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There is ample evidence supporting a role for angiotensin II type 2 receptor (AT2R)

in counterbalancing the effects of angiotensin II (ang II) through the angiotensin II

type 1 receptor by promoting vasodilation and having anti-inflammatory effects. Elastin

insufficiency in both humans and mice results in large artery stiffness and systolic

hypertension. Unexpectedly, mesenteric arteries from elastin insufficient (Eln+/−) mice

were shown to have significant vasoconstriction to AT2R agonism in vitro suggesting that

AT2Rmay have vasoconstrictor effects in elastin insufficiency. Given the potential promise

for the use of AT2R agonists clinically, the goal of this study was to determine whether

AT2R has vasoconstrictive effects in elastin insufficiency in vivo. To avoid off-target effects

of agonists and antagonists, mice lacking AT2R (Agtr2−/Y ) were bred to Eln+/− mice

and cardiovascular parameters were assessed in wild-type (WT), Agtr2−/Y , Eln+/−, and

Agtr2−/Y ;Eln+/− littermates. As previously published, Agtr2−/Y mice were normotensive

at baseline and had no large artery stiffness, while Eln+/− mice exhibited systolic

hypertension and large artery stiffness. Loss of AT2R in Eln+/− mice did not affect large

artery stiffness or arterial structure but resulted in significant reduction of both systolic and

diastolic blood pressure. These data support a potential vasocontractile role for AT2R in

elastin insufficiency. Careful consideration and investigation are necessary to determine

the patient population that might benefit from the use of AT2R agonists.
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INTRODUCTION

Elastin (ELN), themain component of elastic fibers, is responsible for conduit arteries’ elastic recoil.
This recoil is necessary to dampen the pulsatile flow of ventricular ejection at the level of the
ascending aorta and transform it into continuous flow at the level of arterioles or small resistance
arteries. Elastic fibers are organized into fenestrated concentric sheets or lamellae in blood vessels.
Decreased elasticity of large arteries with aging is attributed to fragmentation and thinning of these
lamellae and results in increased pulse wave velocity leading to a greater augmentation of the central
aortic systolic and pulse pressures (1, 2). Similarly, genetic reduction of elastin through deletion of
a single copy of the gene ELN (supravalvular aortic stenosis—SVAS, OMIM #185500) or deletion of
ELN as part of a 25–27 coding gene microdeletion of chromosome 7 (Williams syndrome, OMIM
#194050) leads to increased pulse wave velocity and hypertension (3–5).
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Similar to humans with SVAS and Williams syndrome, mice
hemizygous for the elastin gene (Eln+/−) develop large artery
stiffness and systolic hypertension (6, 7). Interestingly, the
increased large artery stiffness in Eln+/− mice precedes the
appearance of hypertension (8) and is not affected by commonly
used anti-hypertensives (9). Increased large artery stiffness and
central systolic and pulse pressures often lead to structural
and functional changes in small resistance arteries that further
exacerbate hypertension and a vicious cycle ensues (10). This
appears to be the case in elastin insufficiency as recent studies
showed altered resistance vessel reactivity that is vascular bed-
specific (11–13). Mesenteric arteries (MAs) and middle cerebral
arteries (MCAs), but not gastrocnemius feed arteries (GFAs),
were found to have impaired endothelial-dependent dilation to
acetylcholine due to decreased nitric oxide availability resulting
from increased oxidative stress (11, 12, 14). Furthermore,
MAs and MCAs, but not GFAs, had an increased contractile
response to angiotensin II (ang II) (11, 13). Interestingly, the
hypercontractile response of mesenteric arteries to ang II was
mediated, at least in part, by the angiotensin II type 2 receptor
(AT2R) as blockade of AT2R with the antagonist PD123319
decreased the contractile response of MAs to ang II while its
activation with novokinin resulted in vasoconstriction (11).

Given the multitude of evidence suggesting a vasodilatory
role for AT2R particularly in disease states and the consideration
for the use of AT2R agonists for patients with COVID-19 and
idiopathic pulmonary fibrosis among others (clinicaltrials.gov),
we sought to determine the cardiovascular role of AT2R in
elastin insufficiency in vivo. We bred elastin insufficient (Eln+/−)
mice to AT2R knock-out (Agtr2−/Y ) mice and examined
cardiovascular endpoints. While loss of AT2R did not affect large
artery structure or function, it lowered blood pressure in elastin
insufficient mice, suggesting that AT2R plays a vasocontractile
role in elastin insufficiency. This observation has significant
therapeutic implications since AT2R agonists, which may be
beneficial in some conditions such as stroke (15, 16), aneurysm
formation (17, 18) and myocardial fibrosis (19), would not be
appropriate in patients with elastin insufficiency.

MATERIALS AND METHODS

Mice
Eln+/− mice backcrossed into the 129X1/SvJ background (14)
over 10 times and the genetic background confirmed by single
nucleotide polymorphism genotyping were bred to Agtr2−/−

mice maintained on the FVB/n background (20). The Agtr2−/−

mice were obtained from Dr. Curt Sigmund, with permission
from Dr. Victor Dzau. Tail DNA was used to genotype the
mice. Genotyping for Eln was done as previously described
(21). The following primers were used in one PCR reaction to
genotype for Agtr2: AT2-F GTGGTCTCACTGTTTTGTTGTC,
AT2-R-WT GTATTCAATGGTTCTGACATCC, and AT2-R-KO
TGCAATCCATCTTGTTCAATGGC, resulting in a 374 bp
product in the WT case and a 570 bp product in the knock-out
case. Since Agtr2 is on the X chromosome and littermates were
used for the studies, male mice were used for the physiologic
studies to reduce the number of animals needed. Mice were

housed under standard conditions with free access to food and
water. All surgical procedures were performed in accordance
with protocols approved by the Institutional Animal Care and
Use Committee of Washington University School of Medicine.

Blood Pressure and Heart Rate
Measurement
While sedation is known to lower blood pressure and heart rate,
invasive blood pressure measurement provides a more accurate
assessment of central arterial pressure compared to tail cuff
measurement. Unfortunately, the small caliber and tortuosity of
Eln+/− carotid arteries makes blood pressure measurement via
telemetry technically challenging, therefore we measured central
arterial pressure invasively under sedation. The anesthetic used,
isoflurane, has the least effects on the cardiovascular system
among commonly used anesthetics (22). Briefly, 3–4 month-
old mice were anesthetized with 2% isoflurane and maintained
at 37◦C using a heating pad and a rectal thermometer for
monitoring. The right common carotid artery was exposed and
a Millar pressure transducer (model SPR-671) was introduced
and advanced to the ascending aorta. After instrumentation
was complete, isoflurane anesthesia was reduced to 1.5% and
systolic blood pressure, diastolic blood pressure, and heart rate
were recorded using the PowerLab data acquisition system
(ADInstruments). The average of a 3-min period of stable
recording was reported. The data were analyzed using LabChart
8 for Mac software (ADInstruments).

Pressure Myography
Ascending aorta and left common carotid artery of 3–4 month-
old mice were excised and placed in physiologic saline solution
(PSS) composed of 130mM NaCl, 4.7mM KCl, 1.6mM CaCl2,
1.18mM MgSO4-7H2O, 1.17mM KH2PO4, 14.8mM NaHCO3,
5.5mM dextrose, and 0.026mM EDTA (pH 7.4). Vessels were
cleaned of surrounding fat, mounted on a pressure arteriograph
(Danish Myo Technology) and maintained in PSS at 37◦C.
Vessels were visualized with an inverted microscope connected
to a CCD camera and a computerized system, which allows
continuous recording of vessel diameter. Intravascular pressure
was increased from 0 to 175 mmHg by 25-mmHg increments,
the vessel outer diameter was recorded at each step (12 s per
step). The average of three measurements at each pressure
was reported.

Alexa-633 Hydrazide Staining
Ascending aorta were dissected and frozen in optimal cutting
temperature (OCT) compound (Sakura Finetek) at −80◦C.
Using a cryostat, 3-µm sections were obtained and fixed in 4%
paraformaldehyde for 10min at 4◦C. Sections were washed twice
with 1 × PBS for 5min each and then incubated in 1:1,000 of
a 2mM Alexa Fluor 633 hydrazide (Life Technologies) stock in
1% bovine serum albumin (BSA)/1% fish gelatin/0.05% Triton-X
in 1 × PBS for 5min at room temperature. Sections were then
washed twice with 1 × PBS for 5min each. Slides were mounted
with DAPI Fluoromount-G (SouthernBiotech) and coverslipped.
Images were obtained using a Zeiss Axioskop 50 microscope and
QCapture Pro software (Media Cybernetics Inc.).
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Transmission Electron Microscopy
After isolation, mesenteric arteries from 3 to 4 month-old mice
were fixed in 2.5% glutaraldehyde and 0.1M sodium cacodylate
at 4◦C overnight. Vessels were then sent to Washington
University’s Center for Cellular Imaging for processing and
thin sectioning. Images were taken using a JEOL JEM-1400
Plus transmission electron microscope that is equipped with an
Advanced Microscopy Techniques XR111 high-speed, 4,000 ×

2,000–pixel, phosphor-scintillated, 12-bit charge-coupled device
(CCD) camera.

Statistical Analysis
One-way or two-way analysis of variance with Tukey’s multiple
comparisons test was used to determine differences between
genotypes, as indicated in each figure legend. Statistical analyses
were run using Prism 9 for Mac OS X (GraphPad Software Inc.).
Data are presented as means ± SD. Differences were considered
statistically significant when P was equal to or less than 0.05.

RESULTS

Loss of AT2R Reduces Blood Pressure in
Elastin Insufficient Mice
To determine the role, if any, of AT2R in blood pressure
regulation in elastin insufficiency, we bred Agtr2−/Y to Eln+/−

mice. As previously reported, loss of AT2R did not affect
blood pressure at baseline (20) and Eln+/− mice exhibited
systolic hypertension compared to wild-type (WT) littermates (6)
(Figures 1A–C). Interestingly, loss of AT2R in elastin insufficient
mice (Agtr2−/Y ;Eln+/−) resulted in reduction of not only
systolic, but also diastolic blood pressure (Figures 1A–C). Heart
rate, body weight and heart weight were not different among the
genotypes (Figures 1D–F).

Loss of AT2R Does Not Affect Large Artery
Stiffness
One of the characteristic features of elastin insufficiency is
large artery stiffness assessed by pressure-diameter curves
experimentally in Eln+/− mice and by pulse wave velocity in
humans with Williams syndrome (4, 6). To determine whether
the improvement in blood pressure inAgtr2−/Y ;Eln+/− mice was
related to an improvement in large artery stiffness, we assessed
ascending aorta and carotid artery mechanics in mutant and
littermate control mice. As seen in Figure 2, loss of AT2R alone
had no effect on large artery stiffness or compliance and it did not
ameliorate the large artery stiffness seen in elastin insufficiency.

Conduit and Resistance Arteriolar
Structure Is Unaffected by Loss of AT2R
Ascending aorta of elastin insufficient mice have, on average,
two additional lamellar units (7). We examined whether loss of
AT2R has any consequences on large and small artery structure.
Fluorescence microscopy using Alexa-633 hydrazide staining of
ascending aorta showed that, like WT ascending aorta, Agtr2−/Y

ascending aorta have 8–9 lamellar units while Eln+/− ascending
aorta have 10–11. Loss of AT2R did not affect lamellar unit
number in elastin insufficiency as Agtr2−/Y ;Eln+/− ascending
aortae had 10–11 lamellar units. Representative images are shown

in Figure 3A. Ultrastructural examination of mesenteric arteries
by transmission electron microscopy did not identify an effect of
AT2R on arteriolar wall structure. As previously described, the
internal elastic lamina of Eln+/− mesenteric arteries was thinner
compared to WT mesenteric arteries, a finding that was not
affected by loss of AT2R (Figure 3B).

DISCUSSION

Ang II, the principal effector of the renin-angiotensin
system, exerts its functions in physiological and pathological
states mainly through two receptors, AT1R and AT2R. In
hypertension, the pathologic remodeling that occurs, including
vasoconstriction, fibrosis, proliferation, and inflammation, has
been attributed to ang II’s actions through AT1R. Over the
past two to three decades, a great deal of effort has focused
on understanding the role of the more elusive AT2R. Evidence
suggests that while its levels are low in the adult cardiovascular
system at baseline, AT2R expression increases significantly in
pathological conditions and it is thought to counter-balance
the effects of ang II by promoting a vasodilatory, anti-fibrotic,
apoptotic, and anti-inflammatory phenotype (23, 24). Often
the vasodilatory effect of AT2R is only evident when the
vasoconstrictor action of AT1R is blocked. At baseline, AT2R
knock-out mice were normotensive but showed an increased
pressor response to ang II infusion (20). With the availability of
several non-peptide AT2R agonists, their use is being investigated
as a potential therapeutic option in several disease conditions. In
this report, based on in vitro data suggesting a vasocontractile
role for AT2R in elastin insufficiency, we sought to determine
whether AT2R contributes to elastin insufficiency-mediated
hypertension in vivo. Using mouse models with genetic loss
or insufficiency of AT2R and ELN, we show that, unlike its
protective role in heart failure, myocardial infarction and
aneurysms, in the context of elastin insufficiency loss of AT2R
improves blood pressure making its activation a potentially
detrimental therapeutic strategy in this disease state.

While initially surprising, the observation that AT2R may
play a vasocontractile role has been made in other models of
hypertension. For instance, Touyz et al. (25) showed an enhanced
contractile response to ang II in mesenteric arteries from
spontaneously hypertensive rats (SHR) compared to Wystar-
Kyoto rats (WKY). This response was reduced by AT2R blockade
in young but not old SHR. Similarly, coronary arteries from SHR
were found to have enhanced constriction to ang II, that was
attributed to the absence of counter-regulatory AT2R-mediated
relaxation and/or a change in the AT2R phenotype from dilatory
to contractile (26).

An interesting observation from our study is that loss of
AT2R decreases both systolic and diastolic blood pressure, while
pulse pressure, an indicator of conduit artery stiffness, remains
significantly elevated in Agtr2−/y;Eln+/− mice compared to WT
and Agtr2−/y mice. These data support the large artery pressure-
diametermeasurements showing that loss of AT2R does not affect
large artery mechanics in elastin insufficiency. Rather, loss of
AT2R likely affects peripheral vascular resistance leading to a
reduction in both systolic and diastolic blood pressure.
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FIGURE 1 | Loss of AT2R leads to a reduction in systolic and diastolic blood pressure in elastin insufficient mice. Systolic (A), diastolic (B), and pulse pressure (C)

[calculated as systolic–diastolic blood pressure], heart rate (D), body weight (E) and heart weight/body weight (F) of WT, Agtr2−/Y , Eln+/− and Agtr2−/Y ;Eln+/− mice.

Data are presented as mean ± standard deviation. One-way analysis of variance with Tukey’s multiple comparison test was performed to compare all groups.

Significant difference: *P < 0.05, **P < 0.005, ***P < 0.001, and ****P < 0.0001, between indicated groups.

Activation of AT2R by ang II has been shown to increase
nitric oxide (NO) production, which activates guanylate cyclase
to generate cyclic guanosine monophosphate (cGMP) leading to
vasodilation (27, 28). The mechanism by which AT2R leads to
vasoconstriction in elastin insufficiency is unclear at this time.
Similar to WT, Agtr1 is expressed at higher levels than Agtr2
in Eln+/− vessels, and both Agtr1 and Agtr2 expression levels

were unchanged in aortae and reduced in mesenteric arteries of
Eln+/− mice (11), making relative changes in receptor levels an
unlikely explanation for the observed blood pressure response.
It is interesting to note however that, while usually thought of
as monomers, G protein-coupled receptors like AT1R, AT2R and
bradykinin receptor (B2R) have been shown to heterodimerize
and adopt either an enhanced or an altered function. For
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FIGURE 2 | Loss of AT2R does not affect large artery stiffness. Pressure-diameter relationships of ascending aorta (A) and carotid arteries (B) from WT (n = 9–10),

Agtr2−/Y (n = 10–11), Eln+/− (n = 6) and Agtr2−/Y ;Eln+/− (n = 15) mice. Data are presented as mean ± standard deviation. Two-way analysis of variance with Tukey’s

multiple comparison test was performed to compare all groups. Significant difference: *P < 0.05 and **P < 0.005 between WT or Agtr2−/Y vs. Eln+/− or

Agtr2−/Y ;Eln+/−.

FIGURE 3 | Loss of AT2R does not affect arterial structure. Representative cross sections of Alexa-633 hydrazide-stained ascending aorta from WT, Agtr2−/Y , Eln+/−,

and Agtr2−/Y ;Eln+/− mice along with the respective average lamellar number ± standard error of the mean, n = 3–4 per group, scale bar = 50µm (A). Transmission

electron micrographs of mesenteric arteries from all genotypes, *indicates vessel lumen and red arrow indicated internal elastic lamina (B).

instance, heterodimerization of AT1R and B2R led to increased
activation of Gαq and Gαi, the two major signaling proteins
activated by AT1R (29). This AT1R-B2R heterodimerization
was shown to contribute to ang II hypersensitivity in pre-
eclampsia (30). AT2R has been shown to dimerize with B2R
leading to enhanced NO and cGMP (27). Since AT2R expression
was reduced in elastin insufficient mesenteric arteries (11),
it is interesting to speculate that AT2R-B2R dimer formation
may be affected, or alternatively, that AT2R heterodimerizes
with AT1R in elastin insufficiency, resulting in vasoconstriction
rather than vasodilation; hypotheses that will be the focus of
future investigation.

In summary, using a mouse model of elastin insufficiency-
mediated hypertension, here we show that loss of AT2R
improves blood pressure in this model. While the process of
elastin insufficiency is distinct, with normal aging older adults
develop vascular elastic fiber thinning, systolic hypertension
with widened pulse pressure and large artery stiffness, all
characteristics of elastin insufficient mice. Therefore, if AT2R
agonists are to be considered for clinical use, carefully designed
randomized clinical trials with special attention to patient
population and endpoints will be necessary to ensure that they
are not contributing to disease, particularly hypertension. AT2R
agonists will likely be useful in a context-specific manner.
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