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Abstract

Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to clb 
genomic island that distributes widespread in pathogenic and commensal human enterobacteria. 

Colibactin-producing gut microbes promote colon tumor formation and enhance progression of 

colorectal cancer via DNA double-strand breaks-induced cellular senescence and death; however, 

the chemical basis contributing to the pathogenesis at the molecular level has not been fully 

characterized. Here we report the discovery of colibactin-645 a macrocyclic colibactin metabolite 

that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows 

strong DNA DSBs activity in vitro and in human cell cultures via a unique copper-mediated 

oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, 

highlighting a unique fate of the aminomalonate building monomer in forming the C-terminal 5-

hydroxy 4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase 
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ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin’s DNA 

DSBs activity and facilitates further mechanistic study of colibactin-related CRC incidence and 

prevention.

Graphical Abstract

Human microbiota is a massive consortium of all microbes that reside in and on human 

bodies. These microbes are increasingly being correlated to human health and disease, but 

the underlying molecular mechanisms of human-microbe interactions often remain 

elusive1,2. Interrogating the specialized metabolites produced by human microbiota allows a 

thorough study of chemical regulatory and signaling processes, and improves our 

understanding of the interplay between microbiota and host at a molecular level. Despite the 

importance of these small molecules in human health and disease, it is often challenging to 

characterize them because of the difficulty in the culture and genetics of producing microbes 

and the low titers of these metabolites3–5.

A well-known example of such specialized metabolite is colibactin, a cryptic human gut 

bacterial genotoxin that has captured the attention of both biologists and chemists due to its 

significant effects on human health and intriguing biosynthetic logic6–8. The biosynthesis of 

colibactin is linked to a 54-kilobase nonribosomal peptide synthetase (NRPS)-polyketide 

synthase (PKS) hybrid gene cluster9 (clb pathogenicity island, Supplementary Fig. 1), which 

has been phenotypically associated with the pathogenesis of colorectal cancer (CRC)9–15. In 

particular, in vitro infection with Escherichia coli strains harboring clb induced DNA 

double-strand breaks (DSBs) in cultivated human cells, leading to cell cycle arrest and 

eventually cell death9. Subsequent physiological studies showed that clb+ bacteria induced 

in vivo DNA damage and genomic instability in enterocytes10, caused cellular 

senescence11,12, increased intestinal permeability13, and promoted colon tumor formation in 

mouse models of chronic intestinal inflammation12,14,15, suggesting that these bacteria could 

promote human CRC development on a broader level8. Consistently, clb+ E. coli was over-

represented in biopsies isolated from CRC patients compared to non-CRC controls (~60% 

vs. ~20%, respectively)14,16. In addition to its remarkable association with human health, the 

clb island was also identified in the genomes of other proteobacteria, including coral and 

honeybee symbionts, suggesting an even more comprehensive role that colibactin might play 

in mediating evolutionarily conserved or consistent interactions between bacteria and 

hosts17,18.
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Given the physiological importance of intestinal pathology induced by human body’s 

microscopic residents, it is urgent to reveal the molecular identity of genotoxic colibactin as 

the missing link between certain gut microbes and DNA DSBs and decode the mechanism 

underlying colibactin-induced DNA damage. Despite tremendous efforts, colibactin’s 

structural elucidation remains a formidable challenge due to its instability, low titer, and the 

elusive and complex biosynthetic logic of clb pathway19–29. This knowledge gap has 

prevented comprehensive studies of colibactin-related CRC incidence and prevention, and 

limited mechanistic investigations of even more extensive influence of clb island on 

microbe-host interactions.

In order to investigate the corresponding genotoxic colibactin that possesses intrinsic DNA 

DSBs activity and causes chromosome aberrations, the following three issues need to be 

addressed. 1) The mutation of individual clb genes revealed that all genes encoding NRPS-

PKS and associated biosynthetic enzymes were indispensable to the genotoxicity of clb 
island9,26 (Supplementary Fig. 1), however, the colibactin metabolite that requires all of the 

clb genes for its biogenesis has not been identified. 2) The precise role of ClbP, a membrane-

bound peptidase that was proposed to be important for colibactin maturation19,20 

(Supplementary Fig. 1), remains unknown. 3) The induction of DNA DSBs has been defined 

as a signature feature of clb island6–10, yet the conclusive evidence for colibactin directly 

mediating DNA breakage is still lacking, despite that precolibactin-546 (5) showed a weak 

DNA crosslinking activity in vitro in the presence of reducing agents24 (Fig. 1a). Of the 

many types of DNA damage that exist within cells, the DNA DSBs are considered to be the 

most hazardous lesions30, suggesting the remarkable cytotoxicity of the yet-to-be-identified 

colibactin metabolite that exerts a direct DNA DSBs activity. Here we report the structural 

elucidation of a new mature macrocyclic colibactin metabolite, and further show that the 

macrocyclic colibactin induces DNA DSBs in vitro and in various human cell cultures via a 

unique copper-mediated oxidative mechanism.

Results

Discovery of complete colibactin precursor

Our previous efforts to identify colibactin biosynthetic intermediates resulted in the 

structural elucidation of precolibactin-886 (10)28, which was isolated from a clb+ 

heterologous expression strain E. coli DH10B/pCAP01-clb with disrupted clbP and clbQ 
that encode a peptidase and a type II thioesterase mediating the off-loading of clb pathway 

intermediates, respectively19,28,31 (Fig. 1). The double mutation of ΔclbPΔclbQ increased 

the titer of downstream metabolites from the NRPS-PKS assembly line, enabling the 

structural characterization of 10 whose biogenesis requires all components of the 

megasynthase assembly line except the PKS ClbO28. We then searched for a more complete 

colibactin derivative that could account for the activity of ClbO. The initial examination of 

the ΔclbPΔclbQ and ΔclbPΔclbQΔclbO mutants for the selective loss of metabolites 

identified a precolibactin metabolite with m/z 970 (named precolibactin-969, 11) in a trace 

amount (Fig. 1, Fig. 2a). To facilitate the structural elucidation of 11, additional regulatory/

resistance clb genes including clbR and clbS were explored to probe their effects on the 

production of 11. ClbR is a known positive transcriptional regulator and its overexpression 
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previously led to a five-fold increase in the prodrug motif accumulation22, and ClbS is a 

colibactin resistance protein that was proposed to sequester or modify colibactin and thereby 

prevent self-inflicted DNA damage32,33. While overexpression of clbR had no obvious effect 

on the titer of 11, inactivation of clbS resulted in a notable four-fold increase in the titer of 

11 along with other precolibactins (Fig. 2a, Supplementary Fig. 2). The observed eliciting 

phenomenon in ΔclbS is consistent with the proposed function of ClbS, and we thus used the 

ΔclbPΔclbQΔclbS mutant strain for the subsequent precolibactin production and 

purification.

From a 2,000-L fermentation culture of ΔclbPΔclbQΔclbS, 50 μg of 11 was obtained after 

extraction with organic solvent followed by multiple rounds of reversed-phase liquid 

chromatography purification. 11 was isolated as white and amorphous powder, and its 

molecular formula was determined as C44H59N9O12S2 by high-resolution mass 

spectrometry (HRMS) (m/z 970.3799, calculated: 970.3797) (Supplementary Fig. 3), which 

has an additional C3HNO2 compared to the formula of 10. The presence of an extra nitrogen 

atom in 11 is consistent with the known aminomalonate substrate utilization by ClbO26,27, 

which was also supported by the isotope-labeled precursor feeding experiments, suggesting 

the incorporation of an additional aminomalonate compared to 10 (Supplementary Fig. 4). 

Similar to 10, 11 was isolated as an approximately equal mixture of two diastereomers 

(Supplementary Fig. 5). Analysis of extensive nuclear magnetic resonance (NMR) spectra 

and high-resolution tandem mass spectrometry (HRMSn) fragmentation data demonstrated 

that 11 and 10 share the same macrocyclic scaffold from C-1 to C-40 (Fig. 1, Supplementary 

Text, Supplementary Figs. 6 and 7, and Supplementary Table 1), indicating that ClbO 

functions towards the end of the NRPS-PKS assembly line to incorporate the last building 

monomer of aminomalonate. However, we were not able to assign the structure of this extra 

region (C-41 to C-44) based on the NMR spectra due to the apparent proton deficiency 

feature and the extremely low titer of 11 at this stage.

We then turned to the PKS activity of ClbO to predict the fate of the corresponding 

aminomalonate unit. In the clb locus, two PKS modules, ClbKPKS and ClbO, were 

enzymatically established to incorporate an aminomalonate extender unit26,27. Both PKS 

modules have domains organized into KS-AT*-ACP (Fig. 1b). A maximum likelihood tree 

revealed a close phylogenetic relationship between these two KS domains (Supplementary 

Fig. 8), suggesting a similar activity of ClbKPKS and ClbO. While ClbKPKS was shown to 

incorporate aminomalonate through a decarboxylative Claisen condensation in forming 10 
(Fig. 2b), this reactivity does not account for the addition of three carbon atoms promoted by 

ClbO in forming 11. Considering the typical observation that the titers of upstream 

colibactin metabolites were significantly higher than those of downstream metabolites25,28, 

we searched for a possible intermediate that is stalled at ClbKPKS with an additional of 

C3HNO2 in its molecular formula compared to precolibactin-712 (7) to facilitate the total 

structural determination of 11 (Fig. 1). Careful analysis of the culture extracts of 

ΔclbPΔclbQΔclbSΔclbO revealed a new metabolite (named precolibactin-795a, 8) with the 

molecular formula of C39H53N7O9S1 (m/z 796.3697, calculated 796.3698) (Fig. 2c, 

Supplementary Fig. 9). A total of 1.1 mg of 8 from a 500-L fermentation culture were 

obtained and extensive analysis of the NMR spectra and HRMSn fragmentation data 
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indicated that in comparison with 7 and precolibactin-795b (9), 8 contains a unique 5-

hydroxy oxazole moiety next to the terminal carboxyl group (Fig. 1, Supplementary Text, 

Supplementary Figs. 10–12, and Supplementary Tables 2 and 3). We propose that to 

assemble 8, the aminomalonate unit is incorporated into the assembly line through 

nucleophilic attack of the amine in the aminomalonate extender unit on the upstream 

peptidyl-S-T thioester of ClbJ, followed by synchronous cyclization and release (Fig. 1, Fig. 

2d). This novel biosynthetic logic of accommodating a rare aminomalonate building block 

was further supported by the gene inactivation and isotope labeled precursor feeding 

experiments (Fig. 2c, Supplementary Fig. 4). We thus deduce that 11 contains the same 5-

hydroxy oxazole moiety next to its terminal carboxyl group, which is derived from the 

aminomalonate extender unit of ClbO and formed through the same chemical logic as in 8 
(Fig. 1, Fig. 2e). Furthermore, a precolibactin metabolite (precolibactin-943, 12) with m/z 
944 corresponding to the decarboxylative condensation activity of ClbO was also observed 

(Supplementary Fig. 13), but its titer was only approximately 10% of that of 11. Additional 

gene inactivation experiments showed that ClbL, a putative amidase, was required for the 

biosynthesis of 8 and 11, but not 9, 10 and 12, suggesting that ClbL promotes the 

nucleophilic attack of the amine in the aminomalonate extender unit (Fig. 1, Fig. 2).

Maturation of colibactin

Precolibactin-969 (11) is hitherto the largest colibactin derivative that requires all 

components of the NRPS-PKS assembly line for its biosynthesis. We next examined whether 

ClbP, the dedicated peptidase for colibactin maturation, is capable of hydrolyzing this 

precursor in the bacterial periplasm and releasing the mature colibactin (Fig. 3a). Incubation 

of 11 with the culture of E. coli expressing ClbP resulted in the complete loss of 11 and the 

production of both the prodrug motif N-myristoyl-D-asparagine (14) and a new metabolite 

(named colibactin-645, 13) with the molecular formula of C26H27N7O9S2 (m/z 646.1394, 

calculated 646.1384) (Fig. 3, Supplementary Fig. 14). 13 was confirmed to be the mature 

compound of 11 with a free N-terminus after cleavage and release of the prodrug motif 

based on the comparative HR-MS/MS analysis (Supplementary Fig. 14). It is notable that 

different from 11 and 14, 13 is a very water-soluble compound which could not be extracted 

by typical organic solvents such as ethyl acetate21,24. Additionally, we observed a 

significantly increased recovery yield of 13 from the ClbP-expressing E. coli culture upon 

treatment of metal chelators, such as ethylenediaminetetraacetic acid (EDTA) and 

Chelex-100 (Fig. 3b). The positive effect of metal chelators on metabolite yields from E. coli 
cultures was also observed for 11, but not for other precolibactins such as 2, 5, and 7 
(Supplementary Fig. 15). These results suggested the susceptibility of colibactin-645 (13) 

and its precursor (11) to trace metals for possible degradation.

Colibactin production by a native strain

We next investigated whether the native clb+ E. coli strain could produce the same 

colibactin-645 to probe if 13 was a native metabolite or an artifact arising from a non-natural 

biosynthetic pathway in a heterologous host. LC–MS analysis of cell-free culture extracts of 

the wild-type clb+ E. coli CFT073 and its clb− mutant revealed a peak identical to 13 only in 

the wild-type clb+ strain, confirming that 13 is the native product of the clb pathogenicity 
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island (Fig. 3b). It is notable that after enrichment from a 2-L of fermentation culture, only a 

trace amount of 13 was detected by HRMS analysis, indicating the low titer of 13 or its 

chemical lability. Since previous work showed that direct contact between bacterial and 

eukaryotic cells was required for full toxicity of colibactin9, we further examined whether a 

majority of 13 are associated with the producing cells. 13 was not detected in the cellular 

extract of clb+ E. coli CFT073 (Fig. 3b), suggesting that the mature colibactin was secreted 

after production and highly unstable after secretion.

DSBs activity of colibactin in vitro

After obtaining the highly sought mature colibactin (13), we examined its DNA DSBs in 
vitro using the pBR322 plasmid DNA strand scission assay, a surrogate test for DNA 

damage34. Although 13 showed sparse DNA damage activity upon incubation with DNA, in 

the presence of Cu(II), but not other metals such as Fe(III) and Fe(II), both 13 and its 

precursor precolibactin-969 (11) caused significant DNA breakage with the formation of 

both nicked (Form II) and linearized (Form III) DNA from the supercoiled plasmid DNA 

(Form I) (Fig. 4a, Supplementary Fig. 16). Since 13 and 11 demonstrated comparable DNA 

damage activities in initial tests, we used 11 as an appropriate substitute for 13 in the 

following in vitro assays because 11 was more readily available. A time-course experiment 

of DNA cleavage was then performed to determine if the colibactin-induced linearized DNA 

arose from coupled strand-cleavage events (DSBs), or from an accumulation of unrelated 

single-strand breaks (SSBs). All three forms of DNA were visible on the gel, showing 

classical evidence of DSBs (Fig. 4b). A Freifelder–Trumbo analysis was further performed 

to calculate the number of SSBs (n1) and DSBs (n2) per molecule of DNA after treatment 

with 11 at various time points, which resulted in a constant ratio of SSBs to DSBs (5.35:1) 

(Supplementary Fig. 17). This number is significantly lower than 120:1 that was expected if 

DSBs were to arise from an accumulation of unrelated SSBs35, and is comparable to some 

of the well-known DNA DSBs inducers including (–)-lomaiviticin A (5.3:1) and bleomycin 

(9:1)34,36, supporting the coupled strand-cleavage activity of colibactin. It is notable that 

under the same reaction condition, 11 displayed a stronger DNA DSBs activity than 

bleomycin which also requires the presence of a redox-active metal ion for DNA 

cleavage37,38 (Supplementary Fig. 18).

The observed Cu(II)-mediated DSBs activity of colibactin is reminiscent of the oxidative 

mechanism of DNA cleavage involving a metal center reduction35,39. The addition of 

neocuproine, a specific Cu(I) chelator, completely sequestered the DSBs activity of 11, 

suggesting that Cu(I) is an essential component for 11-induced DNA cleavage (Fig. 4c). 

Surprisingly, the presence of a reducing agent, such as β-mercaptoethanol (β-ME) or 

dithiothreitol (DTT), had no obvious effect on the DSBs activity of 11 (Fig. 4c). We thus 

propose that the reduction of Cu(II) to Cu(I) may be mediated by the DNA or by 11 itself, 

and the latter was supported by the free Cu(I) determination assays upon incubation of 11 
and Cu(II) (Supplementary Fig. 19). In addition, 10 demonstrated a comparable copper 

reduction activity as 11, suggesting that the same macrocyclic scaffold in both compounds 

could be the active center for Cu(II) binding and reduction (Supplementary Figs. 19 and 20). 

The parallel monitor of the mixture of 10 and Cu(II) by HRMS further showed a loss of the 

mass signal for 10 over time which was accompanied by an approximately stoichiometric 
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formation of Cu(I) (Supplementary Fig. 21), and also a presence of a new mass signal with 

an isotopic pattern of copper-bound complex40 (Supplementary Fig. 22). Although this new 

mass signal was weak and transient which prevented its further characterization, this data 

supported the direct binding of 10 to copper and the instability of 10 in the presence of 

copper. We further determined the binding constant of copper with 10 to be ~ 4120 M−1 

(Supplementary Fig. 23).

The oxidative mechanism of DNA cleavage was further probed by adding various reactive 

oxygen species (ROS) scavengers. Plasmid DNA damage by 11 was not measurably 

influenced by the hydroxyl radical scavengers mannitol and dimethyl sulfoxide (DMSO) 

(Fig. 4d), which argues against participation of the freely diffusible hydroxyl radical in the 

observed cleavage and distinguishes the mechanism by which colibactin incises DNA from a 

sole Fenton-like one41. The addition of superoxide dismutase (SOD), which catalyzes the 

conversion of the superoxide radical into hydrogen peroxide (H2O2), did not measurably 

influence DNA cleavage by 11 (Fig. 4d). In contrast, potassium iodide (KI), a H2O2 

scavenger, and catalase, which mediates the decomposition of H2O2, significantly inhibited 

the cleavage reaction (Fig. 4d). These results suggested that H2O2 was involved in mediating 

DNA cleavage in vitro, consistent with the observation of a significant increase in H2-

DCFDA fluorescence (a sensor of hydroxyl and peroxyl radicals, and hydrogen peroxide 

production) in non-transformed human lung fibroblast cells infected by colibactin-producing 

E. coli11.

The DNA DSBs activity of 11 was next compared to other precolibactins for a preliminary 

structure–activity relationship study. Under the same reaction condition, 10 displayed a 

significantly weaker DSBs activity than 11 (Supplementary Fig. 18), demonstrating that the 

extra 5-hydroxy oxazole moiety in 11 was important for augmenting the DSBs activity. The 

DSBs activity of 5, a precolibactin that has previously demonstrated DNA-crosslinking 

activity due to its aza-spirocyclopropane warhead, was also tested24. 5 did not display DNA-

damaging activity even at concentrations as high as 5 mM (Supplementary Fig. 18).

DSBs activity of colibactin in cells

We next examined the DNA damaging activity of colibactin in various human cell lines. 

Production of phosphorylated histone H2AX (γH2AX) and translocation of the p53 binding 

protein 1 (53BP1) are early events in the cellular response to DNA DSBs42,43. Four hours 

after exposure to 50 nM of 13, HeLa cells showed formation and colocalization of foci 

derived from γH2AX and 53BP1 (Fig. 5a). By comparison, the γH2AX and 53BP1 foci 

were undetectable in cells treated with 50 nM of 11 (Fig. 5a), in contrast to the comparable 

activity of 13 and 11 in the pBR322 plasmid DNA strand scission assay. This result 

supported that maturation was a prerequisite for colibactin’s genotoxicity in vivo15. In 

addition, 15, the mature product of 10 after ClbP cleavage (Supplementary Fig. 24), also 

demonstrated a significantly lower activity than that of 13 (Fig. 5a), consistent with the 

lower DSBs activity of 10 than 11 in vitro (Supplementary Fig. 18). The similar foci 

formation and colocalization were also observed in other cell lines such as human normal 

colon epithelial FHC cells, human normal colon fibroblast CCD-112 CoN cells, and 

colorectal cancer HCT-116 cells treated with 50 nM of 13 (Supplementary Fig. 25), which 
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established that the cellular response to 13 was not cell-line specific, consistent with 

previously reported cytopathic effect in various cell lines that were infected by clb+ E. coli 
strains9.

A neutral comet unwinding assay was also conducted as an effective and independent 

method to evaluate the occurrence of DNA DSBs in cells treated with 1344. Consistent with 

the results of γH2AX and 53BP1 induction, a four-hour exposure of Hela cells to 13 caused 

accrued DNA lesions in a concentration-dependent manner, demonstrated by the migration 

of cleaved DNA fragments (comet tail) from the nucleoid (comet head) under the influence 

of an electric field (Fig. 5b). Furthermore, the treatment of either EDTA or 

bathocuproinedisulfonic acid (BCS), an extracellular Cu-sequestering agent, significantly 

alleviated the levels of DNA damage caused by the purified compound 13 or the infection of 

clb+ E. coli CFT073 (Fig. 5c, d, Supplementary Fig. 26), which is in agreement with the 

observed dependence of copper for colibactin-induced DNA DSBs in vitro.

Discussion

Despite extensive studies on the biology of the clb pathogenicity island and the chemistry of 

the clb encoding enzymes, the genotoxic colibactin metabolite with intrinsic DNA DSBs 

activity had escaped all screening surveillance in the past decade. For the first time, through 

strain engineering, large-scale fermentation and metabolite comparison, we have identified 

and characterized the highly sought genotoxic colibactin metabolite, colibactin-645 (13). 

The biosynthesis of 13 requires all predicted biosynthetic enzymes encoded on the clb 
pathogenicity island; more importantly, 13 recapitulates its pre-assumed DNA DSBs activity 

both in vitro and in cell cultures, distinguishing 13 from all previously identified metabolites 

associated with this pathogenicity island. Interestingly, although macrocyclic colibactins, 

including 10, 11, 13, and 15, required copper for their bioactivity, they quickly degraded in 

the presence of copper, which prevented direct characterization of any colibactin·Cu 

complex. This is akin to the instability of the activated bleomycin that was suggested to have 

a half-life of only several minutes at 4 °C after binding to a reduced transition metal45. In 

addition to the low abundance and chemical lability, the macrocyclic mature colibactin 

appeared to be polar compound that stayed in the aqueous phase during organic solvent 

extraction, which could further contribute to the difficulty in the genotoxic metabolite 

detection.

The biosynthesis of 13, as well as 8 and 11, features a new fate for the atypical 

aminomalonyl extender unit utilized by PKSs. The incorporation of this aminomalonyl 

extender unit has been previously elucidated through a traditional decarboxylative Claisen 

condensation in zwittermicin, guadinomine and colibactin biosynthesis28,46,47. In particular, 

ClbKPKS has been shown to promote the decarboxylative condensation of the aminomalonyl 

unit that contributes for thiazole and 2,5-dihydro-5-hydroxyoxazole formation in 10 
biosynthesis28. In this study, we showed that an amidase, ClbL, was required for the 

biosynthesis of 8 and 11, and further proposed that ClbL promotes the amide bond formation 

through nucleophilic attack of the amine in the aminomalonate extender unit attached to the 

ClbK or ClbO, leading to the generation of the terminal 5-hydroxy 4-oxazolecarboxylic acid 

moiety in 8 or 11 (and thus 13), respectively. Furthermore, identification of the precolibactin 
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metabolite 12 suggests that similar to ClbK, ClbO is capable of catalyzing the 

decarboxylative condensation of the aminomalonyl unit, although this activity is 

outcompeted by the activity of ClbL, resulting in a much higher titer of 11 than 12. This 

finding is consistent with the recent independent discovery48, showing that ClbL is a 

promiscuous amide bond-forming enzyme that links aminoketone and β-keto thioester 

substrates. The relaxed substrate specificity of ClbL is likely one of the main contributing 

factors to the production of several complex colibactin metabolites associated with the clb 
island, including the markedly different colibactin metabolites with DNA cross-linking 

activities that were recently identified in independent studies49.

Based on the DNA damage assays both in vitro and in cells, we propose the following 

mechanism for copper-mediated DNA DSBs by colibactin-645 (13) (Supplementary Fig. 

27). After being secreted from a producing bacterium that localizes close to or in contact 

with the intestinal brush border10, 13 binds to exchangeable copper in the intestinal lumen, 

likely coming from diet50, to form a colibactin·Cu(II) complex. The macrocyclic colibactin 

was determined to have a higher binding affinity for Cu(II) than some of the known copper-

binding natural products such as bleomycin and tambjamine51, supporting the physiological 

relevance of the suggested complex formation with Cu(II). This complex is quickly 

transported into the epithelial cell while reduced to a colibactin·Cu(I) complex, and the 

coordination of O2 to this cuprous complex in cells generates ‘activated colibactin’ that 

attacks DNA and initiates DNA cleavage. Cu(II)—O• (or Cu(III)═O) is proposed to be the 

active species in the ‘activated colibactin’ complex susceptible of DNA carbon–hydrogen 

bond activation39, which is consistent with the observed inhibitory effects of H2O2 

scavengers on the DNA cleavage reaction in vitro as colibactin·Cu(II)—OOH is a key 

intermediate to colibactin·Cu(II)—O• (Supplementary Fig. 27). Additionally, we do not 

exclude the possibility that 13 quickly enters the epithelial cell and then binds the 

intracellular copper to exert its activity. This mechanism is analogous to the proposed one 

for the generation of ‘activated bleomycin’ in vivo, differing mainly in the metal usage and 

the intrinsic metal reduction activity of compounds37,38.

The unusual heterocycle-fused macrocycle in 13 is important for copper binding and 

reduction, as only macrocyclic colibactins, such as 10 and 11, demonstrated a strong and 

comparable Cu(II) reduction activity. In addition, the comparison between the DSBs activity 

of 10 and 11, as well as 15 and 13, highlights the significance of the terminal 5-hydroxy 

oxazole moiety for DNA DSBs activity. We speculate that the thiazole/5-hydroxy oxazole 

tail found in 11 and 13 may serve as the DNA intercalating element, similar to the function 

of the bithiazole moiety found in bleomycin37,38. Based on the comparative DSBs activity of 

11 and 13 in vitro but a drastically different solubility as well as a significantly lower 

activity of 11 in cellular assays, we further propose that the loss of the N-terminal fatty acyl-

asparagine residue as the prodrug motif facilitates the access of mature colibactin-645 to 

target eukaryotic cells15. Although many secondary metabolites have been reported to 

induce DNA DSBs, a majority of them function via indirect mechanisms (such as by 

inhibiting topoisomerase complexes52), and few of them cleave DNA double-strand 

directly53. 13 thus represents a novel molecular scaffold exerting a direct DNA DSBs 
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activity, providing a model for designing and synthesizing potent DNA cleaving agents, 

from synthetic restriction ‘enzymes’ to chemotherapeutic agents.

Considering that DNA cross-linking was also observed in human cell lines incubated with 

colibactin-producing E. coli54,55, we speculate that the overall genotoxic effect of the clb 
island may arise from a mixture of metabolites with different modes of action, including but 

not limited to DNA cross-linking and DSBs activities. This is consistent with the predicted 

comprehensive role of colibactins in mediating diverse bacteria-host 

interactions6–8,17,18,56–58.

In summary, we have identified and characterized a novel genotoxic colibactin metabolite, 

provided the conclusive evidence for macrocyclic colibactin directly mediating DNA 

damage, and shed light on the long-standing mystery of the molecular mechanism 

underlying colibactin-induced DNA DSBs. Our discoveries thus lay out a framework for 

future investigations that could enhance our understanding of the clb pathogenicity island 

from human gut microbes, and enable further mechanistic interrogation of colibactin-

induced DNA DSBs and colibactin-related CRC incidence and prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Structures and proposed biosynthesis of precolibactins.
a, Structures of precolibactin-546 (5), precolibactin-712 (7), precolibactin-795a (8), 

precolibactin-795b (9), precolibactin-886 (10) and precolibactin-969 (11). b, Proposed 

biosynthetic pathway of precolibactins. Extending from ClbJ, the dimodule PKS/NRPS 

ClbK shows diverse functions in the production of clb metabolites. The clb pathway utilizes 

ClbKPKS and ClbL to produce 8 (Route A); or skips ClbKPKS but utilizes ClbKNRPS to 

produce 9 (Route B); or utilizes both of ClbKPKS and ClbKNRPS modules to produce 10 
which is the precursor for the assembly of 11 (Route C). A, adenylation; ACP, acyl carrier 
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protein; Am, amidase; AT, acyltransferase; Cy, cyclization; KS, ketosynthase; Ox, oxidase; 

PCP, peptidyl carrier protein. AT* domains are predicted based on structural topology as 

ancestral inactive relics.
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Fig. 2 |. Genes and proposed mechanisms of aminomalonate-utilizing PKSs in the biosynthesis of 
precolibactins.
a, A comparison of LC–MS extracted ion chromatogram traces of the metabolic extracts 

from ΔclbPΔclbQ, ΔclbPΔclbQΔclbS and its ten mutants, and ΔclbPΔclbQΔclbS::clbR, 

showing the impact of gene knockout or knockin on the yield of 11, and the requirement of 

clb pathway genes for the biosynthesis of 11. EIC+ = 970.38 ± 0.01, which corresponds to 

11. b, Proposed mechanism of ClbKPKS underlying the production of 10. The chain 

elongation is achieved through C−C bond formation by decarboxylative Claisen 

condensation. c, A comparison of LC–MS extracted ion chromatogram traces of the 

metabolic extracts from clbPΔclbQΔclbS and its ten mutants. EIC+ = 796.37 ± 0.01 and 

796.35 ± 0.01, which correspond to 8 and 9, respectively. d, Proposed mechanism of 

ClbKPKS and ClbL underlying the production of 8. The chain elongation is achieved through 

C−N bond formation by nucleophilic attack of the amine in the aminomalonate extender 

unit, followed by synchronous cyclization and release of 8. e, Proposed mechanism of ClbO 

and ClbL underlying the production of 11 with a similar biosynthetic logic to that of 8. b, d 
and e, A, adenylation; ACP, acyl carrier protein; Am, amidase; AT, acyltransferase; Cy, 

cyclization; KS, ketosynthase; Ox, oxidase; PCP, peptidyl carrier protein. AT* domains are 

predicted based on structural topology as ancestral inactive relics.
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Fig. 3 |. Maturation of colibactin.
a, Proposed pathway for colibactin maturation. A prodrug mechanism is involved in 

colibactin biosynthesis. Precolibactin-969 (11) is biosynthesized in the cytoplasm of E. coli 
strains by the clb biosynthetic pathway and transported via ClbM into the periplasm, 

whereby the membrane-bound peptidase, ClbP, cleaves 11 to generate mature colibactin-645 

(13) and a prodrug motif N-myristoyl-D-asparagine (14), followed by outer membrane 

translocation. b, A comparison of LC–MS extracted ion chromatogram traces shows the 

production of 13 resulting from its precursor 11 cleavage by E. coli strains expressing the 
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peptidase gene clbP in the presence or absence of metal chelators; and the detection of 

metabolite identical to 13 from either cell-free culture extracts or cellular extracts of cultured 

wild-type clb+ E. coli CFT073 and its clb− mutant. EIC+ = 646.14 ± 0.01 and 343.26 ± 0.01, 

which correspond to 13 and 14, respectively.
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Fig. 4 |. Analysis of DNA damage by colibactin in vitro.
a, The effect of colibactin-645 (13) on the plasmid pBR322 DNA cleavage. Reactions were 

performed at 15 μM 13 in the absence or presence of Cu(II) (3 μM or 30 μM) for 12 hours at 

37 °C. DNA cleavage by 13 is observed only in the co-incubation of Cu(II) and 13, in which 

nicked (Form II) and linearized (Form III) DNA forms from the supercoiled plasmid DNA 

(Form I). b, The time-dependent DNA damage induced by precolibactin-969 (11) (15 μM) is 

observed in the presence of Cu(II) (30 μM). Reactions were performed at 37 °C with 

different incubation times. c, The effect of a specific Cu(I) chelator neocuproine (1 mM), a 

reductant β-mercaptoethanol (β-ME) (5 mM), or a reductant dithiothreitol (DTT) (5 mM) on 

the DNA cleavage by 11 (15 μM) in the presence of Cu(II) (30 μM). Reactions were 

performed at 37 °C for 4 h. d, The effect of various reactive oxygen species (ROS) 

scavengers, including potassium iodide (KI) (1 mM), catalase (0.1 mg/mL), superoxide 

dismutase (SOD) (10 units), mannitol (50 mM), and dimethyl sulfoxide (DMSO) (10%), on 

the 11-induced DNA cleavage in the presence of Cu(II) (30 μM). Reactions were performed 

at 15 μM 11, 37 °C for 12 h. b, c and d, All of the controls (reactions without 11) of each 

reagent or scavenger show no DNA cleavage similar to the negative control presented in the 

figure (the lane with DNA only). a–d, Top band, nicked DNA (Form II); middle band, 

linearized DNA (Form III); bottom band, supercoiled DNA (Form I). EcoRI-linearized 

pBR322 DNA is shown as the linearized DNA standard.
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Fig. 5 |. Colibactin-induced DNA damage in cell cultures.
a, Immunofluorescence imaging of γH2AX and 53BP1 foci in HeLa cells that are treated 

with precolibactin-969 (11, 50 nM), colibactin-645 (13, 50 nM) or 15 (50 nM). Columns 

from left to right, nucleus (blue), γH2AX (green), 53BP1 (red), and merge. In control, only 

DMSO solvent was added. b, Accrued DNA lesions are induced by increased concentrations 

of 13, as measured by the neutral comet unwinding assay. c, The effect of either 

ethylenediaminetetraacetic acid (EDTA) (2.5 mM) or bathocuproinedisulfonic acid (BCS) (2 

mM) on the DNA damage in HeLa cells after incubation with 13 (50 nM), as measured by 
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the neutral comet assay. d, The effect of EDTA (2.5 mM) or BCS (2 mM) on the DNA 

damage in HeLa cells after incubation with the wild-type clb+ E. coli CFT073, as measured 

by the neutral comet assay. c, d, Tail moment was obtained in the neutral comet unwinding 

assay, which represents the extent of DNA cleavage and is defined as the product of the tail 

length and the fraction of DNA in the tail. Bars represent mean tail moment (50 cells were 

randomly selected), error bars represent s.e.m.. ***P < 0.001 (one-way ANOVA).
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