
Research article

Prognostic signature and immune landscape of 5-methylcytosi-
ne-related long non-coding RNAs in gastric cancer

Qingyu Song a,1, Jingyu Wu b,1, Hao Wan c, Desen Fan d,*

a Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
b Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
c Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center
for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
d The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China

A R T I C L E I N F O

Keywords:
m5C-lncRNAs
Gastric cancer
Signature
Nomogram
The tumor immune microenvironment

A B S T R A C T

Background: Long non-coding RNAs (lncRNAs) have been demonstrated to be useful in assessing
the prognosis of cancer patients. However, few studies have focused on 5-methylcytosine-related
lncRNAs (m5C-lncRNAs) in gastric cancer (GC). In this study, we aimed to establish a m5C-
lncRNAs prognostic signature (m5C-LPS) and explore its potential impact on guiding clinical
practice for GC.
Methods: RNA-sequence and clinicopathological data were retrieved from The Cancer Genome
Atlas (TCGA) database, while the coexpression of long non-coding RNAs (lncRNAs) was deter-
mined using Pearson’s correlation analysis. A m5C-LPS model was constructed using univariate
and Lasso Cox regression, and its prognostic value and accuracy were subsequently validated.
Subsequently, the expression of 11 m5C-lncRNAs was verified via quantitative real-time PCR
(qRT-PCR) in gastric cancer (GC) cell lines. The potential biological mechanism of this signature
was elucidated using Gene Set Enrichment Analysis (GSEA). Based on the GSEA findings,
CIBERSORT and ESTIMATE algorithms were utilized to conduct a comprehensive investigation of
the tumor immune microenvironment (TIME) in GC. Additionally, pRRophetic and TIDE algo-
rithms were employed to predict drug sensitivity and the efficacy of immunotherapy for GC
patients.
Results: 280 lncRNAs were identified as m5C-lncRNAs, including RHPN1-AS1, AC093752.3,
TSC22D1-AS1, AL391152.1, MAGI2-AS3, AC048382.2, AL033527.3, AC007405.2, AC036103.1,
CCDC183-AS1, and ADORA2A-AS1. Their prognostic value was validated, and the expression of
these 11 lncRNAs was confirmed in four gastric cancer cell lines using quantitative reverse
transcription PCR (qRT-PCR). A nomogram incorporating a risk score was developed to provide
more precise clinical decision-making. Gene Set Enrichment Analysis (GSEA) showed that many
classical signaling pathways related to tumor progression were enriched in this signature. Ana-
lyses related to immunity and drug sensitivity demonstrated distinct differences in features be-
tween high-risk and low-risk subgroups.
Conclusion: The m5C-LPS can predict the survival of gastric cancer (GC) patients, provide novel
therapeutic targets, and thus offer more thoughtful perspectives for future clinical decisions
regarding GC.
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1. Introduction

Gastric cancer (GC) is a prevalent malignancy worldwide, in 2020, there were roughly 1,089,103 new cases (5.6 %) and 768,793
new deaths (7.7 %), placing the fifth in morbidity and the fourth in mortality [1]. Despite the detection, diagnosis and treatment of GC
have obtained significant developments in recent years, the survival rate of GC remains unsatisfactory owing to absence of early
specific symptoms and tendency to postoperative recurrence [2]. In recent years, targeted therapy and immune checkpoint inhibitors
have made effective improvements for patients with GC. Yet, the high rate of immunotherapy resistance remains a noteworthy issue.
Therefore, developing a novel biomarker seems essential for the prognostic prediction and clinical treatment. Prognostic ModelsBy
comparing the effects of different treatments, new prognostic models can help us choose the best treatment options, thereby improving
the quality of life and survival of patients [3].

RNA methylation, plays a crucial role in epigenetics and is closely related to many human diseases, including cancer, immune
disorders and neurological diseases [4]. 5-methylcytosine (m5C), catalyzing its target genes by methylating the fifth carbon of
cytosine, is a common mRNA methylation modification form [5]. The whole process is catalyzed by three enzymes, named methyl-
transferase (“writer”), demethylase (“Eraser”), as well as binding protein (“Reader”). m5C was proved essential in the development of
tumor cells, such as RNA splicing, translation, degradation and protein processing. Chen X et al. found, in bladder cancer, YBX1, which
is a reader protein, could bind to the 3′UTR of target genes and recruit ELAVL1 to maintain the stability of its identified genes to further
affect cancer progression [6].Besides, in numerous studies, the expression of m5C-related genes have been verified closely related to
the prognosis of malignant tumors, as well as vital in regulating tumor growth and directing clinical managements [7–9].

Long non-coding RNA (lncRNAs), with length over 200 nucleotides, are known to be critical in regulating gene expression in
numerous diseases [10]. The abnormal expression of lncRNAs could make significant influence on tumor cells proliferation, invasion
and apoptosis, thus affecting the occurrence, development and prognosis of cancer patients [11–13]. Methylation-related genes could
regulate the methylation level of lncRNAs to influence the progression of tumor. For instance, Sun Z et al. discovered that lncRNA H19,
which was modified by NSUN2, could promote the progress of liver cancer via recruiting the G3BP1 oncoprotein [14]. In colorectal
cancer, lncRNA LINRIS was proved could reduce the ubiquitination of the m6A “reader” IGF2BP2 to promote the tumor development
and the aerobic glycolysis [15]. Furthermore, m5C-related lncRNAs (m5C-lncRNAs) have been utilized in numerous cancers to
construct a signature and forecast their survival status [16–18]. Nevertheless, the functions of m5C-lncRNAs in GC remain a mystery.
Hence, it is extremely significant to develop a m5C-lncRNAs prognostic signature (m5C-LPS) and probe their potential role in the
development of GC. The tumor microenvironment (TME), encompassing immune cells, stromal cells, extracellular matrix, secreted
molecules, and vascular networks, interacts with cancer cells [19,20]. The tumor immune microenvironment (TIME) influences tumor
evolution and therapeutic responses, as immune cells initially target cancer cells, which often develop resistance [21]. LncRNAs play a
significant role in modulating TIME. While their relationship with TIME has been established in diverse cancers [22–24], further
investigation is warranted to discern their association with m5C-lncRNAs in GC.

In our study, we identified and constructed an 11-gene m5C-LPS for GC using bioinformatics approaches. We validated its prog-
nostic efficacy, assessed potential correlations between TIME components and m5C-LPS, examined the immunotherapy response, and
identified potential therapeutic agents for GC.

2. Materials and methods

2.1. Data collection

Transcriptome data (FPKM format) and clinicopathology data up to January 2022 were downloaded from TCGA Platform (https://
portal.gdc.cancer.gov/). We obtained 343 GC tissues and 30 normal tissues gene expression data and clinicopathology data of 443 GC
patients based on Strawberry Perl tool. Table S1 lists clinical characteristics of the 443 patients with gastric cancer.

2.2. Identification of m5C-lncRNAs

19 m5C regulators (writers: NSUN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT2, DNMT3A, DNMT3B, NOL1,
NOP2; erasers: TET2, ALKBH1, TET1, TET3; readers: ALYREF, YBX1) were obtained based on previous issued articles [25–27]. 13162
lncRNAs were identified in TCGA GC cohort according to the lncRNAs annotation file of the GENCODE website (https://www.
gencodegenes.org/). We constructed a coexpression network between lncRNAs and 19 m5C regulators to identify the m5C-lncRNAs
by the utilization of R program with “limma” package (|Pearson R| > 0.4 and P < 0.001).

2.3. Construction of m5C-LPS

Univariate cox regression was utilized via the “survival” package to obtain lncRNAs of prognostic value (P< 0.05). Then patients in
TCGA database were split into two datasets randomly: the train dataset and the test dataset. we further performed the Lasso cox
regression in the train dataset to construct a m5C-LPS. Then, each sample’s risk score could be estimated by the following equation:

Risk score=
∑n

i=1
(Coef(i)×Exp(i)),
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where coef(i) refers to the survival correlation coefficient and Exp(i) refers to the expression of each m5C-lncRNAs, respectively.

2.4. Assessment of the prognostic signature and establishment of the nomogram

The median prognostic value of the train dataset was calculated as cut-off, and the train and test GC datasets were next split into
high- and low-risk subgroups respectively. Receiver operating characteristics (ROC) curves, Principal component analysis (PCA) as
well as the Kaplan-Meier (KM) survival curves were adopted in order to valid the prediction accuracy and prognostic value of this
signature and reduce dimension. Univariate and multivariate cox regression were conducted to determine factors that could be
independently used to assess the prognosis (P < 0.05). The nomogram was established based on age, stage and risk score. Meanwhile,
whether the predicted results are in favorable consistence with the actual results was verified by calibration curves.

2.5. Gene Set Enrichment Analysis (GSEA)

In order to probe which signaling pathways the signature might be involved in. We calculated the differential genes between the
two subgroups and next performed GSEA in the entire GC cohort, with the clusterProfiler package (P < 0.05).

2.6. Analysis of TIME

According to the results of GSEA, we decided to investigate the role of TIME in the progression of GC. The infiltration status of 22
immune cells were calculated via the CIBERSORT package in each sample. Then, the difference of 22 infiltrated immune cells, immune
functions as well as immune checkpoints between subgroups were detected. The correlation between 22 immune cells and risk score
was later calculated by 7 platforms algorithms including XCELL, TIMER, etc. The estimate and limma packages were performed to
compare the immunescore, stromalscore, and estimatescore between the risk subgroups to analyze the TIME.

2.7. Application in clinical treatment

The pRRophetic package was used to assess the drug sensitivity between the subgroups according to the half-maximal inhibitory
concentration (IC50) in GC patients. And as a result, sensitive drugs were obtained and might become candidates for different pop-
ulations’ treatment. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was utilized to determine whether the
GC population could benefit from immunotherapy. TIDE (http://tide.dfci.harvard.edu/) stands for Tumour Immune Dysfunction and
Exclusion. This computational framework is employed to evaluate the potential of tumour immune evasion based on the gene
expression profiles of tumour samples. The TIDE score, computed for each tumour sample, can act as an alternative biomarker,
predicting the response to immune checkpoint blockade.

2.8. Cell lines and reagents

Human normal gastric mucosal cells GES-1 and gastric cancer cell lines AGS, HGC-27, SGC-7901 were obtained from the type
Culture Collection of the Chinese Academy of Sciences (Shanghai, China). All cells were cultured in RPMI 1640 median (VivaCell,
shanghai, China) containing 10 % fetal bovine serum (VivaCell, shanghai, China), and all cells were cultured in incubator at 37 ◦C and
5 % CO2.

2.9. RNA extration and qRT-PCR

We extracted total RNA from GC cell lines with TRIzol reagent (Invitrogen, USA). Then, RNA was synthesized into cDNA by using
HiScript II (Vazyme, China). The following PCR procedures were used, using the Roche 480 fluorescence quantitative PCR instrument
as an example: a. Reverse transcription:50 ◦C 15~30mins. pre-denaturation: 95 ◦C 2mins. denaturation: 95 ◦C 15secd. annealing/
extension: 60 ◦C 15~30secs. Repeat step C and step D for a total of 40 cycles. The results of the three-step method were analyzed using
the software provided with the PCR instrument. GAPDH was applied as the internal reference. The primers used for qRT-PCR were
listed in Table S2.

2.10. Research objectives

Our primary objective is the establishment of the m5C-LPS model. Subsequently, we evaluate the prognostic significance of m5C-
LPS for gastric cancer patients by conducting Gene Set Enrichment Analysis (GSEA), tumor microenvironment assessment, immu-
nochemotherapy response evaluation, and drug prediction studies. Finally, we confirm the efficacy of m5C-LPS across various cohorts
and ascertain its precision using nomogram curves.
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2.11. Statistical analysis

Pearson analysis was used to compute correlation correlation (cor >0.04). The KM survival curves, Cox regression model were
utilized to assess the prognostic value of the signature. GSEA was used for functional annotation. One-way ANOVA was applied to
analyze the results of RT-qPCR. P < 0.05 was considered statistically significant.

3. Results

3.1. Identification of m5C-lncRNAs in GC

Flowchart of current research was exhibited in Fig. 1. 13162 lncRNAs and 19 m5C regulators expression data were obtained from
TCGA transcriptomic data. Next, we performed coexpression analysis between 19 regulators and lncRNAs, and as a result, 280 lncRNAs
were identify the m5C-lncRNAs. The coexpression network plot was shown in Fig. 2A. Moreover, we conducted a univariate cox
regression, as a result, 11 lncRNAs with prognostic value were obtained and visualized as a forest plot in Fig. 2B (P < 0.05). Then, the
differential expression levels of 11 prognosis-related lncRNAs between neoplasm and adjacent normal tissues were showed in heat-
maps and boxplots (Fig. 2C and D).

3.2. Establishment of 11 m5C-LPS for GC populations

For developing a gene signature associated with m5C-lncRNAs to predict GC prognosis, we divided 338 GC samples into two
datasets: a train dataset (N = 170) and a test dataset (N = 168). Then the train dataset was randomly performed Lasso cox regression.
As a result, 11 m5C-lncRNAs were identified and we constructed a 11-gene prognostic signature (Fig. 3A and B). The risk score for the
entire cohort could be calculated by the below equation: risk score = RHPN1-AS1 × 0.0286750810771526 + AC093752.3 ×

(− 0.370108723776425) + TSC22D1-AS1 × (− 0.871765391370144) + AL391152.1 × 0.360518383302827 + MAGI2-AS3 ×

0.211794421769072 + AC048382.2 × 1.02071894349808 + AL033527.3 × (− 1.39673260675422) + AC007405.2 ×

(− 0.522255103119796) + AC036103.1 × 0.689804086658695 + CCDC183-AS1 × (− 0.0500150604730576) + ADORA2A-AS1 ×

0.134675382468313. The Sankey plot revealed the regulatory relationships between the 9 m5C regulators and 11 selected lncRNAs
(Fig. 3C). The PCA showed that GC patients can be well separated into two significantly different subgroups (Fig. 3D). Moreover, the
area under the curve (AUC) for 1, 3, 5-year OS was 0.709, 0.731, 0.771 in the entire dataset. As shown in the 1-year ROC curve, the
AUC of risk score (0.709) exhibited superior to the conventional clinical factors such as age (0.594), gender (0.525), grade (0.562) and
stage (0.603). The results implied that the m5C-LPS had an excellent sensitivity and accuracy in forecasting the prognosis of GC
(Fig. 3E and F).

3.3. Prognostic value assessment of the signature

KM curves revealed the low-risk subgroup survived much better both in the train and test datasets (P < 0.05) (Fig. 4A and B). We
ranked the GC samples in order by the risk score, and further attempted to analyze the expression level, the risk score distribution as
well as the survival status. Heatmap depicted the relative differential expression level of 11 m5C-lncRNAs between the subgroups
(Fig. 4C and D). Moreover, the scatter dot diagram revealed, as the risk score increased, more GC patients would be correspondingly
exhibited dead, meanwhile, patients with high scores displayed a greater tendency to have shorter survival time (Fig. 4E–H). As the
risk score increases, the prognosis for gastric cancer patients deteriorates irrespective of age, gender, and tumor stage. (Supplementary

Fig. 1. The flowchart of current research.
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Fig. S1). Univariate and multivariate cox regression demonstrated the risk score estimated by the signature could be independent from
other clinicopathological factors, additionally, clinical factors such as age and stage also had the same effect, and these three indicators
could be applied to establish a nomogram to assist clinical assessment (Fig. 5A–D).

Fig. 2. Identification of prognostic m5C-lncRNAs in GC. (A) The coexpression network of 280 m5C-lncRNAs and 19 m5C regulators in GC. (B) The
forest plot of 11 prognostic lncRNAs obtained by univariate cox analysis. (C–D) The differential expression of 11 lncRNAs in tumor and adjacent
normal tissues of GC patients. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 3. Construction of 11 m5C-LPS in the GC. (A, B) Lasso cox regression and Cross-validation used to signature construction. (C) The relationship
between the 9 m5C regulators and 11 m5C-lncRNAs. (D) PCA analysis based on the entire cohort between the subgroups. (E) ROC curves of the risk
score in predicting 1-, 3-, 5-year OS. (F) ROC curves of the risk score and conventional clinicopathological factors for predicting 1-year OS.
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3.4. Construction of the nomogram

To make accurate forecast of the GC patients OS, age, stage as well as risk score were employed and estimated for the nomogram
establishment. With the help of nomogram, we could better anticipate the 1-, 3-, 5-year OS (Fig. 5E). And the 1-, 3-, 5-year calibration
plots verified the nomogram was of excellent predictive value and accuracy (Fig. 5F).

3.5. Gene Set Enrichment Analysis

To identify the potential effects m5C-lncRNAs might exert, GSEA was carried out. And as a result, massive classic cancer-related
signaling pathways were enriched. Wnt, calcium, TGF-β, PI3K-Akt and Hedgehog signaling pathway, gastric cancer, complement
and coagulation cascades were considered markedly related to the two subgroups (P < 0.05) (Fig. 6A and B). Some of these pathways
were verified to be involved in immune infiltration and immune-related therapy [28,29]. Therefore, we attempted to perform analysis
of immunity on the signature.

Fig. 4. Prognosis value validation of 11 m5C-lncRNAs in the train and test datasets. (A, B) KM curves of OS (C, D) and differential expression of 11
lncRNAs between two subgroups. (E–H) Risk score distribution and survival status of each patient in the train and test datasets. (the left is the train
dataset and the right is the test dataset).
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3.6. The role of TIME in GC

To explore the role of immune infiltration in this signature, a series of immune-related analysis were performed. As shown in
Fig. 7A, the expression of 22 immune cells differed prominently between the subgroups. T cells follicular helper, Macrophages M0, NK
cells resting demonstrated a relative elevated content in the low-risk subgroup. However, at the same time, Monocytes, Macrophages
M2, Dendritic cells resting and Mast cells resting were observed to have a moderately higher content in the high-risk subgroup (P <

0.05). Moreover, in terms of immune functions, significant differences existed between the subgroups such as CCR, checkpoint, HLA,
MHC-I, etc. (Fig. 7B). Similarly, the content of immune checkpoints existed differences, such as CD86, LAIR1, CD27, BTLA, etc.
(Fig. 7C). Bubble chart exhibited the majority of immune cells infiltrated, which were estimated by 7 different platforms algorithms,
tended to be positively correlated with the risk score (Fig. 7D). What’s more, we also found that 5 immune-infiltrating cells (Dendritic
cells resting, Monocytes, Macrophages M2, Mast cells resting, T cells CD4 memory resting) tended to express more as the risk score
increased, but 3 immune cells (NK cells resting, Macrophages M0 and T cells follicular helper) were negatively related to the risk score
(Fig. 7E). In addition, immunescore, stromalscore and estimatescore displayed lower in the low-risk subgroup (Fig. 8A). To conclude,

Fig. 5. Identification of independent prognostic indicators and construction of a nomogram. (A–B) Univariate cox regression in the train and test
datasets. (C–D) Multivariate cox regression in the train and test datasets. (the left is the train dataset and the right is the test dataset). (E) The
nomogram established on the basis of independent prognostic predictors for clinical anticipation. (F) The calibration curves.
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m5C-LPS could be able to distinguish different features of GC and might have a potential role in predicting immune response and
guiding immunotherapy.

3.7. Clinical treatment and immunotherapy response

To investigate the therapy response of the two subgroups and provide more accurate treatment strategies. The TIDE algorithm was
applied to estimate whether the risk signature could benefit from checkpoint inhibitors therapy. We found the TIDE score of low-risk
subgroup displayed lower which indicated this subgroup less likely to develop immune escape and could benefit more from the
immunotherapy (Fig. 8B). Drug sensitivity analysis based on the pRRophetic algorithm was utilized for seeking a possible cure. As
depicted in the violin chart, the high-risk subgroup could benefit more from 35 antitumor drugs which showed the lower TIDE value,
such as bryostatin, dasatinib, bexarotene, pazopanib, etc. (Fig. 8C, Supplementary Fig. S2). Furthermore, 5 antitumor drugs were
identified to be extremely sensitive to the low-risk subgroup (Fig. 8D).

3.8. Expression level of 11 m5C-lncRNAs in GC cell lines

We next performed qRT-PCR to compare the expression of these lncRNAs in GES-1 and 3 GC cell lines (AGS, HGC-27, SGC-7901). As
shown in Fig. 9, RHPN1-AS1, AC093752.3, AC048382.2, AC007405.2, AC036103.1, CCDC183-AS1, ADORA2A-AS1 were observed
significantly upregulated in GC cell lines. Meanwhile, MAGI2-AS3 seemed to be lower in GC cells and TSC22D1-AS1, AL391152.1,
AL033527.3 exhibited opposite tendency in different GC cell lines.

4. Discussion

In this study, we developed a gene signature of 11 m5C-lncRNAs using the TCGA GC population and validated its prognostic value
in both train and test datasets. ROC curves demonstrated that the signature was superior to conventional clinical parameters. Addi-
tionally, the risk score was verified as an independent predictor of prognosis for GC via univariate and multivariate analysis. These
results suggest that this signature could accurately predict the prognosis of GC. To apply this signature to clinical practice, we
established a nomogram that can conveniently predict the prognosis of GC patients over 1, 3, and 5 years. Overall, this is the first m5C-
LPS for GC, offering a promising path forward for diagnosis and treatment of this troubling malignancy.

Numerous long non-coding RNAs (lncRNAs) have been reported to be dysregulated in gastric cancer. For instance, HOTAIR
functions as a competing endogenous RNA, regulating HER2 expression by sponging miR-331-3p in gastric cancer cells. Currently,
RHPN1-AS1, MAGI2-AS3, CCDC183-AS1, and ADORA2A-AS1 have been reported among 11 m5C-related lncRNAs. In gastric cancer
(GC), RHPN1-AS1 could enhance ETS1 expression via sponging miR-1299 to promote GC cell proliferation [30]. MAGI2-AS3, regu-
lated by BRD4, can positively control ZEB1 expression, thereby promoting gastric cancer (GC) migration, invasion, and
epithelial-mesenchymal transition (EMT) capabilities [31]. In hepatocellular carcinoma, CCDC183-AS1 could promote tumor pro-
gression, while ADORA2A-AS1 functions as a cancer suppressor [32,33].

The tumor microenvironment (TIME), encompassing various immune cells and secreted factors, plays a pivotal role in tumor
genesis and development. Its heterogeneity can influence the prognosis and treatment response of cancer patients [34]. In our study,
KEGG results indicated the signature might be correlated with cancer-related pathways while these ways were previously reported to
be greatly associated with TIME. So we performed a series of analysis on immune cells infiltration. We found the estimatescores,
immunescores and stromalscores of the high-risk subgroup seemed much higher which could represent a higher-degree of immune
invasion and lower purity of tumor in the high-risk subgroup. Moreover, we discovered the high-risk subgroup present relatively
higher levels of the following indicators, such as the amount of infiltrated immune cells, immune functions as well as immune
checkpoints. A total of 15 immune checkpoints expressed at a higher level, which might be involved in mediating the immune escape
and confer unfavorable prognosis for GC patients. Additionally, the risk score was found significantly associated with the infiltrated

Fig. 6. GSEA analysis. (A–B) Signaling pathways enriched in our signature.
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abundance of immune cells. For example, the levels of Dendritic cells resting, Monocyte, Macrophage M2, Mast cells resting and T cells
CD4 memory resting and the risk score revealed a positive correlation, moreover, the NK cells resting, Macrophage M0 and T cells
follicular helper showed the opposite trend. And these correlation results were just in line with the previous immune cells differential
expression results. Further, as the risk score increased, we could find that the infiltrated level of M2 macrophage increased which

Fig. 7. Immune-related analysis. (A) The difference of 22 immune cells, (B) immune functions, (C) as well as 17 checkpoint inhibitors expression
between the subgroups. (D) Bubble diagram plotted the correlation between risk score and immune cells based on 7 platform algorithms. (E) The
correlation between risk score and infiltrated abundance of 7 immune cells based on CIBERSORT. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 8. The investigation of TME and drug sensitivity. (A) Comparisons of stromal and immune cells infiltrated levels, cancer purity, (B) immu-
notherapy response (C–D) and drug sensitivity analysis between the subgroups.

Fig. 9. The expression of 11 m5C-lncRNAs in GES-1 and 3 GC cell lines.
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suggested that M2 macrophage may significantly act in the poor OS outcomes of the high-risk subgroup. A previous study revealed M2
macrophages could make extremely effects in human cancers by producing growth-promoting molecules to stimulate tumor devel-
opment [35,36]. Furthermore, monocytes can exhibit antitumor functions or give rise to activated antigen-presenting cells. This dual
effect depends on their response to the tumor microenvironment (TME) [37]. T follicular helper cells, which encompass numerous
subsets, may also execute the same two functions by secreting a variety of different chemokines [38]. All the aforementioned results
may elucidate why the high-risk subgroup exhibits diminished responsiveness to immunotherapy and has a propensity for immune
evasion. Furthermore, not only immune checkpoints but also tumor mutation load, as well as microsatellite instability-high status, are
strongly associated with the efficacy of immunotherapy [39]. Taken together, our study suggests that the m5C-LPS could be signifi-
cantly valuable in predicting prognosis, reshaping the TIME and providing hopeful insights for effective clinical immunotherapy of GC
patients.

However, our study has several limitations. Firstly, the initial data used for constructing the signature were solely obtained from
TCGA, resulting in a relatively small sample size. Consequently, the signature was only validated through internal verification, without
external database validation. Secondly, further basic experiments are necessary to confirm the content of m5C-lncRNAs. Lastly,
additional research is required to elucidate the role of m5C-LPS in gastric cancer (GC), which could inform potential strategies for
modulating the tumor immune microenvironment (TIME) and offer precision immunotherapy for GC.

5. Conclusion

To conclude, we systematically analyzed the expression of m5C-lncRNAs in gastric cancer (GC), developed an 11 m5C-LPS, and
explored its prognostic value and potential functions on the tumor microenvironment (TIME). All analyses showed that the prognostic
signature could act as an independent prognostic predictor and might be a crucial mediator in the TIME of GC. This finding may
provide a promising therapeutic target for improving the immunotherapy effect of GC. Our findings may provide potential biomarkers
or treatment targets, and provide a theoretical foundation for future basic research on m5C-lncRNAs for GC.
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