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The subpopulation of cancer stem cells (CSCs) within tumor bulk are known for tumor
recurrence and metastasis. CSCs show intrinsic resistance to conventional therapies and
phenotypic plasticity within the tumor, which make these a difficult target for conventional
therapies. CSCs have different metabolic phenotypes based on their needs as compared
to the bulk cancer cells. CSCs show metabolic plasticity and constantly alter their
metabolic state between glycolysis and oxidative metabolism (OXPHOS) to adapt to
scarcity of nutrients and therapeutic stress. The metabolic characteristics of CSCs are
distinct compared to non-CSCs and thus provide an opportunity to devise more effective
strategies to target CSCs. Mechanism for metabolic switch in CSCs is still unravelled,
however existing evidence suggests that tumor microenvironment affects the metabolic
phenotype of cancer cells. Understanding CSCs metabolism may help in discovering new
and effective clinical targets to prevent cancer relapse and metastasis. This review
summarises the current knowledge of CSCs metabolism and highlights the potential
targeted treatment strategies.
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INTRODUCTION

Cancer causes significant deaths worldwide, despite major innovations in treatment therapy
strategies, radiation- and chemo-therapy and drug delivery technologies. A major contributor to
the cancer treatment-associated toxicities and resistance (1–3), is their inability to eradicate subset
of cancer stem cells (CSCs) which drive tumour growth and heterogeneity. CSCs presence makes
tumors resistant to conventional therapies (4). Density of CSCs is a proven prognostic marker in
various cancers (5, 6), thus targeting CSCs is an effective way for treating cancer.

CSCs self-renewal and asymmetric division capacity help tumors to regenerate and propagate post-
treatment. CSCs populations provide high radio- and chemo-resistance due to efficient DNA repair
and cellular redox homeostasis, protective tumor microenvironment, escape from immune response
and unique metabolic phenotype (7–10). CSCs use metabolic reprogramming to escape immune
system (11) and grant them plasticity (12). Metabolic reprogramming induce M2 phenotype in
tumor-associated macrophages (TAMs) (13, 14) and glycolysis induce IL-6 secretion in M2
macrophages (15). Secreted IL-6 promotes CSC phenotype in cancer cells (16) via activation of
STAT3/NFkB signaling pathways (17). CSCs in turn induce M2 phenotype in TAMs to confer drug
November 2021 | Volume 11 | Article 7568881

https://www.frontiersin.org/articles/10.3389/fonc.2021.756888/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756888/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756888/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shalmoli2007@yahoo.co.in
mailto:shalmolib@gmail.com
https://doi.org/10.3389/fonc.2021.756888
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.756888
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.756888&domain=pdf&date_stamp=2021-11-05


Kaur and Bhattacharyya Metabolism in CSCs
resistance and tumorigenicity in CSCs by blocking the anti-tumor
CD8+ response during chemotherapy (18).

Till date the origin of CSCs remains elusive. Two models are
postulated to explain the genetic and functional heterogeneity of
cancer in a single patient: the clonal evolution model and the
cancer stem cell (CSC) hypothesis (19). The clonal evolution
model suggests that multiple stepwise oncogenic mutations in
somatic cells leads to tumor formation and natural selection
favors the tumor cells with aggressive phenotype (20, 21). The
CSC hypothesis suggests that metabolic events occurring in
cancer epithelial cells may generate CSCs (Figure 1). Altered
metabolic events in cancer cells may affect chromatin
organization and activate epigenetic program (22) which may
further fuel metabolic-reprogramming of CSCs. Two proposed
models explain howmetabolic alterations could affect epigenetics
(22). In the first model, metabolism reprogramming facilitates
differentiation of one cell type to another by altering chromatin
modifications without affecting the epigenomic landscape. The
second model proposes that altered metabolism induces new
potential cell types via creation of novel stable epigenetic states,
thus reshaping the entire epigenomic landscape. In this model,
altered metabolism remodels chromatin by either inducing gene
expression or affecting availability of substrates and cofactors for
chromatin-modifying enzymes. In either case, the end-result is a
novel cell state that is irreversible as epigenomic landscape
has changed.
Frontiers in Oncology | www.frontiersin.org 2
Metabolic characterization of CSCs has been a challenging
task, as CSCs lack a common metabolic phenotype across cancer
types. CSCs metabolic pattern differ from adult stem cells (SCs)
and use either glycolysis or OXPHOS (Figure 1) triggering
cellular plasticity in CSCs (23). Thus, an understanding of
CSCs metabolic features will help target CSCs specifically and
prevent cancer progression. Current review summarizes the
various metabolic features of CSCs along with therapeutic
interventions that can be adopted to target key energy
processes in CSCs. Targeting the metabolic flexibility in CSCs
can emerge as an effective strategy for preventing or minimizing
disease progression and recurrence.
METABOLIC FEATURES OF CSCs

Growth factors, nutrients and oxygen in the tumor
microenvironment provide necessary energy sources and
growth signals for CSCs generation and proliferation. Recently,
metabolism has been identified as a major component in CSCs
biology, as oncogenic alterations has been observed to cause
metabolite-driven dissemination of CSCs (19). Multipotent SCs
use glycolysis (24, 25), have fewer mitochondria and produce less
reactive oxygen species (ROS) (26, 27). Higher ROS levels cause
SCs dysfunction (28–30) and shift to OXPHOS with increased
ROS production leads to differentiated SCs progeny.
FIGURE 1 | Metabolic features and plasticity of CSCs. Cancer is a heterogeneous disease with multiple sub-populations of cells and CSCs form the self-renewing
and tumorigenic core in a tumor. Cancer cells have a predominant glycolytic phenotype and use aerobic glycolysis for tumor growth. This altered metabolism in cancer
cells may trigger EMT, hypoxia, cell de-differentiation, mutagenesis and clonal evolution for acquisition of CSCs phenotype. The metabolic alterations in CSCs promote
cell-renewal, immune system escape and invasive and metastatic potential. CSCs unlike cancer cells can use glycolysis, OXPHOS or both, depending on their
oncogenic background and bio-energetic needs. This freedom of metabolic choice makes CSCs metabolically plastic and they easily shuffle between metabolic
phenotypes, based on their state i.e. proliferative or quiescent. EMT, epithelial to mesenchymal transition; FAO, fatty acid oxidation; PPP, Pentose phosphate pathway.
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Glycolysis
CSCs were hypothesized to be glycolytic (31), as SCs rely
primarily on glycolysis to generate energy (32). However,
CSCs are more glycolytic than SCs in various cancers (33–
35). Upregulation of glycolytic genes precede pluripotency
markers expression, thus switching from OXPHOS to
glycolysis promotes stemness in CSCs and is not an outcome
of attaining pluripotency (36). CSCs’ glucose uptake and hence
lactate and ATP production is higher (37) and glycolysis
inhibition or glucose starvation cause CSCs’ death (19, 38).
Glycolytic CSCs are shown in CD133+ liver carcinoma cells
(39), osteosarcoma-initiating cells (40), breast cells (41) and
glioblastoma cells (35).

Glycolysis is preferred in breast CD44+CD24lowEPCAM+

CSCs, sphere-forming radio-resistant nasopharyngeal carcinoma
cells (42) and CD133+CD49f+ tumor initiating cells (TICs) in
hepatocellular carcinoma (43). Elevated expression of oncogenic
MYC drove stemness in these cancer types (44) and MYC-driven
glycolytic program determined tumorigenic potential (45), thus
making MYC a likely candidate linking glycolysis and stemness.

Lactate supports stemness by upregulation of transcription
factor SP1 and increases aggressiveness, invasiveness and
immune-suppression through sterol regulatory element-
binding protein 1 (SREBP1) (46–51). Hypoxia-inducible
factor-1 (HIF-1) promotes glycolysis in CSCs and declines
OXPHOS and TCA cycle (52). HIF-1 reduces ROS production
and upregulates glucose transporters (GLUT) and hexokinase
(HK2) expression, pyruvate kinase (PK) activity and LDHA
levels and downregulates pyruvate dehydrogenase (PDH) levels
(52). HIF-1 promotes self-renewal and pluripotency in various
cancers making them treatment resistant (19, 53, 54).

NANOG-expressing hepatocellular CSCs have higher
glycolysis and fatty acid oxidation (FAO) rates, and lower
OXPHOS and ROS generation (43). CSCs secretome have
enriched levels of glycolytic and antioxidant pathways proteins
and secreted high levels of ALDH than differentiated cells from
colorectal tumors (24). ALDH detoxifies anticancer drugs such
as maphosphamide and CSCs secreting ALDH promoted self-
preservation and protected nearby differentiated mature cancer
cells, leading to therapy resistance (24). Ovarian CSCs with
glycolysis enrichment, de novo fatty acid synthesis, and
decreased mitochondrial respiration and anaplerotic flux, led
to aggressive tumors with therapy resistance to cisplatin in
comparison to mature cancer cells (34).

Mitochondrial Respiration
As an energy source, OXPHOS is more efficient than glycolysis,
but has a slower rate to produce energy. Quiescent or slow-cycling
tumor-initiating CSCs prefer OXPHOS metabolism over
glycolysis (Figure 1), consume less glucose, have lower lactate
and higher ATP levels (55–57). OXPHOS-dependent CSCs with
low glycolytic reserves are shown in acute myeloid leukemia,
CD133+ glioblastoma, melanoma, pancreatic and ovarian cancer
(58–63). In breast CSCs, elevated OXPHOS levels trigger
chemotherapeutic resistance through synergistic action of MYC
and MCL1 (64).
Frontiers in Oncology | www.frontiersin.org 3
CSCs using OXPHOS have higher mitochondrial mass with
increase in membrane potential and rates of oxygen
consumption (62, 65, 66). Mitochondrial mass is a vital
metabolic biomarker of CSCs (65, 67). Tumor cells without
mitochondrial DNA (mtDNA) grew slowly and acquisition of
mtDNA from host cells led to tumor-initiation and drug
resistance in these tumor cells (68), suggesting mitochondrial
function as a target for CSCs treatment. Master mitochondrial
biogenesis regulator, peroxisome proliferator-activator 1 alpha
(PGC1a) maintained stemness characteristics (69) in breast
cancer (70) and pancreatic CD133+ CSCs (66) and increased
chemoresistance in CSCs (64, 71–73). NANOG is a pluripotency
gene that supports tumorigenesis through OXPHOS and fatty
acid metabolism (43). Some breast CSCs show elevated glucose
consumption and ATP production, higher mitochondrial
activity but lower lactate levels, suggesting that OXPHOS and
glycolysis may not be mutually exclusive to CSCs (62).

Glutamine Metabolism
Glycolysis and OXPHOS may not completely support CSCs
metabolism, thus glutamine compensates for glucose shortage
(74, 75). Although a non-essential amino acid, glutamine
becomes essential for cancer cells (76) and CSCs from lung,
pancreatic and ovarian cancer have shown glutamine
dependence (77, 78). CSCs rely on glutamine for carbon and
amino-nitrogen for protein, nucleotide and lipids biosynthesis
(79). Glutamine metabolism is rewired by mutations in
mitochondrial DNA (mtDNA) (80) and oncogenic alterations
in KRAS (81, 82) and c-Myc (83) in tumor cells. Glutamine
metabolism in c-Myc-over-expressing cells suggests a
pluripotency gene profile dependence on glutamine (84). In
pancreatic CSCs, glutamine unavailability reduced stemness
characteristics and increased radiation therapy sensitivity (77).
L-DON (a glutamine analog) inhibited glucose metabolism and
prevented systemic metastasis to liver, lung and kidney in
mice (85).

Lipid Metabolism
Cells use an anabolic process of fatty acid synthesis (FAS) to
derive energy from fatty acid metabolism for cell growth and
proliferation, and a catabolic process of fatty acid oxidation
(FAO) for NADH and ATP production (86). CSCs are
extremely reliant on de novo lipid biosynthesis, lipid oxidation
and lipid metabolizing enzymes (87, 88).

Lipid accumulation correlates with tumor stage in mice with
prostate cancer (89). De novo lipid synthesis associated
transcription factor, SREBP-2 activated c-Myc transcription in
prostate cancer, enhancing CSCs properties (90). Increased lipid
droplet content in colorectal CSCs (91), upregulated lipogenesis
in glioma (92) and pancreatic cancer CSCs (93), and increased
fatty acid oxidation (FAO) in breast cancer (94) and leukemic
cells (95) maintained stemness. High levels of unsaturated lipids
in ovarian CSCs promotes cancer stemness and tumor initiation
capacity (96).

CSCs use mitochondrial FAO for ATP and NADPH
generation to survive loss of matrix attachment (97, 98).
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Pluripotency factor NANOG-induced FAO genes expression
promoted chemoresistance in TICs in hepatocellular
carcinoma (43). Hematopoietic stem cells (HSCs) and
leukemia-initiating cells depend on FAO for self-renewal (95,
99) and thus FAO inhibition is a potential pharmacological
opportunity to target CSCs (98). Lipid metabolism enzymes,
ACSVL3 (acyl-CoA synthetase very-long-chain 3) and ALOX5
(arachidonic acid 5-lipoxygenase) promoted glioblastoma CSCs
self-renewal and tumorigenicity (100, 101).

Other Metabolic Features
Mutations in isocitrate dehydrogenase (IDH1 and 2) promote
stem-ness in leukemia by aberrant conversion of a-ketoglutarate
(aKG) to an analogue named 2-hydroxyglutarate (2-HG).
Intracellular accumulation of 2-HG promoted a pro-leukemic
phenotype by inhibiting tet methylcytosine dioxygenase 2
(TET2) function, increased self-renewal and impaired
differentiation of hematopoietic SCs (102–104).

Elevated purine synthesis promoted stemness in brain tumor
initiating cells (BTICs) and correlated with significantly poorer
overall survival in glioblastoma patients (105). MYC regulates
purine synthesis enzymes and its liaison with de novo purine
synthesis mediated selective dependence of BTICs on glucose-
sustained anabolic metabolism. Inhibition of purine synthesis
prevented BTICs growth by inhibiting their self-renewal
capacity, but differentiated glioma cells remained unaffected
(105). Thus frailty of purine synthesis in CSCs makes it a
potential therapeutic target,

Lysine catabolism promoted self-renewal of CD110+

colorectal cancer tumor-initiating cells (TICs) by generating
acetyl-CoA. Acetyl-CoA triggered LDL receptor-related protein
6 (LRP6) acetylation and phosphorylation, and finally activation
of WNT signaling (106). Lysine catabolism promoted drug-
resistance and metastasis to liver in CD110+ TICs by glutamate
and glutathione synthesis, which modulated the redox status
(106). Collectively, CSCs use an array of metabolism alterations
to fuel their self-renewal, thus making these metabolic
dependencies open to targeted therapies.
CLINICAL IMPLICATIONS

CSCs have both distinct and flexible metabolic phenotypes
between glycolysis and OXPHOS-dependent. Despite limited
clinical evidence, targeting CSCs through selective metabolic
modulation is an effective and promising avenue for cancer
treatment. In our view, synergistic treatments using a standard
cytotoxic agent and a metabolic-based therapy will improve
eradication of CSCs. Table 1 lists the available metabolic
targeting agents undergoing clinical trials in various cancers.

Targeting Glycolysis
Glycolytic CSCs can be targeted for glycolytic enzymes
(hexokinase (HK), phosphoglycerate kinase, pyruvate kinase)
and glucose transporters (GLUT1-4). Direct inhibition of
GLUTs results in a total disruption of glucose uptake and
hence energy metabolism, and GLUT inhibitors such as
Frontiers in Oncology | www.frontiersin.org 4
phloretin, fasentin and WZB117 have shown anticancer effects
in preclinical models (107–110). However, ubiquitous expression
of GLUTs even in normal cells challenges the explicit inhibition
of CSCs glucose uptake and leads to side-effects.

HK enzymes catalyze the first step of glycolysis and their
inhibition via 2-deoxy-D-glucose (2-DG), benserazide,
lonidamine (LN) and genistein-27 (GEN-27) are being used for
cancer treatment (111–114). 2-DG is a synthetic analog of
glucose that competitively inhibits glucose transport (115) and
can be used in combination with cisplatin/docetaxel as an anti-
cancer agent (116, 117). 2-DG inhibited glycolysis and CSCs
phenotype in triple-negative breast cancer cells (118) and 2-DG
with biguanides (such as 3-bromopyruvate, 3-BP) prevented
colon cancer cell proliferation (119).

Pyruvate is converted into mitochondrial acetyl-CoA in the
cytosol and is negatively regulated by pyruvate dehydrogenase
kinase (PDK) enzyme. This shifts cellular metabolism from
OXPHOS to glycolysis and thus targeting PDK can inhibit
cellular proliferation of CSCs. Dichloroacetate (DCA) activates
mitochondrial pyruvate dehydrogenase (PDH) by inhibiting
PDK (120), is fairly well-tolerated with fewer side effects and is
being tested in several anticancer clinical trials (121, 122).

CSCs can oscillate between metabolic phenotypes during oxygen
deprivation and glucose starvation, and thus targeting mechanisms
underlying these metabolic adaptations can effectively eliminate
CSCs. Hypoxia-inducible factors (HIFs) promote tumor
progression in response to localized hypoxia by switching to
glycolysis from OXPHOS, activating Notch pathway and
expression of Oct4 transcription factor (123, 124). This suggests
HIF-1a’s role in self-renewal and multipotency and targeting HIFs
can be a prospective treatment for CSCs. Metformin, although an
antidiabetic drug, attenuated glycolysis flux in hepatocellular
carcinoma cells (125) and improved radiotherapy response in
prostate and colon cancer tumor xenograft models (126).
Epigallocatechin gallate (EGCG) is an inhibitor of glycolysis and
its co-treatment with gemcitabine enhanced pancreatic cancer cell
death both in vitro and in xenografts (127).

Targeting Mitochondrial Respiration
Several OXPHOS-targeting pharmacological agents are being
explored in clinical trials for cancer treatment (Table 1) and
have potential to target CSCs. OXPHOS inhibition overcame
drug resistance in slow-cycling melanoma cells and
mitochondria-targeted antibiotics prevented sphere formation
and tumorigenesis in CSCs (61, 128). Metformin inhibited
mitochondrial electron transport chain complex I and
diminished OXPHOS (129). Metformin caused energy
emergency and hence apoptosis in OXPHOS-dependent
pancreatic cancer stem cells (CSCs), but spared their glycolytic
differentiated progenies (66). Diabetic patients receiving
metformin have a lower mortality rate from cancer and hence
a better prognosis (130, 131). Phenformin, a biguanide formerly
used in diabetes and a mitochondrial inhibitor induced non-
small cell lung cancer (NSCLC) cells apoptosis (132).

CSCs mitochondrial mass and metabolism can be targeted
using approved antibiotics like tetracyclines, salinomycin and
erythromycins. Antibiotic salinomycin inhibits OXPHOS (133)
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TABLE 1 | Clinical trial status of drugs targeting metabolic pathways.

METABOLIC
PATHWAYS

TARGET MOLECULE DRUG CANCER TYPE CLINICAL
TRIAL
PHASE

RECRUITMENT
STATUS

CLINICAL
TRIAL

NUMBER

Amino acid
metabolism

Glutaminase Phenylacetate Brain tumor Phase-II Completed NCT00003241
CB-839 Renal Cell Carcinoma Phase-II Active NCT03428217

Hematological tumor Phase-I Completed NCT02071888
Leukemia Phase-I Completed NCT02071927

Asparagine Asparaginase Acute myloid leukemia Phase-III Active NCT00369317
Phase-III Recruiting NCT02521493

Pegylated L-
Asparaginase

Epithelial Ovarian Cancer,
Fallopian Tube Cancer, and/or
Primary Peritoneal Cancer

Phase II Completed NCT01313078

Arginine Arginine deiminase Soft Tissue Sarcoma,
Osteosarcoma, Ewing’s
Sarcoma, and Small Cell Lung
Cancer

Phase-II Active NCT03449901

Fatty acid
synthesis

FASN TVB-2640 Colon Cancer Phase-I Recruiting NCT02980029
Solid Malignant Tumor Phase-I Completed NCT02223247
Breast Cancer Phase-II Recruiting NCT03179904
Non-Small Cell Lung
Carcinomas

Phase-II Recruiting NCT03808558

Astrocytoma Phase-II Active, not
recruiting

NCT03032484

Cholesterol
synthesis

HMGCR Statins Breast Cancer Phase-III Recruiting NCT03971019
Prostate Cancer NA Completed NCT01428869
Gastric Cancer NA Completed NCT01813994
Breast Cancer Phase-II Completed NCT00816244

Lipid-
Mediated
Signaling

Prostaglandin-endoperoxide
synthase 2

Celecoxib Breast Cancer Phase-III Completed NCT02429427
Pancreatic Cancer Phase-II Completed NCT00068432
Lung Cancer Phase-II Completed NCT00030407

EP4 receptor (prostaglandin
receptor)

PGE1 Prostate Cancer Phase-II Completed NCT00080808
Penile Cancer NA Completed NCT00955929

Omega-3
polyunsaturated fatty
acids (w-3 PUFAs)

Skin Cancer NA Completed NCT01032343
Bladder Cancer NA Recruiting NCT04664816
Breast Cancer NA Active, not

recruiting
NCT02295059

Tricarboxylic
acid cycle
(TCA) Cycle

Pyruvate dehydrogenase kinase
(PDK1)

Dichloroacetate (DCA) Head and neck cancer Phase-I Completed NCT01163487
Glioblastoma and Other
Recurrent Brain Tumors

Phase-I Completed NCT01111097

Brain cancer Phase-II Completed NCT00540176
Metastatic solid tumor Phase-I Completed NCT00566410

Glycolysis GLUT4 Ritonavir HER2-expressing Advanced
Solid Malignant Tumors

Phase-I Active NCT03383692

Hexokinase 2-deoxy-D-glucose (2-
DG)

Lung cancer Phase-III Active NCT01394679
Prostate cancer NA Active NCT00002981

Pyruvate kinase (PK) TLN-232 Renal Cell Carcinoma Phase-II Completed NCT00422786
OXPHOS Cytochrome b Atovaquone Acute myloid leukemia Phase-I Active NCT03568994

Lung cancer Phase-I Recruiting NCT04648033
Respiratory complex I,
mitochondrial glycerol-3-
phosphate dehydrogenase
(mGPDH)

Metformin Breast cancer Phase-II Active NCT02028221
Prostate cancer Phase-II Active NCT02945813
Endometrial cancer Phase-II Active NCT02755844
Lung cancer Phase-II Active NCT03048500

Pentose
phosphate
pathway (PPP)

Glucose-6-phosphate
dehydrogenase (G6PDH)

Resveratrol Colon cancer Phase-I Completed NCT00256334
Gastrointestinal Tumors NA Completed NCT01476592
Colorectal Cancer Phase-I Completed NCT00433576
Colorectal Cancer Phase-I Completed NCT00920803

G6PDH and ribose-5-phosphate
(R-5P)

Dehydroepiandrosterone
(DHEA)

Vaginal Atrophy In Breast
Cancer Survivors

Phase-IV Recruiting NCT04705883

Multiple myeloma Phase-II Completed NCT00006219
G6PDH, 6PGDH and
Transaldolase TA

Arginine and ascorbic
acid combination

Head and Neck Cancer NA Completed NCT03531190

Nucleotide
biosynthesis

DNA & RNA synthesis 5-Fluorouracil (5-FU) Pancreatic cancer Phase-II Active NCT02352337
Colon cancer Phase-I Active NCT02724202
Biliary tract cancer Phase-II Active NCT03524508

(Continued)
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TABLE 1 | Continued

METABOLIC
PATHWAYS

TARGET MOLECULE DRUG CANCER TYPE CLINICAL
TRIAL
PHASE

RECRUITMENT
STATUS

CLINICAL
TRIAL

NUMBER

Bladder cancer Phase-II Active NCT00777491
Cytarabine Multiple myeloma Phase-II Active NCT02416206
Methotrexate Head and Neck Cancers Phase-II Active NCT03193931

Breast Cancer NA Completed NCT00615901
Head and Neck Cancer Phase-III Active NCT01884623
Brain Tumors Phase-I Completed NCT02458339

DNA synthesis Folate Colorectal Cancer Phase-I Completed NCT00096330
Non-Small Cell Lung Cancer Phase-II Completed NCT00609518
Head and Neck Squamous Cell
Cancer

Phase-II Completed NCT01183065

Methyltransferases Genistein Breast cancer Phase-II Completed NCT00244933
Prostate cancer Phase-II Completed NCT00584532
Colorectal cancer Phase-I Completed NCT01985763
Pancreatic cancer Phase-II Completed NCT00376948

Epigallocatechin Gallate
(EGCG)

Colorectal Cancer Phase-I Recruiting NCT02891538
Lung Cancer Phase-II Enrolling by

invitation
NCT02577393

Histone deacetylases (HDAC) Butyrate Rectal cancer Phase-II Completed NCT04795180
Sulforaphane Prostate cancer Phase-II Completed NCT01228084
3,3 Diindolylmethane Prostate Cancer Phase-II Completed NCT00888654

Histone acetyltransferase Curcumin Colon cancer Phase-I Active NCT02724202
Breast cancer Phase-II Completed NCT01042938
Prostate cancer Phase-II Active NCT02724618
Colon cancer Phase-I Active NCT02724202
Gastric cancer Phase-II Active NCT02782949

Acetylation of non-histone
proteins

Butyrate Epstein Barr virus-induced
malignancies

Phase-I Completed NCT00006340

Combination
treatments

mTOR (mammalian target of
rapamycin)

Everolimus Pancreatic cancer Phase-II Active, not
recruiting

NCT02294006

Respiratory complex I, mGPDH Metformin
Cyclooxygenase (COX) Aspirin Colorectal Cancer Phase-II Unknown NCT03047837
Respiratory complex I, mGPDH Metformin
HMG-CoA reductase Atorvastatin Triple Negative Breast Cancer Phase-II Recruiting NCT03358017
Farnesyl pyrophosphate (FPP)
synthase

Zoledronate

Arginase INCB001158 Advanced/Metastatic Solid
Tumors

Phase-I Active, not
recruiting

NCT02903914
Programmed cell death protein 1
(PD-1)

Pembrolizumab Phase-II

Glutaminase CB-839 Solid Tumors Phase-I Terminated NCT03875313
Poly ADP ribose polymerase
(PARP)

Talazoparib Phase-II (Slow Enrollment)

Respiratory complex I, mGPDH Metformin Prostate Cancer Phase-II Completed NCT01796028
Microtubules Taxotere
Respiratory complex I, mGPDH Metformin Cancer Phase-III Not yet recruiting NCT02201381
HMG-CoA reductase Atorvastatin
30S ribosomal subunit Doxycycline
Tubulin Mebendazole
Coenzyme A Coenzyme A Castration-resistant Prostate

Cancer
Phase-I Recruiting NCT04839055

CYP17A1 (17 alpha-hydroxylase/
C17,20 lyase)

Abiraterone Phase-II

Respiratory complex I, mGPDH Metformin Endometrial Cancer Phase-II Active, not
recruiting

NCT02755844
PARP Olaparib Phase-I
Phosphoramide mustard Metronomic

cyclophosphamide
Respiratory complex I, mGPDH Metformin Colorectal Cancer Phase-II Completed NCT01941953
DNA & RNA synthesis Fluorouracil Pancreatic Cancer Phase-II Completed NCT01666730
Respiratory complex I, mGPDH Metformin Breast Cancer Phase-II Completed NCT01310231
Athracyclines, platinum, taxanes
or capecitabine; first or second
line

Standard chemotherapy

Respiratory complex I, mGPDH Metformin Hydrochloride Endometrial Cancer Phase-II NCT02065687

(Continued)
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and salinomycin treatment reduced breast CSCs gene expression.
Antibiotic tigecycline inhibited mitochondrial translation in
mitochondrial associated ribosomes in OXPHOS-dependent
leukemia cells (134).

CSCs using OXPHOS have a higher mitochondrial membrane
potential (Dym) and thus Dym can be explored for selective
accumulation of cytotoxic drugs. Triphenylphosphonium (TPP)
accumulates in the mitochondrial matrix (135) and conjugation of
TPP to doxorubicin prevented drug efflux by enhancing drug
selectivity in cancer cells (136). Dual inhibition of glycolysis and
OXPHOS in sarcoma cells, using 2-DG and oligomycin/
metformin co-treatment (137), suggests that simultaneous
inhibition of glycolytic and mitochondrial respiration is more
effective to eradicate CSCs (138, 139).

Targeting Glutamine Metabolism
Although a non-essential amino acid, glutamine becomes
essential as a favored respiratory fuel for cancer cells and thus
depriving glutamine is a potential anti-cancer strategy.
Glutamine metabolism can be blocked by inhibiting
glutaminase 1 (GLS1), an enzyme that converts glutamine to
glutamate. GLS1 inhibition disrupted redox balance in CSCs and
sensitized lung and pancreatic cancers to radiotherapy (77, 140).
GLS1 inhibitors, BPTES (141) and CB-839 reduce intracellular
glutamate and 2-hydroxyglutarate (an oncometabolite) levels.
Lower glutamate levels inhibited cell growth, induced apoptosis
and differentiation in Acute Myeloid Leukemia (AML) cells
(142). CB-839 is under clinical trials for various cancers
including renal cell carcinoma, hematologic cancer and
leukemia (Table 1).

Targeting Lipid Metabolism
Cancer cells predominately use glycolysis for ATP production
instead of oxidizing energy-rich substrates. However, unlike
non-cancerous cells dependence on dietary lipids, cancer cells
use de novo lipogenesis. Thus targeting fatty acid synthase
(FASN), a central enzyme to lipogenesis, is a promising
strategy to eliminate CSCs. FASN inhibitor cerulenin reduced
de novo lipogenesis and in turn proliferation, migration and
stemness of glioma stem cells (GSCs), induced apoptosis in colon
cancer cell lines (92, 143) and blocked proliferation of pancreatic
spheres (93). C75 decreased HER2+ breast cancer cells self-
renewal capacity at non-cytotoxic concentrations (144).
However, due to toxicity issues in in-vivo studies owing to high
selectivity of FASN inhibitors, only one FASN inhibitor (TVB-
2640) is under clinical trials to date (Table 1).
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Studies show that increased fatty acid production in cancer
cells raises their dependence on desaturases (enzymes that add
double bonds into acyl-CoA chains). Thus targeting desaturase
enzyme activity may provide a novel approach to selectively
interfere lipid metabolism in CSCs. Several stearoyl-CoA
desaturase-1 (SCD-1) inhibitors have effectively targeted
stemness in pre-clinical models of cancer. Inhibitors like
CAY10556 and SC-26196 reduced stem-ness markers and
inhibited in-vitro sphere formation and in-vivo tumorigenicity,
by down-regulating Hedgehog and Notch expression in aldehyde
dehydrogenase (ALDH)- and CD133-enriched ovarian cells and
had no effect on differentiated cells (96). Similarly, SCD-1
inhibitors (SSI-4 or A939572) promoted differentiation in
chemo-resistant hepatospheres with little toxicity in vivo (145).
MF-438 reduced expression of self-renewal and pluripotency
markers in lung ALDH1+ cells (146).

Along with de novo lipogenesis, cancer cells also take lipids
from the extracellular milieu (147) using LDL receptor (LDLR)
(148), CD36 fatty acid translocase, fatty acid transport proteins
(FATPs) (149) or fatty acid-binding proteins (FABPs) (150).
Inhibition of CD36 transporter with 2-methylthio-1,4-
naphtoquinone reduced self-renewal and promoted apoptosis
in CD133+ glioblastoma (151) and sulfosuccinimidyl oleate
reduced chemo-resistant leukemic stem cells (152). CD36-
neutralizing antibodies inhibited progression and metastasis of
oral squamous cell carcinoma and had no reported toxicity
in-vivo (153).

Highly proliferating cells also have a higher demand for
components of cell membrane like cholesterol. Cholesterol is
either taken up from exogenous sources or synthesized using
FASN or mevalonate pathway (154). Statins inhibit cholesterol
synthesis through the mevalonate pathway and their target
enzyme is 3-hydroxy-3-methyl-glutharyl-coenzyme A
reductase (HMGCR). Statins treatment decreased CSCs self-
renewal capacity and number in breast (155), nasopharyngeal
(156) carcinomas and CD133+ brain TICs (157). MYC controls
over-expression of mevalonate pathway genes and thus anti-
CSCs effects of statins could be due to MYC inhibition (157).

Synthesized or accumulated fatty acids are also converted to
signaling lipids and energy via FAO, in addition to membrane
incorporation or being stored. FAO is an essential energy source in
non-glycolytic tumors (158, 159), as CSCs show higher FAO in
nutrient-deprived conditions (63, 86, 160, 161). FAO promotes
pluripotency and chemoresistance (94) by reducing ROS
production (162, 163) and promoted metastatic capacity in
sphere-derived cells (164). Etomoxir, an inhibitor of FAO,
TABLE 1 | Continued

METABOLIC
PATHWAYS

TARGET MOLECULE DRUG CANCER TYPE CLINICAL
TRIAL
PHASE

RECRUITMENT
STATUS

CLINICAL
TRIAL

NUMBER

Active, not
recruiting

DNA Carboplatin

Respiratory complex I, mGPDH Metformin Liver Cancer Phase-III Unknown NCT03184493
Prostaglandin-endoperoxide
synthase 2

Celecoxib Prostate Cancer Phase-II &
III

Recruiting NCT00268476
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inhibited mammosphere formation in hypoxic breast CSCs (165)
and eradicated half of quiescent leukemia SCs (99), suggesting that
FAO inhibitors hinder CSCs survival. In hepatocellular carcinoma,
etomoxir sensitized CSCs to sorafenib treatment (43). Soraphen A,
cerulenin and resveratrol inhibited FAO and lowered stemness
markers and spheroid formation in CSCs (92, 166, 167).

Lipids also support CSCs functionality by being second
messengers in signal transduction pathways. Sphingolipids,
eicosanoids (prostaglandin E2) and glycerophospholipids
(lysophosphatidic acid (LPA)) boost CSCs number by
activation of Notch, AKT and NF-kB pathways in breast,
bladder, colorectal (CRC) and ovarian cancer (168–171). Lipid-
mediated signaling in CSCs thus can be targeted using inhibitors
and dietary supplements. Inhibition of autotoxin (ATX) (a
lysophosphatidic acid (LPA)-producing enzyme) with S32826
or PF8380 reduced tumorigenicity and chemoresistance in-vivo
(171). Inhibition of LPA production in cancer cells modulated
the immune system by inducing monocytes differentiation to
macrophages and launching cancer-associated fibroblasts
(CAFs) phenotype (172, 173). Prostaglandins are major lipid
mediator in CSCs and celecoxib treatment of ApcMin/þ mice
reduced number of CD133+CD44+ cells and tumor burden (170).
Celecoxib reduced patient-derived CSCs content and liver
metastatic tumors number in NOD scid gamma (NSG) mice
and weakened chemoresistance in bladder carcinomas,
indicating its potential as an adjuvant therapy (169). In
contrast, reduction of CD34+ cells in chronic myelogenous
leukemia (CML) xenograft model by EP4 receptor
(prostaglandin receptor) agonist misoprostol or PGE1 (FDA-
approved), suggests a context-dependent role of prostaglandins
in stem-ness (174). Further, dietary omega-3 polyunsaturated
fatty acids (w-3 PUFA) decreased CRC risk and reduced CD133+

content in CRC cell lines (175, 176). Eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) supplementation
decreased breast tumorspheres proliferation (177) and EPA
with chemotherapy suppressed tumor growth in mice (178),
suggesting an anti-CSCs properties of w-3 PUFAs.

Combination Treatments
CSCs can also attain a combined metabolic phenotype where both
glycolysis and OXPHOS are utilized (Figure 1). This phenotype
can be attained by direct association of AMP-activated protein
kinase (AMPK, master regulator of OXPHOS) and HIF-1 (master
regulator of glycolysis) activities (179). High AMPK/HIF-1
activities leads to higher glycolysis and OXPHOS, and provide
enhanced proliferation and clonogenicity compared to only
glycolytic or OXPHOS phenotype (179). In addition, CSCs
metabolize glutamine along with glucose for carbon and amino-
nitrogen to synthesize amino acids, nucleotides and lipids (79).
Additionally, CSCs also use de novo lipogenesis to increase their
bioenergetic requirements and are linked in tumormetastasis (88).
Also preclinical and clinical setting has shown that targeting a
single metabolic pathway like glycolysis has low success rates and
enhanced side effects as GLUT transporters are ubiquitous. Also,
inhibition of hexokinase II with ionidamine showed no significant
improvement in overall survival but led to elevated toxicity (114,
180–182). Thus combination treatments targeting two or more
Frontiers in Oncology | www.frontiersin.org 8
metabolic pathways will majorly erase CSCs, prevent tumor
relapse and prevent side-effects of a single treatment.

Further, combining a standard cytotoxic therapy with a
metabolic inhibitor will probably enhance CSCs eradication.
Combinations of metformin and JQ-1 (bromodomain and
extraterminal motif (BET) inhibitor) in pancreatic cancer (66)
or PI3K inhibitor in ovarian cancer (183) blocked both OXPHOS
and glycolysis. Apart from direct metabolic inhibition, targeting
oncogenes regulating cellular metabolism will also eradicate
CSCs effectively. KRAS mutation occurs in about 90% of
pancreatic cancer cases (184) and KRAS drives glycolysis and
nucleic acids synthesis (185, 186). c-MYC is essential for
glycolysis in cancer (187, 188) and MYC suppression prevents
mitochondrial inhibitors resistance (66, 75). Thus combination
approaches can be extended to target CSCs as an anti-cancer
strategy. Table 1 lists the clinical trials using combination
treatments for various cancers.
FUTURE CHALLENGES

Figure 1 summarizes the known CSCs’ metabolic phenotypes
and how these phenotypes switch with metabolic stressors like
nutrient deprivation and hypoxia. However, melanoma cells
attain a drug-tolerant “idling state” after enduring MAPK
inhibition (MAPKi) and this state has a metabolically Low/
Low (L/L) phenotype, where both AMPK/HIF-1 activity and
OXPHOS/glycolysis are minimal (189). L/L phenotype does not
favor tumorigenicity but supports cell division. These idle L/L
drug-tolerant cells accumulate mutations to promote relapse
post MAPKi melanoma treatment (189).

Further adding to the complexity of CSCs metabolism, Luo
et al. (190) showed that breast cancer stem cells (BCSCs) have
two states: quiescent mesenchymal-like (M) and proliferative
epithelial-like (E). Proliferative E-BCSCs showed higher
mitochondrial OXPHOS, whereas M-BCSCs have enrichment
of glycolysis and gluconeogenesis pathways and hypoxia
promotes M to E transition in BCSCs (190). Thus CSCs’
multiple metabolic phenotypes (glycolytic, OXPHOS,
combined and L/L) explain the futility of current efforts to
eradicate CSCs and a deeper understanding of CSCs metabolic
plasticity would translate to better therapeutic strategies.
CONCLUDING REMARKS

CSCs provide treatment resistance and promote metastasis
during tumor growth and targeting metabolism holds potential
in overcoming cancer recurrence and metastasis by CSCs.
Deciphering metabolic reprogramming in cancer showed
differences between metabolic phenotypes of CSCs and their
differentiated counterparts. CSCs metabolism shuffles between
glycolysis and OXPHOS primarily, however the mechanisms of
CSCs metabolic heterogeneity are still unknown. Current
knowledge suggests that carefully designed metabolic therapies
have potential to be more effective against CSCs. Further,
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co-targeting CSCs using metabolic drugs and traditional anticancer
treatments could be more efficient. The ongoing clinical trials
targeting CSCs show a promising future for cancer therapy and are
worth exploring further. More preclinical and clinical studies are
thus required to uncover novel metabolic targets in CSCs.
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