EMPA-REG
(7020)

Empagliflozin (10–25 mg
once daily)

0.86
(0.74–0.99)

0.62
(0.49–0.77)
p < 0.001

0.65 (0.5–0.85)
p < 0.002

Lowered the rate of primary composite
CV outcome and death from any cause
when studying the drug added to
standard care

The discontinuation rate of both groups
very similar

Zinman et al.
(2015)

DAPA-HF
(4744)

Dapagliflozin (10 mg once
daily)

0.74
(0.65–0.85)
p < 0.001

0.82
(0.69–0.98)

0.70
(0.59–0.83)

Reduces the risk of worsening CV
conditions compared to the placebo.
The adverse event rate did not differ

Inclusion and exclusion criteria were
very particular which could have
decreased the generalizability of the
study. The study also had limited
diversity, also lowering generalizability

McMurray et al.
(2019)

CANVAS
PROGRAM
(10142)

Canagliflozin (100 mg and
300 mg orally daily)

0.86
(0.75–0.97)
p < 0.60

0.9 (0.7–1.15) 0.67
(0.52–0.87)

Decreases risk of mortality from CV
complication, non-fatal MI and non-fatal
stroke. Increased risk of amputation

Low levels of end-stage renal disease.
Increase use of glucose-lowering
solutions in the placebo group may
have resulted in risks or benefits of
Canagliflozin

Neal et al.
(2017)

EMPEROR-
reduced
(3730)

Empagliflozin (10 mg daily) 0.75
(0.65–0.86)
p < 0.001

0.92
(0.75–1.12)

0.69
(0.59–0.81)

Reduction in the risk of CV death or
hospitalization for HF compared to the
placebo. Slower progression of renal
failure with chronic HF and reduced
ejection fraction.

Uncomplicated genital tract infection
was found higher in empagliflozin
treated group

Packer et al.
(2020)

DECLARE-TIMI
58 (17,160)

Dapagliflozin (10 mg daily) 0.93
(0.84–1.03)
p < 0.17

0.98
(0.82–1.17)

0.73
(0.61–0.88)

Reduction in the hospitalization of the
patients with heart failure

Genital tract infection were higher in
treated groups that leads to
discontinuation of study

Wiviott et al.
(2019)

MACE, major adverse cardiovascular events; HR, hazard ratio; CI, confidence interval; CV, cardiovascular; mg, milligram; s/c, sub-cutaneous; OD, once daily; T2DM, type 2 diabetes mellitus; MI, myocardial infarction;
HF, heart failure; NA, not applicable.
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renin–angiotensin or the sympathetic nervous system. Thus, a
comprehensive treatment plan is of utmost importance.

Role of Non-coding RNAs in Diabetic
Cardiomyopathy
Diabetic cardiomyopathy can be characterized by many events
such as mitochondrial dysfunction, inflammation, oxidative
stress, apoptosis, autophagy, microangiopathy, and myocardial
metabolic abnormalities (Tan et al., 2020). However, no existent
approaches efficiently limit/reduce the development of DMCM
(Table 2) (Swedberg et al., 2010; Insulin, 2012; Eurich et al.,
2013; Green et al., 2015; Zinman et al., 2015; Ponikowski
et al., 2016; Jorsal et al., 2017; Garber et al., 2018). Despite
development in controlling glycemic levels, CV events in diabetic
patients significantly burden patients’ health-care costs, quality
of life, and mortality (Borghetti et al., 2018). This emphasizes a
need for novel diagnostics, more understanding of underlying
mechanisms, and new therapeutic strategies.

Emerging evidence suggests that non-coding regions of the
human genome have a significant role in the health and disease
pathophysiology (Esteller, 2011). So far, in the human genome,
well-studied sequences are protein-coding genes, which account
for only 1.5–2% of the total genome, while the majority of
the genome is shared by the non-coding RNAs (ncRNAs). The
majority of ncRNAs can be categorized into small and long
ncRNA (lncRNA) (Zhang et al., 2019). This review focuses on
the role of micro-RNAs (miRNAs), lncRNAs, and circular RNAs
(circRNAs) in the DMCM (Figure 2 and Table 3).

Micro-RNAs in Diabetic Cardiomyopathy
Micro-RNA consists of highly conserved, single-stranded
ncRNAs and range 16–27 nucleotides in length (Wahid et al.,
2010; Fang et al., 2013; Joladarashi et al., 2015; Verma et al.,
2017a,b; Lu and Rothenberg, 2018). They were first reported in
nematode Caenorhabditis elegans (Lee et al., 1993). Biogenesis
of miRNA is regulated by two nuclear ribonuclease III (RNase
III) proteins, i.e., Drosha and Dicer. At the transcriptional level,
miRNA’s biogenesis is regulated by Drosha, which cleaves the
pre-miRNA and releases approximately 70–100 nucleotides of
precursor miRNAs. After its transportation to the cytoplasm,
Dicer cleaves the precursor and forms a mature miRNA.
A significant function of miRNAs is to modulate transcription
and translation programs (Ha and Kim, 2014).

Recent studies highlight a key role for miRNAs in cardiac
disease (Van Rooij et al., 2008; Guo and Nair, 2017). Another
study on cardiac myocytes demonstrated that the overexpression
of miRNA-133 inhibits GLUT4 expression and suppresses the
insulin-stimulated glucose uptake (Horie et al., 2009). Another
study identified miR-200b regulating endothelial to mesenchymal
transition (End MT) in mouse models of DMCM (Feng et al.,
2016). Liu et al. (2014) demonstrated that cardiac fibroblasts
subjected to hyperglycemic conditions (30 mM) exhibited
an increase in miR-21 levels, further showing that increased
miR-21 levels promoted collagen synthesis by targeting dual-
specificity phosphatase 8 (DUSP8). Another study by Feng
et al. (2010) performed on STZ-induced T1DM mouse models

demonstrated significantly reduced levels of miR-133a in cardiac
tissue. MiR-133a is an enriched muscle and has a role in
muscle development and cellular differentiation (Liang et al.,
2007). Chen et al. (2014) reported the involvement of miR-
133a in diabetes-induced cardiac fibrosis, finding significant
repression of miR-133a in the STZ-induced diabetic hearts,
whereas the major markers of fibrosis [fibronectin 1 (FN1),
tumor growth factor-β (TGF-β), and connective tissue growth
factor] were found to be higher. Another study performed
by Nandi et al. (2016) revealed the involvement of miR-
133a in diabetic heart disease. They have shown miR-133a
to mimic treatment in STZ rats, improving contractility of
heart with subsequent upregulation of tyrosine hydroxylase,
norepinephrine, and β-adrenergic receptor (Nandi et al., 2016).
MiR-200c played an important role in cardiac hypertrophy and
was found significantly higher in diabetic hearts. In diabetes-
associated cardiac hypertrophy, a higher expression of miR-
200c is reported, which negatively regulates the expression of
dual-specificity phosphatase-1 (DUSP-1) (Singh et al., 2017).
However, the miR-200c inhibition improves the level of
DUSP-1 via suppressing the expression of the phosphorylated
extracellular signal-regulated kinase (ERK), c-Jun N-terminal
kinases (JNKs), and p38, further improving cardiac hypertrophy
in high glucose (HG)-treated (30 mmol/L) rat cardiomyocytes
(Singh et al., 2017). Recent findings by Tao et al. (2020)
reveal the role of miR-144 in the protection of the diabetic
heart by regulating cardiomyocyte apoptosis, displaying that
miR-144 was found to be significantly decreased in HG-
treated cardiomyocytes and in the heart of STZ-induced
diabetic mice, which were associated with mitochondrial
dysfunction and cell death. However, the overexpression of miR-
144 ameliorates the mitochondrial dysfunction and negatively
regulates cell death (Tao et al., 2020). Xu et al. (2020)
established the role of miR-223 in DMCM. Cardiomyocytes
subjected to HG showed elevated miR-223 levels. Further
inhibition of miR-223 rescued the myocardial apoptosis and
fibrosis by suppressing the expression NLRP3 inflammasome
(Xu et al., 2020). Interestingly, Tang et al. (2018) showed
the involvement of miR-22 in amelioration of DMCM. The
overexpression of miR-22 reduced oxidative stress in DMCM
by targeting sirtuin-1 (Tang et al., 2018). Using a high-fat-
diet (HFD) mouse model, Copier et al. (2017) showed at
16 months that circulating miRNA (miR-19b-3p and miR-181b-
5p) levels correlated with the development of cardiomyopathy.
Furthermore, this study established miR-19b and miR-181b as
potential biomarkers for DMCM. A recent study performed
on myocardial microvascular endothelial cells (MMECs) from
T2DM Goto-Kakizaki rats showed that miRNA-193-5p plays
an important role as an angiogenic factor in DMCM by
negatively regulating the expression of insulin growth factor-
2 (IGF-2) (Yi et al., 2017). In another very intriguing study
performed by Kuwabara et al. (2015), in HFD-fed C57BL/6
T2DM rat model, the expression of miRNA-451 levels was high
in the myocardium. Further, cardiomyocyte-specific knockout
of miRNA-451 led to an improvement in cardiac hypertrophy
response compared with control mice. This finding established
the potential role of miRNA-451 in DMCM by suppressing
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TABLE 2 | Current therapies of DMCM.

Category of drug Name Mode of action References

Biguanides Metformin Controls the blood glucose levels by activating the AMPK
pathway

Eurich et al. (2013) and
Garber et al. (2018)

Insulin Humulin Increases glucose uptake in insulin sensitive tissues and
lowers peripheral blood glucose

Insulin (2012)

Angiotensin-converting
enzyme inhibitor

Ramipril angiotensin convertase enzyme inhibitor (ACE-i) Ponikowski et al. (2016)

Angiotensin receptor
neprilysin inhibitor

Sacubitril/Valsartan angiotensin II receptor blocker/neprilysin inhibitor Ponikowski et al. (2016)

Ivabradine Decreases the heart rate by suppressing the If channel in
the sinus node

Swedberg et al. (2010)

DPP4 inhibitor Sitagliptin Blocks the enzyme DPP4 and stimulates insulin secretion Green et al. (2015)

GLP1 receptor agonist Exenatide, Liraglutide Release the insulin from pancreatic-beta cell Jorsal et al. (2017)

SGLT2 inhibitor Empagliflozin Reduces blood glucose level by acting on kidney to remove
sugar from body to urine.

Zinman et al. (2015)

FIGURE 2 | General characteristics and functions of miRNAs, lncRNAs, and circRNAs. miRNAs, micro-RNAs; lncRNAs, long non-coding RNAs; circRNAs, circular
RNAs.

the liver kinase B1 (LKB1)/AMP-activated protein kinase
pathway (Kuwabara et al., 2015). A recent study highlighted the
importance of miR-320 in DMCM (Li et al., 2019). In this
study, the authors reported upregulation of miR-320 in the
db/db hearts and failing human hearts with pre-existing diabetes.
To understand the functional role of miR-320, the authors
performed gain and loss of miR-320 in db/db mouse and
observed that miR-320 silencing improved cardiac dysfunction
(Li et al., 2019), whereas miR-320 overexpression worsened
the cardiac phenotype. Mechanistically, miR-320 regulates
transcription of fatty acid metabolic genes to rescue lipotoxicity
in the diabetic heart (Li et al., 2019). In a similar line, an
intriguing study by Lew et al. (2020) demonstrated that early

exercise in diabetes mice (from 8 weeks) strikingly rescued the
onset and progression of DMCM. Importantly noted, diabetic
mice did not exhibit any functional benefits when the exercise
was initiated after the establishment of cardiac dysfunction (at
16 weeks). Mechanistically, diabetic mouse hearts (16 weeks)
with cardiac dysfunction exhibited repression of miRs, viz.,
miR-126 (proangiogenic), miR-499 (anti-angiogenic), miR-15a/b,
and miR-133 (anti-fibrotic). The findings by Lew et al. (2020)
suggest that a downregulation of these miRs leads to pathological
remodeling in the diabetic heart. Interestingly, early exercise
normalizes the aforementioned miR expression. Furthermore,
silencing of miR-126 abrogated exercise-mediated rescue of
DMCM. Overall, these results highlight the importance of
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TABLE 3 | Role of ncRNAs in diabetic cardiomyopathy.

Source cell/animals nc-RNA Target delivery method Targets Outcome References

Cardiac myocytes miR-133 Lentivirus induced transduction
(in vitro)

Inhibits GLUT4 via KLF15 Reduces insulin stimulated glucose
uptake in cardiomyocyte

Horie et al. (2009)

Cardiac microvascular endothelial
cells/diabetic mice

miR-200b miR-200b mimic or antagomir
(in vitro)

VEGF, zinc finger
E-box–binding homeobox,
TGF-β1, and p300

Prevents diabetes induced changes
in structure and function of heart

Feng et al. (2016)

Primary cardiac fibroblasts miR-21 miR-21 mimic/miR-21 inhibitor
(in vitro)

Dual specific phosphatase8 Promotes HG induced cardiac
fibrosis

Liu et al. (2014)

HG treated cardiomyocyte miR-133a miR-133a mimic (in vitro) SGK1, IGF1R and MEF2 Prevents HG induced
cardiomyocyte hypertrophy

Feng et al. (2010)

STZ-induced diabetic mice
(miR-133a Tg mice)

miR-133a miR-133a Tg mice (over expression
in heart)

EP300, TGF-β, FN1 and
COL4A1

Prevents diabetes induced cardiac
fibrosis

Chen et al. (2014)

STZ induced SD rats/miR-133a Tg
mice

miR-133 a Lentivirus mediated
miR-133a/anti-miR-133a (in vivo)

Tyrosine aminotransferase and
tyrosine hydroxylase

Increases contractility of heart Nandi et al. (2016)

HG treated neonatal rat
cardiomyocyte

miR-200c miR-200c inhibitor (in vitro) DUSP1, JNK1, ERK and p38 Increases cardiac hypertrophy Singh et al. (2017)

HG treated cardiomyocyte and STZ
induced diabetic mice

miR-144 miR-144 mimic/miR-144 inhibitor
(in vitro and in vivo)

Rac1, AMPK phosphorylation
and PGC-1α

Reduces cardiac apoptosis Tao et al. (2020)

HG treated cardiomyocyte/STZ
treated SD rat

miR-223 miR-223 inhibitor (in vitro and
in vivo)

NLRP3 inflammasome Induces cardiac fibrosis and
apoptosis

Xu et al. (2020)

HG treated H9c2 cells/STZ treated
mice fed HFD

mi-RNA 22 mi-RNA 22 overexpression by
intravenous injection of adenovirus
(in vivo)

Sirt1 Attenuates oxidative stress Tang et al. (2018)

HFD fed mice miR-19b-3p,
miRNA181b-5p

NA NA Cardiac hypertrophy Copier et al. (2017)

MMEC of T2DM Goto-Kakizaki rats miR-193-5p miR-193-5p antagomir (in vitro) IGF2 Promotes angiogenesis Yi et al. (2017)

Neonatal cardiac myocyte treated
with palmitic acid/HFD fed mice

miR-451 Cardiomyocyte-specific miR-451
knockout mice

LKB1/AMP activated protein
kinase pathway

Promotes lipotoxicity in
cardiomyocyte and increases
cardiac hypertrophy

Kuwabara et al. (2015)

db/db mice and diabetic patients miR-320 miR-320 mimic/miR-320 inhibitor
(in vitro and in vivo)

CD36 Induces lipotoxicity in diabetic heart Li et al. (2019)

db/db mice miR-126,
miR-499,
miR-15b

miR-126 mimic and anti-miR-126
(in vivo)

VEGF and SPRED-1 Increased coronary arterioles and
improved cardiac dysfunction

Lew et al. (2020)

STZ induced diabetes in rats lncRNA-
MALAT1

Intracoronary injection with
lentivirus MALAT1 shRNA/scramble
shRNA (in vivo)

NA Induces cardiomyocyte
apoptosis/left ventricular function

Zhang et al. (2016)

(Continued)
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TABLE 3 | Continued

Source cell/animals nc-RNA Target delivery method Targets Outcome References

Cultured neonatal rat
cardiomyocyte/STZ treated rats

lncRNA- H19 Intracoronary injection with
lentivirus pcDNA-H19 (in vivo)

VDAC1 Suppresses cardiomyocyte
apoptosis

Li X. et al. (2016)

Mouse neonatal cardiac
fibroblast/HFD fed mice and also
STZ induced diabetes

lncRNA-Crnde Injected with AAV-Crnde or
AAV-shCrnde (in vivo)

Smad3 Attenuates cardiac fibrosis Zheng et al. (2019)

AC16/cardiomyocyte cells, STZ
induced diabetes

lncRNA-
Kcnq1ot1

si-Kcnq1ot1 and Kcnq1ot1
lentivirus-shRNA (in vitro and
in vivo)

miR-214-3p and caspase-1 Promotes pyroptosis in DMCM Yang et al. (2018)

T2DM patients lncRNA-
LIPCAR,
SENCAR and
MIAT

NA NA Left ventricular diastolic function de Gonzalo-Calvo et al.
(2016)

STZ treated mice/HG treated
primary cardiomyocyte

lncRNA-MIAT lncRNA-MIAT lentivirus or CASP1
inhibitor/siMIAT (in vitro and in vivo)

miR-214-3p and IL-17 Promotes secretion of IL-17 and
induces cardiac fibrosis

Qi et al. (2020)

HG treated cardiomyocyte of newly
born mouse

lncRNA-Gas5 shRNA –Gas5 (in vitro) miR−320−3p and Tcf-3 Promotes apoptosis Su et al. (2020)

HG treated H9c2 cells and STZ
treated mice

lncRNA-
HOTAIR

Tail vein injection of AAV 2-HOTAIR
and Ad-sh-HOTAIR (in vitro and
in vivo)

miR-34 and Sirt1 Prevents cardiac inflammation,
oxidative injury and apoptosis

Gao et al. (2019)

T2DM patients hsa-
circRNA11783-
2

NA NA Coronary artery diseases Li et al. (2017)

db/db mice circRNAs_00203 rAd-circRNA_000203 (in vitro) Col1a2 and CTGF, miR-26b-5p Enhances expression of fibrosis
associated genes

Tang et al. (2017)

HG treated cardiomyocytes/serum
of diabetic patients

hsa_circ_0076631 Anti-sense oligonucleotide for
hsa_circ_0076631 (in vitro)

miR-214-3p, caspase-1 Induces pyroptosis Yang et al. (2019)

ncRNA, non-coding RNA; miR, micro RNA; GLUT4, glucose transporter type 4; KLF15, Kruppel-like factor; HG, high glucose; STZ, streptozotocin; SGK1. serum- and glucocorticoid-regulated kinase 1; IGF1R, insulin-like
growth factor-1 receptor; MEF2, myocyte enhancer factor-2; Tg mice, transgenic mice; FN1, fibronectin; COL4A1, collagen 1 alpha 1V; TGF-β, transforming growth factor-β1; SD rats, Sprague–Dawley rats; DUSP1,
dual-specific phosphatase-1; JNK1, jun-amino-terminal kinase 1; ERK, extracellular signal-related kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; AMPK, AMP-activated protein kinase; PGC-1α, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; NLRP3, NLR family pyrin domain containing 3; HFD, high fat diet; Sirt1, sirtuin1; MMEC, myocardial microvascular endothelial cells; T2DM, type 2 diabetes
mellitus; IGF2, insulin-like growth factor 2; LKB1, liver kinase B1; CD36, cluster of differentiation 36; VEGF, vascular endothelial growth factor; SPRED-1, sprouty related EVH1 domain Containing 1; lncRNA, long
non-coding RNA; MALAT1, metastasis associated lung adenocarcinoma transcript 1; Crnde, colorectal neoplasia differentially expressed; MIAT, myocardial infarction associated transcript; LIPCAR, long intergenic
non-coding RNA predicting cardiac remodeling; shRNA, short hairpin RNA; VDAC1, voltage-dependent anion-selective channel 1; AAV, adeno associated virus; Smad3, mothers against decapentaplegic homolog 3;
IL17, interleukin 17; Gas 5, growth arrest specific 5; Tcf 3, transcription factor 3; HOTAIR, HOX antisense intergenic RNA; Circ-RNA, circular RNA; Col1a2, collagen alpha-2(I); CTGF, connective tissue growth factor;
NA, not available.
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physical exercise in protecting CV health in patients with diabetes
(Lew et al., 2020).

Long Non-coding RNAs in Diabetic
Cardiomyopathy
Long non-coding RNAs are a class of ncRNAs with wide
range of lengths ranging from 200 to over 100 kb (Ulitsky
and Bartel, 2013; Li J. et al., 2016; Kopp and Mendell, 2018;
Palazzo and Koonin, 2020; Tariq et al., 2020). LncRNAs can be
classified into (a) stand-alone RNAs, (b) antisense transcripts,
(c) long intron ncRNAs, (d) pseudogenes containing lncRNA,
and (e) other lncRNAs with divergent transcripts. LncRNAs
can be found in the nucleus and cytosol. They participate in
many biological functions like transcriptional regulation, cellular
trafficking, nuclear compartmentalization, apoptosis, genomic
imprinting, and cell cycle (Goyal et al., 2018). Previously
published reports demonstrate that lncRNAs exhibit a significant
role in various pathophysiological conditions of CV disorders,
including DMCM via targeting miRNA/mRNA or proteins
(Zhang et al., 2019).

A recent study performed on diabetic rats showed elevated
lncRNAs, including MALAT1, in an STZ model of DMCM.
In this study, a knockdown of lncRNA MALAT1 led to
an improvement in LV function by reducing cardiomyocyte
apoptosis (Zhang et al., 2016). Li X. et al. (2016) recently
demonstrated the role of lncRNA H19 in DMCM. They
found that H19 levels were downregulated in diabetic patients’
myocardium (Li X. et al., 2016). The rescue of H19 expression
reduced inflammation, oxidative stress, and apoptosis, leading
to an improvement in LV function in STZ-induced SD
rats. To tease out a molecular mechanism, Li X. et al.
(2016) showed an overexpression of H19, which produces a
reduction in VDAC1 expression and apoptosis in HG-treated
(30 mmol/L) cardiomyocytes. This study established a possible
novel lncRNA therapeutic approach for treatment of DMCM.
An interesting finding by Zheng et al. (2019) reveals that
the role of cardiac-specific lncRNA-Crnde (colorectal neoplasia
differentially expressed) is negatively associated with cardiac
fibrosis in an HFD and low-dose STZ-treated mice. Using the
in vitro model system demonstrated that Crnde expression
inversely correlates with myofibroblast differentiation, leading
to cardiac fibrosis. In corroboration with in vitro findings,
in vivo adeno-associated virus-mediated overexpression of Crnde
significantly reduced fibrosis. This finding establishes lncRNA
therapeutics’ potential role against cardiac fibrosis concerning
DMCM (Zheng et al., 2019).

Recent findings by Yang et al. (2018) explore the role of
ncRNA-Kcnq1ot1 in cardiac pyroptosis in DMCM. This study
found elevated levels of Kcnq1ot1 in cardiomyocytes treated
with HG (50 mmol/L) and in cardiac tissue obtained from
STZ-induced diabetic mice. Significantly, lncRNA-Kcnq1ot1
knockdown lowered cardiomyocyte and cardiac cell death and
improved cardiac function in vivo. These findings suggest that
Kcnq1ot1 could be a potential therapeutic target in DMCM (Yang
et al., 2018). Another recent discovery by Qi et al. (2020) revealed
that HG-treated cardiomyocytes increased lncRNA-MIAT

expression leading to induction of pro-inflammatory cytokine
interleukin-17 (IL-17). IL-17 production further promotes
inflammation in the heart and subsequently leads to cardiac
fibrosis (Qi et al., 2020). A recent report showed lncRNA-Gas5
involvement in apoptosis post hyperglycemia in DMCM neonatal
cardiomyocytes (Su et al., 2020). Su et al. (2020) reported that
the expression of lncRNA-Gas5 increased significantly in a time-
dependent manner in HG-treated newly born cardiomyocytes,
which subsequently leads to apoptosis. Su et al. (2020) found the
rescue of apoptosis when they inhibited the lncRNA-Gas5. Gao
et al. (2019) reported the role of the HOX transcript antisense
RNA (HOTAIR) lncRNA in DMCM, demonstrating that the
overexpression of HOTAIR in cardiomyocytes of STZ-treated
mice attenuated the cardiomyocyte death and improved oxidative
stress, inflammation, and cardiac function, further investigating
the role that HOTAIR plays in in vitro hyperglycemic treated
H9c2 cells and finding increased apoptosis, inflammation, and
oxidative injury.

Other studies have shown an essential role of lncRNAs.
LIPCAR is positively associated with grade I diastolic dysfunction
(de Gonzalo-Calvo et al., 2016). SENCAR and MIAT were related
to cardiac remodeling observed via LV mass to LV end-diastolic
volume ratio. This study highlights the role of lncRNAs as
potential predictors of diastolic function in diabetic patients
(de Gonzalo-Calvo et al., 2016).

Circular RNAs as Novel Therapeutic
Targets for Diabetic Cardiomyopathy
Circular RNAs were discovered by Sanger et al. (1976) and
are “covalently closed single-stranded circular RNA molecules.”
These classes of RNAs are highly abundant in eukaryotes, and
many of them are evolutionary conserved. In respect of other
forms of spliced linear RNA, circRNAs are formed by the joining
of downstream 5′ splice site to an upstream 3′ splice site,
making them covalently circularized RNA loops (Gong et al.,
2019). They are derived from exons or introns or a combination
of exon/intron or lariats of size ranging 100 nucleotides to
4 kb (Lasda and Parker, 2014). Due to their unique structure,
circRNAs are naturally insusceptible to ribonuclease R (RNase
R), which results in their increased half-life (Kishore et al., 2020).
These abilities make circRNAs potent biomarkers for various
diseases, including heart diseases and diabetes. We have recently
demonstrated that circFndc3b expression rescue promoted
cardiac repair and improved cardiac function regulating
the FUS/VEGF-A axis (Garikipati et al., 2019). A recent
report demonstrated a correlation between circRNA (Hsa-
circRNA11783-2) expression, coronary artery disease, and T2DM
(Li et al., 2017). Using a db/db mouse subjected to Ang-II stress,
Tang et al. (2017) identified upregulation of circRNA_00203,
further displaying that overexpression of circRNAs_00203
enhanced fibrosis-related genes Col1a2 and CTGF via miR-26b-
5p sponging in isolated cardiac fibroblasts. These studies point
out the importance of circRNAs in diabetes-induced cardiac
fibrosis (Tang et al., 2017). Yang et al. (2019) recently showed
increased hsa_circ_0076631 levels in diabetic patients and
cardiomyocytes under hyperglycemic stress. In vitro knockdown
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of hsa_circ_0076631 in cardiomyocytes abolished HG-induced
apoptosis via miR-214-3p sponging and inhibiting caspase-1
expression. These results highlight the role of hsa_circ_0076631
regulating pyroptosis in diabetic cardiomyocytes. Given the
increasing knowledge on the association of circRNAs in DMCM,
there is enormous potential for further exploration of additional
mechanisms and novel therapeutic targets.

CONCLUSION AND FUTURE
DIRECTIONS

We summarize that ncRNAs play an important role in DMCM.
Of the ncRNAs focused in this review, miRNAs are the most
studied in the context of CVD. Tremendous progress on miRNA-
based therapeutics led them to clinical trials. In a phase 1 clinical
trial, CDR1321 (a novel synthetic miR-92a inhibitor) was used to
treat HF1 (unique identifier: NCT04045405). A phase 1 clinical
trial has recently been initiated using RG-102 (miR-21 inhibitor)
to treat kidney fibrosis (see text footnote 1; unique identifier:
NCT03373786). This is encouraging; however, significant hurdles
with miRNA therapeutics include delivering miRNA inhibitors to
specific organs/cells and associated off-target effects.

Circulating ncRNAs including miRNA (miR-320), lncRNA
(lncRNA-LIPCAR, SENCAR, and MIAT), and circRNA (Hsa-
circRNA11783-2 and hsa_circ_0076631) were shown to have
diagnostic and prognostic values (de Gonzalo-Calvo et al., 2016;
Li et al., 2017, 2019; Yang et al., 2019). Given that the studies
performed were in a small patient cohort, future studies should
focus on a larger number of patients, multi-centric trials, racial
backgrounds, and different time points after diabetes.

While the field of long ncRNAs (lncRNA and circRNAs)
is emerging in the context of DMCM, for a comprehensive
understanding of lncRNAs in DMCM, the following issues

1 https://www.clinicaltrials.gov

need to be addressed: (a) robust computational techniques
for their identification and downstream targets should be
standardized, (b) novel regulatory mechanisms need to be
uncovered (apart from their miRNA/RNA binding protein
interaction), (c) it should be investigated if lncRNA translation
products proteins/peptides are functional, and (d) genetic models
of lncRNA should be established.

Thus, identification, characterization, and mechanisms of
ncRNAs (especially lncRNA and circRNAs), which play a
regulatory role in the network of interactions governing DMCM,
are fundamental pieces of the puzzle that need to be solved to
allow better treatment and prevention of DMCM.
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