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External perturbations, by forcing cells to adapt to a new environment, often elicit large-scale
changes in gene expression resulting in an altered proteome that improves the cell’s fitness in the
new conditions. Steady-state levels of a proteome depend on transcription, the levels of transcripts,
translation and protein degradation but system-level contribution that each of these processes make
to the final protein expression change has yet to be explored. We therefore applied a systems biology
approach to characterize the regulation of protein expression during cellular differentiation using
quantitative proteomics. As a general rule, it seems that protein expression during cellular
differentiation is largely controlled by changes in the relative synthesis rate, whereas the relative
degradation rate of the majority of proteins stays constant. In these data, we also observe that the
proteins in defined sub-structures of larger protein complexes tend to have highly correlated
synthesis and degradation rates but that this does not necessarily extend to the holo-complex.
Finally, we provide strong evidence that the generally poor correlation observed between transcript
and protein levels can fully be explained once the protein synthesis and degradation rates are taken
into account.
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Introduction

Proteins are not stable constituents in the cell; instead, they are
continuously synthesized and degraded, leading to different
turnover rates for individual proteins. An analogy of this that
represents any given protein is a bathtub with an open drain,
where the amount of water in the tub corresponds to the
amount of protein, the water coming in from the faucet
represents the synthesis rate, the water exiting through the
drain represents the degradation rate and the change in the
water level with time represents the change in expression of
the protein (Figure 1A). If the inflow and outflow rate are
equal, then the level in the tub stays constant; however, the
water is still exchanged (turned over) with a given velocity and
similarly, proteins will also have different turnover rates. In
order to become more fit for a new state brought on by external
perturbation, the cell needs to change the expression levels of
many proteins through the regulation of a number of cellular
processes, including transcription, protein synthesis and
protein degradation. The protein synthesis rate has been
shown to be regulated by microRNAs (Selbach et al, 2008),
mRNA change and different mRNA sequence features,
whereas the protein degradation rate is predominantly
regulated by the ubiquitin-proteasomal system (King et al,
1996; Larance et al, 2013). Proteins with fast turnover rates

are generally characterized by having low abundance
(Schwanhäusser et al, 2011; Boisvert et al, 2012), being
intrinsically unstructured (Prakash et al, 2004; Gsponer et al,
2008), aggregation prone (De Baets et al, 2011; Gsponer and
Babu, 2012) and involved in signal transduction and transcrip-
tional activation (Legewie et al, 2008; Yen et al, 2008; Boisvert
et al, 2012).

The last decade has seen the discovery of a number of
characteristics defining the control of absolute expression level
in bacteria, mouse and human under steady-state conditions,
revealing how the absolute expression level is mainly
controlled by the protein synthesis rate, with the degradation
rate having only a minimal contribution (Lu et al, 2006;
Brockmann et al, 2007; Vogel et al, 2010; Maier et al, 2011;
Schwanhäusser et al, 2011). Much less information is available
regarding the contribution of these processes to the regulation
of protein expression change when the proteome needs to be
rearranged, such as in response to external perturbation.
Interestingly, studies that have examined the contribution of
mRNA changes to changes in protein abundance have
generally found a relatively poor correlation between them
(de Godoy et al, 2008; Fournier et al, 2010; Lee et al, 2011; Maier
et al, 2011; Munoz et al, 2011).

Protein metabolism has traditionally been investigated
using isotope-labeled amino acids (Schoenheimer et al,
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1939); for radionuclides, these were typically detected by
autoradiography. Recently, it has become possible to measure
the synthesis rate and/or the degradation rate of individual
proteins through the use of stable isotope-labeled amino acids
and mass spectrometry (Pratt et al, 2002; Selbach et al, 2008;
Cambridge et al, 2011; Schwanhäusser et al, 2011; Boisvert
et al, 2012). These experiments are often very time intensive,
since they require incorporating the isotope-labeled amino
acids for varied length of time followed by quantifying the
amount of incorporation. At the end, the synthesis rate can be
calculated as a product of the incorporation of labeled amino
acids over time. These types of experiments have provided
numerous new biological insights, for instance that a single
microRNA can repress the translation rate of hundreds of
proteins (Selbach et al, 2008), that the degradation rate of
proteins is conserved between organisms (Cambridge et al,
2011) and that the degradation rate can vary for a protein
according to the cellular compartment in which it is present

(Lam et al, 2007; Boisvert et al, 2012). Such efforts, however,
have only focused on one aspect of the system, considering
neither how synthesis and degradation may be related nor how
these parameters are changed in response to stimuli.

Cellular differentiation is accomplished through a precisely
orchestrated process where a proliferating cell stops dividing
and acquires a new phenotype changing the proteins that it is
expressing. The human THP-1 myelomonocytic leukemia cell
line has widely been used as a model system to characterize
the process of differentiation, since stimulation with phorbol
12-myristate 13-acetate (PMA) induces differentiation into a
mature macrophage-like phenotype that no longer proliferates
and is characterized by its ability to adhere to substrata,
release O2

� , and perform phagocytosis (Auwerx, 1991).
Similarly, the murine C2C12 myoblast cell line has also widely
been used to characterize the differentiation process, since it
can be differentiated by depriving confluent cells of serum,
resulting in multinucleated myotubes.
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Figure 1 Proteome changes reflect the phenotype. (A) Schematic drawing of the regulation of protein expression change. Water flow rate from faucet resembles
protein synthesis rate, draining rate resembles protein degradation rate and water level change resembles protein expression change. (B) Changes in overall protein
expression, protein synthesis and protein degradation rates were measured during proliferation and differentiation of THP-1 and C2C12 cells. These data were analyzed
on their own and also in combination with available transcriptomic data for THP-1 differentiation (Suzuki et al, 2009). (C) Fraction of THP-1 cells adhered versus time after
differentiation was initiated by the addition of 25 nM PMA. (D) Relative expression changes of differentiation markers during THP-1 differentiation, as measured by SILAC
in the proteomic data. Error bars in (C, D) indicate standard deviation of three biological replicates. (E) Proteins changing expression during differentiation are
significantly (P¼ 0.03, Wilcoxon–Mann–Whitney test) enriched in intrinsically disordered proteins. (F) Proteins changing expression following perturbation are
significantly (P¼ 2.8� 10� 5, Wilcoxon–Mann–Whitney test) enriched in low abundant proteins. For the boxplots in (E, F), the line denotes the median, the box denotes
the first and third quartiles, the notch denotes the 5% significance level and the whiskers extend to the most extreme values, excluding outliers.
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Here, our aim has been to characterize the various factors
affecting regulation of protein expression change during
cellular differentiation by measuring the synthesis and
degradation rates of proteins in proliferating and differentiating
THP-1 and C2C12 cells using quantitative proteomics. By
comparing these parameters with mRNA and protein expres-
sion change at multiple time points, we are able to construct a
predictive model that highlights the contribution of different
cellular processes to the regulation of the expression change of
individual proteins during differentiation (Figure 1B).

Results

Quantitative proteomics reveals mechanisms
behind phenotypic changes

The primary system used here was the human THP-1
myelomonocytic leukemia cell line that can be differentiated
from monocytes into macrophage-like cells by stimulation
with 25 nM PMA. We used stable isotope labeling with amino
acids in cell culture (SILAC) (Ong et al, 2002), with two triplex
SILAC experiments to cover five time points of differentiation
in THP-1 cells, to mass encode the cells. The cells were
stimulated with PMA for 0, 6, 12, 24 and 48 h, which causes
several morphological changes, including adherence
(Figure 1C); biological triplicates were performed for all
experiments. Whole-cell lysates from the different conditions
were combined as appropriate and the samples were split into
two, with the two halves being pre-fractionated, either at the
protein level by SDS–PAGE or at the peptide level by isoelectric
focusing (IEF), before analysis on an LTQ-OrbitrapXL mass
spectrometer. A total of 4977 proteins could be identified from
the tandem mass spectra at a false discovery rate (FDR) below
1%. Among the identified proteins were very well-known
markers for monocyte to macrophage differentiation such as
CD11B, CD11C and IL1B (Figure 1D), demonstrating that the
cells were differentiating as expected and that the method is
sensitive enough to detect relevant changes.

To identify proteins with significant differential expression,
we applied a strict statistical test (ANOVA Po0.05, S0¼1)
among the five time points and found 457 proteins with
significant changes in expression during differentiation, which
could serve as potentially new markers for the differentiation
process (see Supplementary Table S1 for complete list).
Functional enrichment analysis on the increasing or decreasing
proteins revealed the majority of the originally described
phenotypic changes associated with differentiation, such as
halting of the cell cycle, increased adhesion and increased
lysosomal capacity (Table I). In addition, those proteins altered
by differentiation tended to be more intrinsically disordered
(P¼ 0.03, Wilcoxon–Mann–Whitney test) (Figure 1E) and
were generally lower in abundance (P¼ 2.8�10� 5,
Wilcoxon–Mann–Whitney test) than the unregulated proteins
(Figure 1F).

Finally, we decided to complement these data with a
completely unrelated system of differentiation so as to allow
us to make more general statements about the regulation of
protein expression; to this end we performed a similar study
using mouse C2C12 cells that were induced to differentiate
from myoblasts, by deprivation of serum at confluence, to

myotubes for 48 h (Supplementary Table S2). Even though the
myoblasts-to-myotubes and monocytes-to-macrophages sys-
tems are quite distinct and from different organisms, many of
the same mechanisms appear to be employed to achieve the
required changes (Supplementary Figure S1).

Measuring relative synthesis and degradation
rates

To gain insight into the factors that regulate protein expression
change, we decided to measure the synthesis and degradation
rates of proteins in both proliferating and differentiating THP-1
and C2C12 cells, which hereby should allow us to deduce some
of the general regulatory mechanisms at work. To increase the
throughput of this study, we decided to measure the relative
synthesis and degradation rates of the individual proteins by
slightly modifying a previously described approach (Boisvert
et al, 2012). We first completely incorporated two cell
populations using light and medium amino acids. Then, by
switching the medium population to heavy amino acids at the
same time as the induction of differentiation, all newly
synthesized proteins are made with heavy forms of amino
acids and all proteins being degraded can be monitored as a
decrease in medium amino acids, with the light-labeled
population acting as an internal control against which the
medium and heavy can be compared. These measurements
were made in proliferating myoblasts and monocytes, as well
as during the differentiation of each cell type, thereby allowing
us to deduce the changes in the synthesis and degradation
rates of the individual proteins between proliferating and
differentiating cells. Biological triplicates of all the above
experiments resulted in the identification of 5721 proteins
with an FDR of below 1% (Supplementary Table S3). We
subsequently calculated the relative degradation and
synthesis rates of the individual proteins by Z-transforming
the medium/light and heavy/light ratios of the proteins,
respectively (see Supplementary materials for details).

With these data in hand, we first asked if the approach of
identifying relative degradation and synthesis rates could
identify some of the turnover characteristics previously
described in studies that had measured absolute protein
turnover. We therefore defined unstable proteins as the 20% of
proteins with the fastest degradation rate and stable proteins
as the 20% of proteins with the slowest degradation rate in
both murine and human cells. In this way, we were able to
confirm what has been reported previously that unstable
proteins are less abundant (P¼ 1.7�10� 30, Wilcoxon–Mann–
Whitney test), more intrinsic disordered (P¼ 1.3�10� 27,

Table I Selected significantly-enriched cellular processes during monocyte to
macrophage differentiation

Increase P-value Decrease P-value

Cell membrane 1.90E� 07 DNA replication 6.00E� 11
Cell adhesion 2.30E� 06 Cell cycle 2.70E� 06
Calcium 2.40E� 05 Cell division 5.10E� 03
Secreted 2.70E� 05 Secreted 9.80E� 04
Lysosome 4.80E� 02 Zinc finger 3.30E� 02
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Wilcoxon–Mann–Whitney test) and contain more KEN-box
motifs (P¼ 0.02, Fisher’s exact test) than stable proteins.

Previous observations have shown how proteins involved in
distinct biological processes can display different stabilities
(Cambridge et al, 2011; Boisvert et al, 2012) so, to test this in
our own data we performed two-dimensional enrichment
analysis between the proliferating C2C12 and THP-1 cells (Cox
and Mann, 2012). Briefly, this tests for whether cellular
processes are displaying consistent behavior in any of the data
dimensions versus the rest of the proteins in the data set. This
revealed that protein stability is very consistent regulation
between the two cell lines, since the majority of biological
processes are located on the diagonal (Figure 2).

Turnover rates of macromolecular sub-complexes

Having established the veracity of the data from the parallel
measurement of synthesis and degradation rates under both
proliferating and differentiating conditions in two different cell
lines, we next asked whether there were any characteristics
common to the proteins that display similar synthesis and
degradation rates. As a measurement of similarity of the
synthesis and degradation rates of the proteins, we calculated
the Euclidian distances between proteins involved in the same
biological process in synthesis-degradation space and deter-
mined whether this distance was significantly shorter for
particular groups of proteins than random chance would
dictate. Two proteins with similar synthesis and degradation
rates should therefore have short Euclidian distances, whereas
protein with very different synthesis and degradation rates
will be farther apart. By measuring the distances between
proteins involved in the same biological process of both
proliferating and differentiating THP-1 and C2C12 cells, it

became especially clear that proteins participating in macro-
molecular complexes had very similar synthesis and degrada-
tion rates (Supplementary Table S4). We could investigate, in a
similar way, whether any members of the macromolecular
complex displayed different synthesis/degradation from the
rest of the members of the complex. Interestingly, we noticed
that 30±1% of the macromolecular complexes had members
with different synthesis and/or degradation rates from
the other members of the same complex (Supplementary
Table S4). An interesting example is RPN10 (aka MCB1 or
PSMD4) that displayed different synthesis and degradation
from the rest of the proteasome regulatory particle (Figure 3A),
whereas all the members of the proteasome core complex
displayed similar synthesis and degradation rates.

To investigate the synthesis and degradation rates for
proteins that participate in macromolecular complexes in
more detail, we decided to directly measure synthesis and
degradation within individual complexes using protein
correlation profiling-SILAC (PCP-SILAC) and size-exclusion
chromatography (SEC) (Kristensen et al, 2012). This was
accomplished by first completely incorporating two cell
populations using light and medium amino acids and
subsequently switching the medium population to heavy
amino acids and allowing the cells to proliferate for 24 h.
However, this time the cells were lysed without the use of
detergents and the resulting lysate was separated by SEC into
48 fractions, before the proteins in each individual fraction
were digested to peptides and analyzed by LC-MS/MS. Hereby,
the individual sub-complexes will be separated out by SEC and
elution profiles of the individual proteins can be constructed,
using label-free quantitation (Cox and Mann, 2008), from the
ion intensities of the light form of each peptide, whereas the
relative synthesis and degradation can be determined by
the H/L and M/L ratios, respectively (see Supplementary
materials for details). By this approach, we were able to
identify 2423 proteins in 48 SEC fractions, from which 31% are
recorded to participate in macromolecular complexes based on
the CORUM database (Supplementary Table S5).

The discovery approach to investigate the synthesis and
degradation used here allowed us, for the first time, to unravel
whether any relationship exists between protein complex size
and the degradation and synthesis rates of the components.
While it seems reasonable to expect that the proteins found in
larger complexes might be more stable than those in smaller
complexes since more energy would be required to replace a
large complex than a small one but, surprisingly, there appears
to be no correlation between complex size and component
protein stability (Supplementary Figure S2).

Next, we validated whether the proteins of the proteasome
core subunit also displayed similar synthesis and degradation
rates at the sub-complex level. Plotting the elution profile
and synthesis and degradation rates of the alpha- and
beta-subunits revealed similar synthesis and degradation
rates when these co-elute with regulatory subunit, suggesting
that the 26S proteasome is degraded as an intact complex
(Figure 3B and C). Interestingly, we noticed that around
fraction 29 the alpha-subunits displayed an additional peak,
which co-eluted with the peaks for the proteasome assembling
chaperones (PAC1–PAC4) (Supplementary Figure S3) and is
characterized by only containing newly synthesized proteins,
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suggesting that we are able for the first time to capture that the
proteasome alpha-ring gets de novo assembled from only
newly synthesized proteins.

In our initial measurements of synthesis and degradation
rates, we observed that the ubiquitin receptor RPN10 of
the proteasome regulatory particle is synthesized and
degraded faster than the rest of the proteins of the regulatory
subunit. This could be a result of RPN10 participating in
additional complexes that are regulated differently from
the proteasome and thus result in distinct average rates for
RPN10 or because RPN10 is simply turned over differently
from all the other components of the proteasome. To
investigate this in more detail, we decided to compare the
elution profile and turnover rates of RPN10 with the rest
of the proteins within the regulatory particle, revealing that
the elution profile of RPN10 is very similar to the rest of
the regulatory particle, yet its turnover rate even in that
region of the size-exclusion chromatogram was still signi-
ficantly faster than the rest of the proteins of the regulatory
particles (P¼ 2.8�10� 8, Wilcoxon–Mann–Whitney test)
(Figure 3C). Intriguingly, we noticed that the other ubiquitin
receptor of the proteasome RPN13 (Adrm1) displayed simi-
larly high turnover rates while bound to the regulatory particle
(P¼ 3.7�10� 8, Wilcoxon–Mann–Whitney test), suggesting
for the first time that both the ubiquitin receptors RPN10 and
RPN13 can exchange with their free forms and that this
approach provides a completely novel ability to probe such
details.

Temporal correlation between the transcriptome
and the proteome

Many studies have found a poor correlation between changes
in mRNA and protein levels in response to perturbation

(de Godoy et al, 2008; Fournier et al, 2010) but the Central
Dogma still suggests that there must be a link. We therefore
decided to correlate our data sets of protein expression change
and the relative synthesis rate data with a recently published
transcriptomic study, which also studied differentiation of
THP-1 cells using similar stimuli and time points as our
experiments (Suzuki et al, 2009). First, we investigated how
protein synthesis correlated with the mRNA and protein
expression changes, both of which revealed moderate correla-
tion of 0.52±0.07 and 0.59±0.07, respectively (Figure 4A).
The lack of a perfect correlation highlights how protein
synthesis is regulated by a number of post-transcriptional
processes, and that the levels of proteins within a cell are
regulated by processes beyond just protein synthesis.

Few studies have investigated how the correlation between
expression change of mRNA and proteins changes over time
in response to perturbation, and the correlation has only been
investigated after relatively short-term perturbations (Fournier
et al, 2010; Lee et al, 2011). When we examined the correlation
of mRNA and proteins expression change at each of the five
time points, we observed that the relationship nearly reached a
steady state after 24 h differentiation, suggesting a lag between
mRNA and protein expression changes and/or that extensive
post-transcriptional regulation is taking place during early
differentiation (Figure 4B). Interestingly, however, proteins
and mRNAs that were being up- or down-regulated during
differentiation were much more highly correlated, with o6%
of the significantly changing genes showing anti-correlation at
48 h differentiation, suggesting that post-transcriptional reg-
ulation such as miRNA and 30 and 50 UTRs is mainly just fine
tuning the levels of these proteins after 48 h stimulation.
Similarly, 2D enrichment analysis revealed that a generally
consistent regulation of the cellular processes in both the
transcriptome and the proteome of differentiating THP-1 cells
(Figure 4C).
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Messenger RNA expression changes have widely been used
to predict protein–protein interactions since proteins with
similar mRNA expression change are more likely to interact
than a random selection of proteins (Jansen et al, 2002). Since
we have mRNA and protein expression change recorded in the
same system at similar time points, we explored what
parameters are most predictive for interactivity. We focused
only on those proteins annotated as components of complexes
in the CORUM database, as this is the most widely accepted
gold-standard interaction set. A comparison of how closely the
mRNA versus protein expression change tracked for members
of CORUM complexes reveals that protein expression changes
are vastly more predictive for interactions than are mRNA
change (P¼ 7.9�10�14, Wilcoxon–Mann–Whitney test)
(Figure 4D). This suggests a novel concept: that if protein
expression changes can be measured, then they could be used

to make much more accurate predictions (e.g., of protein–
protein interactions) than what mRNA expression changes
alone would yield.

Modeling the control of protein expression

A protein’s expression change is regulated by a number of
processes, such as RNA transcription, protein synthesis
and protein degradation but little information exists about
the contribution of each or the combination of any of these
processes in the control of protein expression change. If one
looks first at the effect of synthesis and degradation rates on
overall protein expression, it is obvious that whether the
synthesis and degradation rates of a protein are equal, then
the expression of the protein is at a steady state, whereas
the net protein expression change is the result of the
relationship between the synthesis and degradation rates
(Figure 5A and B).

We then applied partial least square regression to our own
data from differentiating THP-1 cells and similar transcrip-
tional data from Suzuki et al (2009) to examine for the first
time the contributions of various factors across the board of all
proteins to the ultimate changes in protein expression. This
revealed that after 48 h of THP-1 differentiation, the transcrip-
tional change (49±4%) was the single best predictor, followed
by protein synthesis rate (46±7%) and degradation rate
(15±3%), for the experimentally confirmed protein expres-
sion change. Combining all three parameters gives a very
respectable predictive power of 69±7% for any given
replicate and this could be increased to 74% by simply taking
the mean of the parameters from the biological replicates
(Supplementary Figure S4). A breakdown of the contributions
of the individual parameters in this model using one
component is as follows: synthesis rate—41%, transcriptional
change—45% and degradation rate—14% (Figure 5C;
Supplementary Table S6), which indicates that the synthesis
rate contributes more than the degradation rate to the variance
not explained by the transcription change. Similarly, we
observed that during C2C12 differentiation the synthesis rate
predicted the protein expression change better than the
degradation rate of the proteins (Supplementary Figure S5).
Taken together, this clearly shows that both the synthesis and
degradation rates of a protein are important processes in
regulating the protein’s expression change. The effect of post-
transcriptional regulatory mechanisms such as microRNA
after 48 h differentiation can be monitored by comparing the
prediction of protein expression changes from only transcrip-
tional changes or from transcriptional changes plus the
synthesis rates. Interestingly, we observe that post-transcrip-
tional regulation seems to fine tune the precise control of
proteins expression (Supplementary Figure S6), since many
proteins displayed rather small changes, which is in excellent
agreement with proteomics studies measuring the effects of
miRNA (Baek et al, 2008; Selbach et al, 2008).

To investigate whether proteins with increasing or decreas-
ing expression changes were regulated similarly, we per-
formed partial least square regression on the proteins
significantly increasing or decreasing during differentiation.
This revealed that the transcription change and synthesis rate
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members of CORUM complexes during differentiation of THP-1 cells reveals that
protein expression change are considerably better predictors for interactions than
are mRNA change (P¼ 7.9� 10� 14, Wilcoxon–Mann–Whitney test) (n¼ 125
and n¼ 227 for protein and mRNA, respectively).

Synthesis is the regulator of protein expression
AR Kristensen et al

6 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



makes the biggest contribution for proteins whose expression
increases (55 and 31%, respectively), whereas the degradation
rate accounted for 13% of the variance explained by the model
(Figure 5C). The opposite was observed for the proteins whose
expression decreased, since here the transcription change and
synthesis rate accounted for only 25 and 26%, whereas the
degradation rate accounted for 49% of the variance explained
by the model (Figure 5C).

Next, we investigated whether the addition of degradation
and synthesis rates obtained under a different cellular state
could improve the prediction of protein expression changes
from transcriptional changes. We therefore used the degrada-
tion and synthesis rates obtained in proliferating THP-1 cells to
try to predict the protein expression in differentiating THP-1
cells. Interestingly, if one can use both the synthesis and the
degradation rates in such a prediction, then the calculated
changes in protein expression come much closer to the
measured values (Figure 5D). Since we earlier observed a
high conservation between degradation rates in the mouse and
human cells, we next investigated whether knowledge of the
synthesis and degradation rates in differentiating or proliferating
murine C2C12 cells would improve the predictive power
versus RNA expression change alone. Indeed, both the
synthesis and degradation rates improve the model consider-
ably in differentiating murine C2C12 cells, although the effect
was much more modest in proliferating murine C2C12 cells
(Figure 5D).

Protein synthesis rate is intensively regulated in
differentiating cells

How the synthesis and degradation rates for individual proteins
respond to external perturbation has long been an open
question that our data now allow us to address directly. A
comparison of the synthesis and degradation rates in differ-
entiating versus proliferating cells reveals a significantly poorer
correlation for synthesis rates than for relative degradation
rates in both THP-1 cells and C2C12 (Figure 6A and B). To
investigate this regulation more in detail, we performed 2D
enrichment analysis (Po0.05) for the different biological
processes between the relative synthesis rates of differentiating
and proliferating cells (Figure 6C; Supplementary Figure S7).
This clearly revealed that many biological processes have
different synthesis rates in proliferating and differentiating cells
as can be seen by their off-diagonal location. For example, we
observed a decrease in the relative synthesis rates of proteins
involved in DNA condensation and cell cycle in differentiating
versus proliferating cells (see Supplementary Table S7 for
complete list). On the contrary, the degradation rates between
proliferating and differentiating cells were highly correlated in
both THP-1 and C2C12 cell lines, suggesting that differentiation
has little impact on degradation. 2D enrichment analysis
(Po0.05) of degradation rates between differentiating and
proliferating cells (Figure 6D; Supplementary Figure S8)
revealed a very different picture from that of the synthesis
rates, since most enriched biological processes were located on
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the diagonal, suggesting that the degradation rates of the
different biological processes are not different in the differ-
entiating and proliferating cells (see Supplementary Table S8
for complete list). As an example, the biological process ‘cell
cycle’ was highly affected by differentiation in THP-1 cells and
if one examines the proteins assigned to this class in detail, it is
obvious that they have very different synthesis rates but very
similar degradation rates (Supplementary Figure S9). Lastly, a
comparison of the biological processes enriched among those
proteins that displayed significant changes in synthesis or
degradations rates versus those that displayed significant
changes in protein expression during THP-1 differentiation
revealed that similar processes were enriched in those proteins
with significantly changed synthesis rates and protein expres-
sion but not degradation rates (Figure 6E; Supplementary
Table S9). Taken this together strongly suggests that the cell
changes a protein’s synthesis rate up or down either increase or
decrease the amount of that protein.

Discussion

The regulation of protein expression change in response to
external stimuli is fundamental to survival of all living
organisms yet, to our knowledge, no quantitative assessment
of the contributions that various cellular processes make to

such a response has been made. Here, we set out to model how
protein expression change is regulated during differentiation
using two unrelated model systems so as to support more
generalized conclusions. That unstructured, lower abundance
proteins were most dramatically affected by differentiation
seems to be designed to allow very fast regulation of a large
part of the signal transduction network. This is also consistent
with observations that the differences among cell types are
largely a result of lower abundance proteins (Lundberg et al,
2010) and that intrinsically unstructured proteins have more
interaction partners and are involved in cellular signaling
(Uversky et al, 2005; Babu et al, 2012).

Measuring the synthesis and degradation rates of proteins
on a system level revealed that protein assigned to the same
macromolecular complex displayed similar synthesis and
degradation rates. However, closer examination of the synth-
esis and degradation rates for components of sub-complexes
revealed that the alpha-subunits of the proteasome core
particle are being formed wholly from newly synthesized
proteins rather than being re-assembled from recycled
subunits, which implies that the proteasome core particle is
also degraded as an intact complex. Thus, we speculate that
the established modularity of macromolecular complexes
(Gavin et al, 2006) is also present during synthesis and
degradation of the complexes, since the different modules of a
complex will display similar synthesis and degradation rates,
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thereby adding an additional layer to the established assump-
tion that proteins display different synthesis and degradation
rates in different cellular compartments (Lam et al, 2007;
Boisvert et al, 2012). This would also mean that synthesis and
degradation rates of a protein could be used as discriminatory
parameters to improve the assignment of protein interactions,
similarly to mRNA co-expression (Jansen et al, 2002).

Toward our primary goal of modeling the contributions
various cellular processes make to an eventual proteome,
predictions of protein expression changes can be significantly
improved by taking into account both the synthesis and the
degradation rates of the proteins, contributing 41 and 13%
respectively to the variance not explained by changes in
transcription. That post-transcriptional regulation of synthesis
and degradation rate is having such an impact after 48 h of
differentiation, where the highest correlation between tran-
scriptome and proteome expression changes was observed,
suggests that the factors are even more important earlier in
differentiation when RNA and protein levels are very poorly
correlated. The importance of post-transcriptional regulation
of protein expression changes during THP-1 differentiation
was illustrated in a recent paper that describes how over-
expressing four miRNAs lead to partial differentiation (Forrest
et al, 2009). Our results found that synthesis rate contribute
more than degradation rate to the prediction from transcript to
protein expression changes which is in agreement to what has
been observed for these processes’ contributions in predicting
protein abundance, where it was observed that protein
synthesis rate was a better predictor than protein degradation
rate (Schwanhäusser et al, 2011).

We observed clear differences in the extent to which
synthesis and degradation rates contributed to the changes
of protein expression during differentiation; perhaps unsur-
prisingly the synthesis rate was the best predictor for those
proteins that increased in expression whereas the degradation
rate contributed the most in predicting decreasing proteins.
This does suggest though that failure to consider degradation
rates is the most likely explanation for why a poor correlation
is generally observed between transcriptome and proteome
expression changes for proteins whose expression decreases
(Lee et al, 2011). That we observe a strong correlation
between degradation rates in proliferating and differentiating
cells suggests that one does not even have to measure the
degradation rate in the same cellular state of the system
of interest in order to take such a parameter into account
when using transcriptome changes to predict protein expres-
sion changes; degradation rates are now being recorded in
the newly developed Encyclopedia of Proteome Dynamics
(Larance et al, 2013).

Perhaps, the most striking finding here is that the changes in
any given protein’s expression during differentiation are
largely due to changes in the synthesis rate, while the
degradation rates remain constant. Using the bathtub analogy
from the introduction, this means that the water level in the
bathtub will be controlled mainly from the faucet either by
increasing or by decreasing the flow, whereas the draining will
be at a nearly constant flow (Figure 7A and B). This has at least
two conceptual consequences: (1) the drain size for an
individual protein is likely to vary little, that is, the drain size
is less adjustable than the faucet and; (2) the faucet has a key
role in preventing overflows. At the protein level, consequence
1 translates into a strong ‘default’ component in the degrada-
tion of many proteins, which we propose is based on the
protein’s sequence and can be either dependent or indepen-
dent of the ubiquitylation (Tasaki et al, 2005, 2013; Asher et al,
2006). Consistent with this are previous observations that
many proteins involved in signal transduction and trans-
criptional regulation have fast basal turnover rates and,
consequently, they can be cleared quickly in response to
perturbation; this would be energetically favorable to the cell
since these proteins are typically expressed at low levels and
therefore less energy would need to be consumed (Gsponer
et al, 2008; Legewie et al, 2008). Interestingly, the regulation of
changes in mRNA levels is also predominantly regulated at the
level of transcription while mRNA degradation rate is generally
constant (Rabani et al, 2011). Even though we state here that a
change in synthesis rate is the main driver of expression
change during differentiation, this does not exclude an
important role for the ubiquitin-proteasomal system. The
degradation rate in differentiating and proliferating cells does
not correlate perfectly, meaning that the degradation rates of
some proteins are regulated. Furthermore, differentiation is a
relative slow process so perhaps changes in degradation rates
could have a larger role in regulating protein expression
changes in response to acute stimuli such as heat shock or
inflammation (Bhoj and Chen, 2009; Fang et al, 2011). Finally,
since this study only focused on long-term changes of the
synthesis and degradation rates it could very well be that
changes in degradation rates have a more important role
earlier in differentiation.

Consequence 2 means that a tight regulation of the synthesis
of proteins is a key to prevent dangerously high and potentially
toxic levels of some proteins (Figure 7C). In agreement with
this are previous observations showing that accumulation of
malfolded proteins causes dephosphorylation of eIF2a, which
leads to repression of translation (Jiang and Wek, 2005;
Moreno et al, 2012). Furthermore, it has been observed that
mTOR gets sequestered in polyglutamine aggregates during

Figure 7 Model of protein expression change. (A) Proteins decreasing in expression are a result of decreased protein synthesis rate, whereas the protein degradation
rate is constant. (B) Proteins increasing in expression are a result of increased protein synthesis rate, whereas protein degradation rate is constant. (C) Inhibition of the
protein degradation rate will lead to feed back inhibition of the synthesis rate.
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Huntington’s disease, resulting in decreased mTOR-dependent
TOP translation and introduction of autophagy, thereby
serving a protective function (Ravikumar et al, 2004).

These findings then raise the captivating question: why has
evolution favored regulation of synthesis rather than of
degradation? One possibility is that altering degradation rates
might too easily induce protein aggregation, similar to what is
seen when the autophagy or the proteasome is inhibited (Hara
et al, 2006; Komatsu et al, 2006; Bence et al, 2001). One way
the cell avoids aggregate formation is by keeping the lifetimes
of aggregate-prone proteins short (De Baets et al, 2011;
Gsponer and Babu, 2012), which would be more difficult if
the lifetime of a protein could be extended in response to
perturbation.

Conclusion

Here, we have demonstrated that changes in protein synthesis
rates are the primary drivers of differentiation. Clear and
consistent trends in support of this were observed in very
diverse cell types from two different organisms, providing
strong evidence that these trends are universal characteristics
of cellular differentiation. Furthermore, we have provided
quantitative evidence to support the common assumption that
the reason why transcriptomes and proteomes frequently
correlate very poorly is that there is still substantial variance
imparted at the levels of protein synthesis and degradation.
This can even be observed in sub-populations of a given
protein, such as those bound in specific protein complexes.
Future experiments will hopefully extend these measurements
to other systems to test how widely these characteristics are
conserved.

Materials and methods

Identifying changes in the proteome during
differentiation of THP-1 and C2C12 cells

THP-1 or C2C12 cells were grown in RPMI or DMEM media,
respectively, with added 10% dialyzed fetal bovine serum (FBS), 1%
glutamine, 1% non-essential amino acids, 1% penicillin/streptomycin
and (L-[U-13C6,

14N4]arginine and L-[2H4]lysine or L-[U-12C6,
14N4]argi-

nine [1H4]lysine or L-[U-13C6,
15N4]arginine and L-[U-13C6,

15N2]lysine
(Cambridge Isotope Labs, Cambridge, MA). The cells were grown for
at least five doublings to ensure 100% incorporation of labeled amino
acids before THP-1 cells were differentiated by 25 nM PMA and C2C12
cells were differentiated by increasing the confluency to 100% while
decreasing the serum concentration to 2%.

Peptide separation and MS

The cells were washed three times in PBS and lysed in 1%
deoxycholate before being boiled for 5 min. The lysate was digested
to peptides as in Rogers and Foster (2007) before being separated by
IEF (Agilent Technology) following the manufacturers’ instructions.
The separated peptides were STAGE Tipped as in Rappsilber et al
(2007) before being analyzed by MS as in Kristensen et al (2012) and
proteins were identified and quantified using MaxQuant (Cox and
Mann, 2008) with the settings as supplied in Supplementary methods.
The mass spectrometry data acquired here have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomex-
change.org) via the PRIDE partner repository (Vizcaı́no et al, 2013)
with the data set identifier PXD000328.

Data analysis

Significantly changing proteins were identified by applying ANOVA
between the five time points with the following settings (permutation-
based FDR, P¼ 0.05, S0¼1, 250 randomizations) using Perseus.
Increasing and decreasing proteins were defined by clustering the
data into two clusters using fuzzy C mean clustering. Wilcoxon–
Mann–Whitney test, partial least regression, and KEN-box motif
determination were performed using Matlab (http://www.mathworks.
com), whereas correlation coefficients and 2D enrichment analysis
(Po0.05, Benjamini-Hochberg FDR for truncation) of the biological
processed (Uniprot Keywords) were performed in Perseus, similarly
to Cox and Mann (2012). In boxplots, points were drawn as outliers
if they were larger than q3þ1.5 (q3�q1) or smaller than q3�1.5
(q3� q1).

Finally, enrichment (Uniprot Keywords) analysis of changing
proteins, synthesis and degradation rates were performed by GPROX
(Rigbolt et al, 2011) using Fisher’s exact test (Po0.05, Benjamini-
Hochberg FDR for truncation).

For further detail, see Supplementary methods.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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