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SUMMARY

We know a lot about varying gutmicrobiome compositions. Yet, how the bacteria
affect each other remains elusive. In mammals, this is largely based on the sheer
complexity of the microbiome with at least hundreds of different species. Thus,
model organisms such as Drosophila melanogaster are commonly used to
investigate mechanistic questions as the microbiome consists of only about 10
leading bacterial species. Here, we isolated gut bacteria from laboratory-reared
Drosophila, sequenced their respective genomes, and used this information to
reconstruct genome-scale metabolic models. With these, we simulated growth
in mono- and co-culture conditions and different media including a synthetic
diet designed to grow Drosophila melanogaster. Our simulations reveal a syner-
gistic growth of some but not all gut microbiome members, which stems on the
exchange of distinct metabolites including tricarboxylic acid cycle intermediates.
Culturing experiments confirmed our predictions. Our study thus demonstrates
the possibility to predict microbiome-derived growth-promoting cross-feeding.
1Institut für Mathematische
Modellierung Biologischer
Systeme, Heinrich-Heine-
Universität Düsseldorf, 40225
Düsseldorf, Germany

2Systembiologie des
Fettstoffwechsels, Heinrich-
Heine-Universität Düsseldorf,
40225 Düsseldorf, Germany

3Christian-Albrechts-
University Kiel, Institute of
Human Nutrition and Food
Science, Nutriinformatics,
Heinrich-Hecht-Platz 10,
24118 Kiel, Germany

4Lead contact

*Correspondence:
mathias.beller@hhu.de

https://doi.org/10.1016/j.isci.
2021.103216
INTRODUCTION

Multicellular organisms are inhabited by a vast number of microorganisms, which is generally termed the

microbiome. In humans, the number of associated bacteria is in the same range as the cells of the host

(Sender et al., 2016). As an entity, the bacteria encode an overwhelming number of genes and thus expand

themetabolic capabilities of the host enormously. We are still at the beginning of understanding this meta-

bolic interplay. Yet, first reports demonstrated an importance of the microbes present in the gut, the

so-called gut microbiome, in humans and model organisms for increasing nutrient availability and energy

harvest (Krajmalnik-Brown et al., 2012), the production of important bioactive metabolites including

branched-chain amino acids (Lin et al., 2017; Liu et al., 2020), the metabolism of pharmaceuticals applied

to the host (Clayton et al., 2009; Haiser et al., 2013), or the release of metabolites which affect signaling

pathways of the host (Martin et al., 2019; Shin et al., 2011). Thus, the microbiome affects the host far beyond

nutrient access. The importance of the gut microbiome can be seen most prominently in times of a pertur-

bation or altered microbiome composition, which has been linked to many human diseases such as dia-

betes (Hartstra et al., 2014; Komaroff, 2016), obesity (Tilg and Kaser, 2011; Turnbaugh and Gordon,

2009), autism (Vuong and Hsiao, 2016), or inflammatory bowel disease (Halfvarson et al., 2017). Based on

the observation that a perturbed microbiome is linked to pathologies, microbiome-focused therapies

appear possible. Indeed, microbiome transfer therapies proved effective for the treatment of infections

with the pathogen Clostridium difficile (Weingarden et al., 2013) and many pro- and prebiotic dietary reg-

imens are already used (Arora et al., 2013).

The microbiome of mammals with hundreds to thousands of different bacterial species is extremely com-

plex. In addition, many of these species cannot be cultured ex vivo, which hinders detailed functional

analyses. Simpler model organisms can help to overcome these limitations and thus provide access to tar-

geted functional analyses. The microbiome ofDrosophila melanogaster, for example, only consists of 5–20

different species (Douglas, 2019; Ludington and Ja, 2020), which makes it much easier to analyze. Still, the

gut microbiome ofDrosophila has a significant impact onmany aspects of the hosts’ life such as the survival

under nutrient limiting conditions, the lifespan of the flies, or the locomotor behavior (Consuegra et al.,

2020a; Keebaugh et al., 2018; Ridley et al., 2012; Schretter et al., 2018; Shin et al., 2011; Silva et al., 2020;

Storelli et al., 2011, 2018). The most abundant Drosophila gut bacteria belong to the Lactobacilli,
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Acetobacter, and Enterococci genera. Key species of these bacteria are culturable under standard labora-

tory conditions (Adair et al., 2018; Broderick and Lemaitre, 2012; Erkosar et al., 2013).

The prominent Drosophila gut microbiome members Lactobacillus plantarum and Lactobacillus brevis are

Gram-positive rod-shaped lactic acid-producing microaerophilic bacteria from the Firmicutes phylum,

which promote the systemic growth of fly larvae under nutrient-limiting conditions (Storelli et al., 2011).

In humans, several lactobacilli strains have been shown to confer host health benefits (Marco et al.,

2010), and a decline in their abundance is commonly associated with diseases (Aron-Wisnewsky et al.,

2020; Heeney et al., 2018; Lee et al., 2020; Schwarzer et al., 2016). Acetobacter in contrast are Gram-nega-

tive, acetic acid-producing bacteria within the class of alpha-proteobacteria. They can be isolated from a

variety of sources such as fruits and flowers and are often used to generate fermented food, e.g., vinegar

(Azuma et al., 2009). Acetobacter species are major constituents of the Drosophila gut microbiome. Like

lactobacilli (Storelli et al., 2011), they contribute to a successful larval development under nutrient-limiting

conditions (Shin et al., 2011). This growth-promoting effect was demonstrated to stem on the secretion of

acetic acid, which interferes with the insulin signaling pathway of the fly (Shin et al., 2011). This observation

underpins the importance of secreted metabolites in terms of an interaction not only with the host but also

likely with other members of the gut microbiome. At this point, the beneficial as well as detrimental (e.g., in

terms of competition for nutrients) interactions between the microbiome members are not clear. First an-

alyses, however, detected a complex interplay between combinations of the bacterial species and the host,

which shapes host fitness through life history trade-offs (Gould et al., 2018). Similarly, also studies with iso-

lated bacteria using growth on agar-based solid media (Sommer and Newell, 2018) or chemically defined

media (Aumiller et al., 2021) support growth-promoting effects among the bacterial species of the

Drosophila gut microbiome.

In order to investigate such metabolic interactions, we isolated bacteria from laboratory-rearedDrosophila

and investigated their isolated growth in different media such as Lactobacillus-promoting MRS and Ace-

tobacter-selective ACE media. Furthermore, we used a synthetic diet suitable to grow D. melanogaster

(holidic Drosophila diet; HD) (Piper et al., 2014). Six bacterial strains were analyzed in total and we rese-

quenced their respective genomes to reconstruct genome-scale metabolic networks. These were used

in single and co-culture growth simulations using the BacArena software package (Bauer et al., 2017).

Our results reveal co-operative growth of certain bacteria based on the exchange of distinct metabolites

including tricarboxylic acid cycle (TCA) intermediates, certain sugars, as well as amino acids in the D- and L-

form. In analogous growth experiments, we could confirm the growth-promoting effect of several identi-

fied metabolites. Thus, the simulations open the door to systematically investigate the metabolic interplay

of gut microbiome constituents and to reveal beneficial metabolites, which can promote the growth of

selected gut microbiome constituents.
RESULTS

Bacterial isolation, species identification, and in vitro growth characteristics

We started our analysis with the isolation of bacteria from the intestine of white[-] and Oregon-R adult flies

(see material and methods). First, we isolated in total six morphologically distinct colonies on either Lacto-

bacillus growth-promoting MRS- or Acetobacter-enriching ACE-agar plates and subsequently extracted

the respective genomic DNA of our pure cultures. The 16S rRNA gene region of all clones was amplified

by PCR, subcloned, and sequenced to allow species identification by BLAST searches. In total, we isolated

two L. plantarum, one L. brevis, two Acetobacter indonesiensis, and one Acetobacter pasteurianus strains

(see Table 1).

We tested next the growth of the different bacteria in three different growth media (Figures 1 and 2). On

top of the commonly used semi-definedMRS (Lactobacillus enrichingmedium; seematerials andmethods)

and ACE (promoting Acetobacter growth; see materials and methods) liquid culturing media, we also

tested for growth in a chemically defined (holidic diet [HD]) growth medium sufficient to culture

D. melanogaster (Piper et al., 2014). All isolated lactobacilli were able to grow on the MRS medium (Fig-

ure 1A). L. brevis, however, showed a lower total growth than the two L. plantarum isolates (Figure 1A).

On the ACE medium, all lactobacilli only showed low growth (Figure 1B) demonstrating the selectivity of

the growth medium. In line with previous results (Consuegra et al., 2020a), L. plantarum grew relatively

well on the HD, whereas L. brevis again only showed a low growth (Figure 1C). To our surprise, growth

of the Acetobacter isolates did not differ much on the MRS and ACE media (Figures 2A and 2B).
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Table 1. Sequencing results, genome reassembly, and generated genome-scale model summaries

L. plantarum

(A2)

L. plantarum

(B2)

L. brevis

(B6)

A. indonesiensis

(A4)

A. indonesiensis

(A5)

A. pasteurianus

(B5)

Genome assembly

Reads [#] 3,587,296 3,638,786 3,277,616 3,319,800 3,387,326 3,239,340

Used reads [#] 2,902,970 3,125,105 1,917,270 2,060,518 2,036,898 2,077,587

Used reads [%] 86.2 90.3 59.6 62.2 60.3 66.9

Unmapped [#] 495,436 353,339 1,324,152 1,254,692 1,345,613 1,070,761

Genes [#] 3,676 3,559 2,595 3,352 3,364 3,091

Ref. genome

sequence

length (bp)

3,581,586 3,581,586 2,340,228 3,396,180 3,396,180 3,007,920

Reference genome BDGP2 BDGP2 ATCC 367 NBRC 16471 NBRC 16471 BDGP5

Metabolic models

Reactions [#] 1,815 1,815 1,584 1,931 1,931 1,796

Metabolites [#] 1,567 1,567 1,411 1,763 1,763 1,673

Genes [#] 657 658 473 631 632 580

Blocked reactions [%] 40.1 40.1 41 43.3 43.3 43.7

Unbalanced reactions

[%]

9.4 9.4 10.2 8.2 8.2 8.5

Exchange reactions

[%]

9 9 9.9 7.5 7.5 7.7

Bacterium Isolate Ref. genome NCBI ID Link

Acetobacter pasteurianus B5 BDGP5 ASM245613v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_002456135.1/

Acetobacter indonesiensis A4 NBRC 16471 ASM799107v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_007991075.1/

Acetobacter indonesiensis A5 NBRC 16471 ASM799107v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_007991075.1/

Lactobacillus plantarum A2 BDGP2 ASM229018v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_002290185.1/

Lactobacillus plantarum B2 BDGP2 ASM229018v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_002290185.1/

Lactobacillus brevis B6 ATCC 367 ASM1446v1 https://www.ncbi.nlm.nih.gov/assembly/

GCF_000014465.1/

The upper part of the table summarizes the sequencing results in terms of the number of reads obtained for the six bacterial resequencing reactions. These

sequencing results were mapped with the ASA3P software (Schwengers et al., 2020) to the respective reference genomes whose ID as well as NCBI accession

is provided. The details of the mapping results in terms of the number and percent of used (as well as unmapped) reads, the number of detected genes, and

the genome sequence length are provided. The resequenced genome sequences were subsequently used to build the genome-scale metabolic models (see

materials andmethods). The lower part of Table 1 provides the details of the six genome-scale models in terms of the number of reactions, metabolites, mapped

genes, blocked and unbalanced, as well as exchange reactions. All sequencing, ASA3P, and model data are available at https://doi.org/10.17632/2tgjd6y4zb.1.
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A. indonesiensis isolates showed prominent growth on the HD (Figure 2C). A. pasteurianus, in contrast only

showed a relatively poor growth on the HD (Figure 2C). An overview of the experimentally determined

growth rates is provided as Figure S1.

The determination of growth of single species cultures is trivial, whereas the determination of the individual

contribution of distinct species to the biomass production of a consortium is difficult. Yet, a better under-

standing of the mutual effect on the growth of bacterial consortia is an intriguing and important question.

Modeling experiments are a possibility to overcome this obstacle. For the modeling, an exact knowledge

of the nutritional content of the growth medium is very important. Thus, growth of the bacteria on HD was

particularly important, as this diet allows the exact description of the input for themodeling experiments. In
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Figure 1. Wet-lab and in silico growth of Lactobacillus on different media

(A–C) Growth of the Lactobacillus isolates L. plantarum (A2, light green, dot), L. plantarum (B2, medium green, check), and L. brevis (B6, dark green, cross) on

MRS (A), ACE (B), and HD (C) media. Growth of all bacteria was monitored for at least 45 h in a plate reader without shaking. All cultures were inoculated with

a 1:1,000 dilution for MRS and ACE media and with a 1:100 dilution for the HD medium. All cultures had an optically dense pre-culture. Representative

growth curves of at least three biologically independent experiments are shown. Growth curves show mean values of triplicate measurements.

(D–F) Simulated growth of the same bacteria in the same media as shown in (A–C). For the isolated bacteria, the genomes were resequenced and used to

reconstruct genome-scale metabolic networks. These were used for growth simulations using the BacArena software package (Bauer et al., 2017) in

combination with MRS (D), ACE (E), and HD (F) media. L. plantarum (A2, light green, dot), L. plantarum (B2, medium green, check), and L. brevis (B6, dark

green, cross) on MRS (D), ACE (E), and HD (F) media. The simulations for each bacterium were run at least 12 times, and the computed growth curves

represent themean values. Detailed model data are available at https://doi.org/10.17632/2tgjd6y4zb.1. Wet-lab (A–C; small reaction tube) and in silico data

(D–F; computer) are also indicated by the pictograms and labels on the right side of the figure.
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the past, we already benefitted from this for modeling the growth and metabolism of Drosophila larvae

(Schönborn et al., 2019). In order to reconstruct the genome-scale metabolic networks of the isolated bac-

teria, our next step was to sequence their respective genomes using the Illumina MiSeq platform (see ma-

terial and methods). In the following, the genomes were assembled using whole-genome information as a

scaffold, which we obtained from the NCBI database.
Sequencing of the isolate genomes and model reconstruction

The sequencing runs resulted in 3.2–3.6 Mio reads per genome (see Table 1). The reads were mapped to

the whole-genome sequences of L. plantarum BDGP2, L. brevis ATCC367, A. indonesiensis NBRC16471,

and A. pasteurianus BDGP5, respectively, and further analyzed using the ASA3P software (Schwengers

et al., 2020) (the complete dataset is available in the supplement). Between 60% and 90% of the total reads

mapped to the respective reference strains (see Table 1).

We reconstructed the genome-scale metabolic models (for a summary cf. Table 1) of our isolated

Drosophila gut bacteria using the gapseq pipeline (Zimmermann et al., 2021). As a last step in the model

generation, we used gapseq’s in-built gap filling algorithm to enable in silico growth of the models on

the one hand for the ACE/MRS media and on the other hand for the HD medium (see material and

methods and Data S1). This additional step takes composition differences of the varying media into

consideration. The ACE and MRS media are semi-defined owing to chemically complex components,

which makes the in silico representation of the growth environment more difficult. We could explain be-

tween 73% and 92% of the unknown complex ingredients (yeast extract, peptone, and meat extract) by

the help of information from the literature or the respective manufacturer. For HD such problems do not

exist, as this medium is chemically completely defined (Piper et al., 2014). The overview of the diet

parametrization is provided in Figure S2 as well as Data S2. In the course of generating the models,

we took great care to correct for stochiometric inconsistencies, mass and charge imbalances, as well
4 iScience 24, 103216, November 19, 2021
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Figure 2. Wet-lab and in silico growth of Acetobacter on different media

(A–C) Growth of the Acetobacter isolates A. indonesiensis (A4, light orange, pentagon), A. indonesiensis (A5, medium orange, triangle), and A. pasteurianus

(B5, dark orange, star) onMRS (A), ACE (B), and HD (C) media. Growth of all bacteria wasmonitored for at least 45 h in a plate reader with shaking. All cultures

were inoculated with a 1:1,000 dilution for MRS and ACE media and with a 1:100 dilution for the HD medium. All cultures had an optically dense pre-culture.

Representative growth curves of at least three biologically independent experiments are shown. Growth curves show mean values of triplicate

measurements. For the isolated bacteria, the genomes were resequenced and used to reconstruct genome-scale metabolic networks. These were used for

growth simulations using the BacArena software package (Bauer et al., 2017) in combination with MRS (D), ACE (E), and HD (F) media.

(D–F) A. indonesiensis (A4, light orange, pentagon), A. indonesiensis (A5, medium orange, triangle), and A. pasteurianus (B5, dark orange, star) on MRS (D),

ACE (E), and HD (F) media. The simulations for each bacterium were run at least 12 times, and the computed growth curves represent the mean values.

Detailed model data are available at https://doi.org/10.17632/2tgjd6y4zb.1. Wet-lab (A-C; small reaction tube) and in silico data (D-F; computer) are also

indicated by the pictograms and labels on the right side of the figure.
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as metabolite connectivity (see materials and methods section and Table 1). All models were tested for

model quality using the MEMOTE tool (Lieven et al., 2020) and resulted in at least 77% model scores (see

Data S3 and materials and methods).
In silico biomass and signature metabolite production by the different genome-scale

metabolic network models

In order to model growth of the different isolated gut bacteria alone as well as in combination, we per-

formed dynamic and agent-based simulations of bacterial population growth and metabolic fluxes using

the BacArena software package (Bauer et al., 2017). In brief, BacArena allows growth simulation of sin-

gle-species population and multi-species microbial communities in a spatially limited compartment,

including the calculations of the changing medium composition due to the metabolite utilization and pro-

duction by individual bacterial cells. Thus, the metabolism of the organisms is calculated in a time-resolved

manner with the biomass production as the objective function (for information concerning the biomass pro-

duction and objective function, please see material and methods as well as Data S1). BacArena provides

the metabolic fluxes, growth pattern, and concentrations of the medium for each time point of each indi-

vidual species present in the in silico experiment. This allows the determination of possible cross-feeding

and/or physiological interactions in a multi-species in silico culture experiment.

As a starting point, we performed single bacteria growth simulations in the three different media MRS,

ACE, and HD. An uncertain parameter was the amount of oxygen entering the system. Acetobacteraceae

are aerophilic, whereas lactobacilli are microaerophilic and tolerate only a small amount of oxygen.

Furthermore, it is still unknown how much oxygen is present in the larval and adult Drosophila gut. Given

that our goal was to model the situation within the Drosophila gut where the two genera would meet each

other, we performed all simulations in the presence of 0.1 mM oxygen, which represents a microaerobic

situation (Ito et al., 2002).
iScience 24, 103216, November 19, 2021 5
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Figure 3. In silico production of signature metabolites by the different genome-scale metabolic network models

(A–C) Production of lactate by the L. plantarum (A2, light green, dot), L. plantarum (B2, medium green, check), and L. brevis (B6, dark green, cross) genome-

scale models on MRS (A), ACE (B), and HD (C) media, respectively.

(D–F) Production of acetate by the A. indonesiensis (A4, light orange, pentagon), A. indonesiensis (A5, medium orange, triangle), and A. pasteurianus (B5,

dark orange, star) genome-scale models on MRS (D), ACE (E), and HD (F) media, respectively. Please note that not all models produced the respective

signature metabolite on the given medium. Metabolite production curves represent mean values of at least 12 simulation runs. An interactive version of the

figure is available as Data S4 and detailed model data are available at https://doi.org/10.17632/2tgjd6y4zb.1.
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Of the lactobacilli, the two L. plantarum models showed good growth on all media (Figures 1D–1F).

L. brevis, in contrast, showed only limited biomass production in the MRS, ACE, and HD simulations (Fig-

ures 1D–1F). The A. indonesiensis and A. pasteurianus models all result in strong biomass production in

simulations utilizing the ACE and MRS media (Figures 2D and 2E). On the HD, however, all Acetobacter

strain model simulations only showed low biomass production (Figure 2F). When we compared our in silico

growth simulation results to the actual wet-lab data (Figure S1), our lactobacilli simulations fitted the exper-

imental data overall better. So far, the reasons for the discrepancies of the Acetobacter simulations are not

clear. Yet, the appropriate simulation of growth magnitudes is inherently difficult using FBA (see discus-

sion) and might depend on many parameters. For our experiments, however, we focused on the identifi-

cation of growth dependencies and metabolite exchanges, which are only considering relative changes

and are thus unaffected by these shortcomings.

Next, we investigated the production of certain signature metabolites by the different models. Several

Lactobacillus species are able to use the phosphoketolase pathway and are thus heterolactic (Spector,

2009). On top of the lactobacilli signature metabolite lactate, heterolactic bacteria also produce acetate.

Here, we thus tested for a possible heterolactic behavior of our L. plantarum and L. brevismodels. For the

Acetobacter models, we did not expect such a behavior and only a prominent production of acetate.

As flux-balance simulations can vary to some extent in terms of individual flux predictions due to stochastic

effects, we performed the simulations 100 times to identify the most likely metabolite production behavior

(Figure S3). Figures 3 and S4 show representative simulation results (Data S4 is an interactive version of Fig-

ure 3, which provides all predicted metabolite productions). Lactate production was mostly limited to

L. plantarum (B2) on the MRS and ACE diets, L. plantarum (A2) on the ACE diet, and L. brevis (B6) on

the HD (Figures 3 and S3). None of the Acetobacter models produced lactate (Figures S3 and S4).

All Acetobacter model simulations resulted in prominent acetate production on the ACE and MRS growth

media (Figures 3D, 3E and S3). Yet, on the HD only A. pasteurianus (B5) was producing acetate (Figures 3F

and S3). For the Lactobacilli, only the two L. plantarum models showed prominent acetate production on

the MRS and ACE media (Figures S3 and S4). On the HD, all Lactobacilli showed acetate production
6 iScience 24, 103216, November 19, 2021
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(Figures S3 and S4). Altogether, our simulations thus reveal a heterolactic behavior of the isolated lactoba-

cilli as well as demonstrate the expected metabolite production for the Acetobacter models. Next, we

investigated the co-culturing behavior in silico.

Simulating the co-culturing of Lactobacillus and Acetobacter

Our key question was whether bacteria present in the gut could affect each other’s growth. For other gut

microbiome members of the fly such beneficial metabolite exchange behavior could be recently demon-

strated (Consuegra et al., 2020a; Henriques et al., 2020). For the species isolated in this study, we detected

prominent growth differences in the different growth media in vitro (Figures 1 and 2) as well as in silico (Fig-

ures 1 and 2). Our hypothesis was that the growth of co-cultures could be different from the growth of pure

cultures based on the exchange of metabolites. If one is able to predict the impact of an exchange of

metabolites between the different species of a gut microbiome as well as the impact of the metabolite

exchange, one could design prebiotics, which means metabolites promoting the growth of a certain bene-

ficial gut microbiome constituent. In order to test for such potential growth-promoting effects, we per-

formed simulations comparing the mono-inoculations to all pair-wise combinations of Acetobacter and

lactobacilli. In order to quantify potential growth effects, we first estimated the predicted biomass produc-

tion after 45 h for the individual or co-cultured growth. Figures 4A–4C show the color-coded results for all

individual and combined growth conditions on the MRS (A), ACE (B), and HD (C) media (all simulation data

are available in the supplement). In Figures 4D–4F we highlight three detailed representative modeling

outcomes from the overview representation in Figures 4A–4C (orange box in B relates to D, green box

in B relates to E, and red box in C relates to F).

First, we consider the predicted growth curves of singular (upper two panels) or combined (lowest panel)

L. plantarum (A2) and A. pasteurianus (B5) on ACE medium (Figure 4D) as an example of a trivial growth

behavior. Both bacteria individually grow very well on the ACE medium. When combined, however, the avail-

able space gets limiting and thus both bacteria just reach half of the arbitrarily set maximum possible biomass

production of 750 pg. Thus, the two bacteria only affected their mutual growth in terms of a limitation of the

available resources. The combination of bacteria, however, can also result in non-trivial growth effects. Simula-

tions with the L. plantarum (B2) and A. indonesiensis (A5) models on the ACE medium, for example, result indi-

vidually in very highbiomass production (Figure 4E). Yet in combination, theAcetobactermodel results in higher

biomass production, whereas the Lactobacillus model results in much lower biomass production (Figure 4E).

Thus, the presence of Acetobacter apparently limits the biomass production of the Lactobacillus model,

perhaps by winning the competition about the available resources.

Most striking, however, the combination of L. brevis B6 andA. indonesiensisA4, which individually produce

on the HD only very little biomass in simulations (Figure 4F), results in a surprisingly prominent biomass pro-

duction of Acetobacter (Figure 4F). In fact, the combination of L. brevis (B6) and all Acetobacter models

resulted in such a growth behavior (Figure 4C). Thus, only a small amount of Lactobacillus was necessary

to allow prominent biomass production of the Acetobacter model and Lactobacillus serves as a probiotic

for Acetobacter in our simulations.

Analysis for metabolites exchanged between Acetobacter and Lactobacillus

The results of our co-occurrence simulations suggest that growth interdependencies between the different

gut bacteria exist. Ultimately, the simulations should result in predictions ready to test in in vivo experi-

ments. Thus, we concentrated on the following on the growth simulations performed with the HD, as

with this defined diet, we can control and fine-tune its constituents. In addition, this diet can also be

used in the future to monitor the growth of the bacteria in combination with their natural host

D. melanogaster. In terms of a probiotic activity of L. brevis for A. indonesiensis we envisioned that the

Lactobacillus either removed a growth-inhibiting or secreted a growth-promoting factor thus enabling

Acetobacter to produce biomass in our simulations. Thus, we monitored the excretion and uptake rates

of both bacteria over time within the simulations. For an easier detection of a net efflux or uptake, we

formed a quotient between the individual uptake rates and normalized the values (see materials and

methods). This allowed us to plot the exchange reactions in a heatmap (Figure 5) where a positive value

means that both bacteria take up or excrete the given metabolite and a negative value means that the bac-

teria show a reciprocal metabolite transport behavior. Thus, a negative value is consistent with the excre-

tion of a given metabolite from one bacterium and the uptake of the samemetabolite by the other species.

Figure 5 shows the situation after 32 h of growth (see Data S5 for an interactive version of the figure
iScience 24, 103216, November 19, 2021 7



Figure 4. In silico co-culturing of Lactobacillus and Acetobacter

(A–C)We simulated the growth of all individual as well as pair-wise combinations of the Lactobacilli andAcetobactermodels on theMRS (A), ACE (B), and HD

(C) media. The plots summarize the color-coded biomass produced after 45 h of simulated growth. Total amount of produced biomass from 0–250 pg: beige,

equals no or weak growth; 250–500 pg of predicted biomass: light blue; equals intermediate growth, and 500–750 pg of predicted biomass: dark blue;

equals strong growth.

(D–F) Detailed time-resolved data for three different examples of single organism growth simulations as well as the simulated growth of the combination of

the bacteria. D (refers to orange box in B) shows an example of the most trivial growth behavior, where the combination of L. plantarum (A2, light green, dot)

and A. pasteurianus (B5, dark orange, star) on the ACE medium limits the growth of each other based on the impact of space and resource competition.

E (relates to green box in B) shows an example of a detrimental outcome of the combination of bacteria. L. plantarum (B2, medium green, check) and

A. indonesiensis (A5, medium orange, triangle) grow individually well on the ACE medium. The combination, however, results in a prominent block of the

Lactobacillus growth, perhaps due to resource competition effects. F (relates to red box in C) shows a probiotic activity of L. brevis (B6, dark green, cross) on

the growth of A. indonesiensis (A4, light orange, pentagon) on the HD. Both bacteria individually only show minute biomass production on the HD, whereas

the combination results in a prominent growth of A. indonesiensis (A4, light orange, pentagon).
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providing the data for all time points). Many transport reactions had a positive sign, and thus the direction

of the transport pointed in the same direction in both bacteria. Few reactions, however, consistently

showed a negative sign, which is in line with an exchange of the givenmetabolite. Among those, D-Alanine,

L-Arginine, D-Ribose, Acetaldehyde, Fumarate, and Butane-2,3-diol (BDOH) showed the most prominent

exchange behavior.
Growth-promoting effect of singular metabolites added to Acetobacter cultures

We tested next whether the addition of any of the metabolites shown in Figure 5 to the HD growth medium

simulations is sufficient to improve the growth of A. indonesiensis, which alone showed only poor biomass pro-

duction on the HDmedium (Figure 6A). Of the 43metabolites tested (Figure S5), only 10 metabolites showed a

growth-promoting effect in silico. Those were indeed enriched for the metabolites, which showed a predicted

exchange from one bacterial species to the other (negative sign in Figure 5). The in silico addition of the TCA

intermediate fumarate, for example, resulted in prominently increased predicted biomass production (Fig-

ure 6B). The same growth-promoting effect is visible in the in silico prediction of D-Ribose added to the HD
8 iScience 24, 103216, November 19, 2021



Figure 5. Flux of exchange reactions during the co-culturing of Acetobacter and Lactobacillus on the HD

We simulated the combined growth of Acetobacter and Lactobacillus on the HD and monitored the respective fluxes of the exchange reactions (thus, the

fluxes representing an uptake or excretion of a givenmetabolite) over time. Exchange reactions are defined as reactions (or passages) where metabolites can

flow in and out of the metabolic network and therefore the organism or cell. They can be subjected to different constraints such as diffusion or Michaelis-

Menten kinetics of metabolite transporters, but for most reactions, only boundary thresholds can be set as the real-world flux rates are unknown. Further

information on exchange reaction is found in Cotten and Reed (2013); Orth et al. (2010). For the sake of simplicity, we combined the individual fluxes into a

normalized quotient, where a positive sign represents the same directionality (e.g., both bacteria secrete a given metabolite) of the individual fluxes and a

negative sign represents opposite directionalities (e.g., one bacterium secretes a given metabolite and the other consumes it). The heatmap represents the

flux ratios at 32 h of growth (an interactive version of the plot for all time points is provided as Data S5). Gray color represents that the respective metabolite is

either not present or only transported by one of the two bacteria (not shown in color scale on the right); green color opposite and lilac color same flux

directionalities. Multiple metabolites consistently show opposite flux directionalities across bacterial species combinations and across the time line.
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medium (Figure 6C). No growth-promoting effect was visible when D-Alanine was added to the HDmedium in

the in silico prediction of A. pasteurianus B5 (Figure 6D), whereas biomass production of A. indonesiensis A4

and A5 was promoted (Figure S5). Thus, the simulations suggested that already the exchange of a singular

metabolite between the bacterial species could result in a growth-promoting effect.

Finally, we tested for the experimental validation of the predicted growth-promoting effects. For this pur-

pose, we recorded growth curves of A. pasteurianus (B5) in HD containing varying concentrations of fuma-

rate (Figure 6E), D-Ribose (Figure 6F), and D-Alanine (Figure 6G). With fumarate and D-Ribose, we selected

metabolites that showed in silico a prominent growth-promoting effect on all Acetobacter species (Fig-

ure S5), whereas D-Alanine did not result in a full growth rescue of A. pasteurianus (B5), but only the other

two Acetobacter species (Figure S5). D-Ribose alone was not sufficient to improve the growth of

A. pasteurianus (B5) prominently (Figure 6F). Yet, the addition of fumarate and D-Alanine in different con-

centrations showed a prominent positive effect on the growth of the bacteria (Figures 6E and 6G).

Altogether, our results suggest that microbiome members are metabolically connected, thus affecting the

growth of individual microbiomemembers. The strategy presented herein consisting of the isolation of distinct

bacteria, their genome sequencing, and subsequent in silicomodeling of growth and metabolism thus proved

successful to identifymetabolite exchange and growth-promotingmetabolites. Future experiments targeted to

investigate combinatorial effects ofmetabolite additions aswell as the contributionof the hosts’metabolismwill

further extend our understanding of the complex interplay among the gut microbiome members.

DISCUSSION

In this study, we analyzed multiple members of the Drosophila gut microbiome by a combination of in vitro

and in silico experiments. In total, we isolated six bacterial strains from laboratory-reared Drosophila flies

followed by in vitro growth experiments, resequencing, and genome assembly and in silico growth and

metabolism modeling analyses.
iScience 24, 103216, November 19, 2021 9



Figure 6. Growth-promoting effect of singular added metabolites

(A–D) In silico biomass production of A. pasteurianus (B5) on the standard HD. In silico biomass production of A. pasteurianus (B5) on HD with 10 mM (B)

Fumarate, (C) Ribose, and (D) D-Alanine.

(E–G) Actual growth measurements of A. pasteurianus (B5) on HD (dark orange) with Fumarate (E), Ribose (F), or D-Alanine (G) (10 nM, 0.1 mM, 0.1 mM, 1 mM,

and 100mM; black color and different dashed lines). In silico experiments (A, B, C, and D) are represented by the computer, whereas the wet-lab experiments

(E, F, and G) are represented by the small reaction tube pictograms.
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First, we tested for a biomassproduction of the singular bacteriamodels onACE,MRS, andHD. L. plantarumwas

able togeneratehighamountsofbiomasson theACEmedium,whereasL. breviswasnot (Figures 1D–1F). Similar

growthwas detected on theMRSmedium and onHD. AllAcetobactermodels resulted in high biomass produc-

tion on the ACE andMRSmedia and only very low biomass production on the HD (Figures 2D–2F). Our models

mostly recapitulated the corresponding actual growth experiments (Figures 1, 2, and S1). Especially the poor

growth of the L. brevis isolate was detected in vitro and in silico (Figures 1, 2, and S1). The reason for this growth

deficit is todatenot clear. For someof theorganisms, suchasA. indonesiensison theACEmedium, themodeling

resultsdeviate from the actualmeasurements in termsof themagnitudeof theeffect (FigureS1). This is aproblem

seen in many modeling approaches, which might be based on a variety and most likely a combination of many

parameters, including gaps in the model, confounding factors, and the lack of certain environmental conditions

in the modeling procedure. Furthermore, the modeling procedure depends on the requirement to define ‘‘ex-

change reactions,’’ which are thresholds setting the boundaries for metabolic fluxes going into and out of the

model. Although these thresholds can be controlled by different constraints such as diffusion or Michaelis-

Menten kinetics of metabolite transporters (Cotten and Reed, 2013; Orth et al., 2010), for most of the reactions,

these boundaries are not experimentally validated and thus themodel itself is largely underdetermined. Further-

more, also the biology of the given bacterium might be a cause for deviations between the experimental and

modeling data. A prerequisite of the FBA procedure is the assumption that an objective function is optimized

in terms of a maximization. Often as well as in our study the optimized objective function is

biomass production. Previous studies, however, demonstrated that several microorganisms operate at a sub-

maximal growth rate (Fischer and Sauer, 2005; Schuetz et al., 2007, 2012). The reasons for this behavior are not

yet always clear.

Altogether, these parameter variations and modeling uncertainties will result not only in deviations of the

magnitude of, e.g., biomass production, but also in kinetic differences, e.g., in terms of the growth rate.

With variations in the build-up of biomass, also the mass transfer will vary, thus potentially resulting in

more prominent differences between the computed and wet-lab results. Important, these confounding

characteristics of the modeling procedure apply to the single and the multiple species growth simulations.
10 iScience 24, 103216, November 19, 2021
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The latter, however, will of course be even more severely affected by differences in the growth rates of the

individual species that make up the consortium as the mass ratios between the species will also affect the

mass transfer of metabolites. Furthermore, also the details concerning the juxtaposition (directly neigh-

bored versus located in, e.g., different compartments of the gut) as well as variations in the initial mass ra-

tio, thus the relative abundance of each species, will prominently affect the individual growth rates and

mass transfer. Further experimental data including, e.g., localization studies, measurements of the individ-

ual abundance of bacterial species, and metabolic labeling experiments to determine flux rates as well as

refinements of the models will help to improve the modeling outcome in the future.

Future iterations and refinements of the models will also need to target the optimization of the growth con-

dition parameterization. Our simulations using the HD medium is a first step in the direction of modeling

the actual growth conditions within the fly gut, as all bacteria as well as the host can thrive on this medium.

The standard diet most often used to rearDrosophila is complex and undefined, often containing live or dry

yeast, molasses, or treacle, which makes the parameterization and modeling very complex. Also, the exact

conditions within the gut are still not clear as, e.g., metabolite concentrationsmight vary along the anterior-

posterior axis of the gut as well as across the diameter of the gut. Thus, further experimental and modeling

work will be needed to decipher these details in the future.

On top of testing the biomass production, model validation also included the analysis of expected signa-

ture metabolite production. Acetobacter, for example, is known to oxidize sugars or ethanol to acetic acid

(Raspor andGoranovi�c, 2008), whereas lactobacilli produce glucose-derived lactic acid as themain product

(Hatti-Kaul et al., 2018). Both metabolic models were able to recapitulate this behavior (Figure 3). It is

intriguing that the previously described heterolactic metabolism of lactobacilli (Spector, 2009) could

also be recapitulated for our isolated bacteria (Figure S3) suggesting that our models result in realistic

metabolic behavior predictions. Of note, however, some of the predictions need to be considered with

care. Our simulations, for example, also revealed the production of H2O2 and also H2S. Both substances

can act as inhibitors of bacterial growth, especially in higher concentrations (Alt et al., 1999; Reis et al.,

1992). Nevertheless, some Acetobacter species were demonstrated to produce H2S under certain condi-

tions (Ahmad et al., 2004). Thus, so far it is not clear whether the neutral or even positive effect of the pres-

ence of these substances on the growth (Figure S5) is real or based on the limitation of FBA to predict

correctly growth-inhibiting and detrimental effects of certain metabolites.

The main goal of our study was to test whether we can predict metabolic growth-promoting inter-species

interactions. If possible, this could open up the door to design tailored prebiotics to promote or hinder the

growth of certain gut microbiome members. For our simulations, we tested all pair-wise combinations of

Acetobacter and Lactobacillus on the three different media ACE, MRS, and HD. Many combinations

were neutral in a way that the growth of the singular bacteria was similar or identical in the singular and

combination situation (Figures 4A–4C; the complete dataset is provided in the supplement). In case

both bacteria showed high growth in single growth simulations, the combination resulted in a competitive

situation, which caused both bacteria to grow less (e.g., Figure 4D). On top of these trivial situations, how-

ever, we also observed inhibitory and stimulatory interactions. The L. plantarum strain B2 and

A. indonesiensis strain A5 result in comparable and high biomass production in the ACE medium when

grown independently (Figure 4E). The combination, however, does not result in an equal reduction of

the biomass to an intermediate level, but in contrast to a much stronger reduction of the Lactobacillus

biomass production, whereas Acetobacter production got increased (Figure 4E). Likely, this effect is based

on resource competition, which might also play a role within the gut of the Drosophila host. Even more

astonishing was the stimulatory effect of combining the individually poor biomass producers L. brevis

and either of the Acetobacter models, which we were able to track down to the exchange of selected me-

tabolites (Figures 4F and S5). For fumarate and D-Alanine, we already were able to confirm the growth-pro-

moting effect by simply adding these metabolites to the HD medium (Figure 6). Ribose, however, did not

result in the expected growth rescue. At this point, the reasons for this discrepancy are unclear. Whether

additional metabolites could also rescue the growth deficit to a similar extent is at this point unknown. Simi-

larly, it is also not clear how the co-culturing of the organisms in the end affects each other as beneficial and

competition effects most likely will play a role and thus a more complex growth effect will arise.

Fumarate and D-Alanine could affect the growth of the bacteria by different means. Thus, we considered

different possibilities and cross-validated these using our modeling data. Formally, the metabolites could
iScience 24, 103216, November 19, 2021 11
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complement auxotrophies. Based on our modeling and experimental data, however, we exclude this pos-

sibility, as the bacteria also grow without the supplementation in the MRS or ACE media (Figures 1 and 2).

Furthermore, the compounds could function as additional C- or N-source and enter themetabolism. Fuma-

rate indeed is a central metabolite of the TCA. Thus, its uptake could enhance the overall capacity of the

TCA. Various TCA intermediates further serve the biosynthesis of different amino acids, which potentially

could also benefit biomass production. For Acetobacter pomorum a potential use of fumarate by the

enzyme succinate dehydrogenase (EC1.3.5.1, present in TCA) was discussed where fumarate serves as

an O-donor for the production of NAD+ and NADP+ from Aspartate (Consuegra et al., 2020b). D-Alanine,

in contrast, could be converted first to L-Alanine and subsequently to pyruvate, which serves as a carbon

and energy source. When we analyzed the corresponding flux differences of the modeling performed in

the presence or absence of the metabolites in the HD (Figure S6 and Data S6 and S7), we indeed detected

a number of corresponding flux changes. First, we consider the situation where D-Alanine was added to the

HD. Here, we see an increase in the flux associated with the conversion of D-Alanine to Pyruvate, as ex-

pected (Figure S6A). Pyruvate production is further enhanced coming from oxaloglutarate (Figure S6B).

Other prominent changes include the change of direction of the fluxes from fumarate to malate and oxalo-

acetate (Figures S6C and S6D), the production of isocitrate from citrate (Figure S6E), the production of

S-Succinyl-dihydrolipoamide from oxaloglutarate (Figure S6F), or the enhanced production of gluta-

mate-derived amino acids such as glutamine (Figure S6G). Many of these enzymatic reactions are also

affected by adding fumarate to the HD. Overall, the fumarate-induced flux changes of the TCA reactions

are, however, bigger as from D-Alanine. Fumarate also resulted in a third possibility to enhance the pyru-

vate production coming from oxaloacetate (Figure S6H). The fumarate addition induced higher flux

changes, which might provide an explanation for the overall bigger growth rescue phenotype detected

in the actual growth experiments (Figure 6E). A recent report also targeted the prediction of Drosophila

gut microbiome metabolite interactions using in silico models (Ankrah et al., 2021). The authors indepen-

dently also revealed that TCA intermediate metabolites appear to be prominently exchanged between gut

microbiome members. In their simulations, the authors used different media than we did, but still found a

similar range of exchanged metabolites. Reassuringly, many of the exchanged metabolites are shared by

our and the published study. In our extended studies, however, we did not detect a prominent growth-pro-

moting effect for some of these in our simulations (e.g., acetate, succinate, different individual amino

acids). Yet, several metabolites detected in both studies (e.g., acetoin, acetaldehyde) clearly resulted in

an individual growth-promoting activity (c.f. Figure S5 and Ankrah et al., 2021).

Our results support the possibility to use genome-scale models in combination with agent-based growth

simulations to predict meaningful microbiome cooperativity. In the future, extending this approach to

additional microbiome constituents and/or the metabolism of the host D. melanogaster will be exciting

and perhaps pave the way to analyze also the much more complex microbiomes of higher organisms.
Limitations of the study

Thereare limitations in themodelingofgrowth-promotingbacterialmetabolic interactions.Ontheonehand, this

is true for the modeling side as outlined above. For example, FBA assumes optimization and maximization of a

given parameter such as biomass production, yet organisms sometimes operate at a sub-optimal level. Further-

more, our knowledge of many parameters required for themodeling such as nutrient distribution along the gut,

nutrient uptake rates, and transport reaction efficacies are unknown, which results in the necessity to make as-

sumptions that are in the best case imprecise and in the worst case wrong. Further iterations and improvements

on themodeling andexperimental sidemight solve someof these shortcomings using, e.g., isotope labeling ex-

periments. On the other hand, uncertainties concerning the biology exist. For example, we used laboratory-

reared flies and detected the most prominent microbiome growth interactions on a minimal diet used for the

growth of Drosophila. In the future, bacteria from wild-reared animals grown under natural conditions should

be used, which, however, will be experimentally very challenging. Finally, our analyses were performedwith sim-

ple consortia. Ultimately, complexmixtureswith varying relativemicrobial species abundancies and consistingof

morespecieswillbe requiredtoestimate the true importanceofmetabolic cross-feedingphenomenaamonggut

microbiota.
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RESOURCE AVAILABILITY

Lead contact

Further requests for resources should be directed to and will be fulfilled by the lead contact, Mathias Beller

(mathias.beller@hhu.de).

Materials availability

This study did not generate new materials.

Data and code availability

d Genome resequencing data, the genome-scale metabolic networks and bacterial growth data, as well as

all data required to reproduce the figures are deposited at Mendeley Data and is available as of the date

of publication at https://doi.org/10.17632/2tgjd6y4zb.1.

d All original code was additionally deposited at our GitLab account and can be accessed via https://

gitlab.com/Beller-Lab.

d For any additional questions or information please contact the lead contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains and rearing

The fly lines that were used in this study are w1118 (white[-]) and Oregon-R. Flies were maintained at 25�C
with 60–70% humidity and a 12 h light/dark cycle. Standard diet contains 0.5% agar (Becton Dickinson),

7.1% polenta (Verival, Pronurel Bio), 0.95% soy flour (Bauck Hof), 1.68% yeast (Bruggeman), 4% treacle

(Original Grafschafter Goldsaft), 4.5% malt extract (Demeter). All diets contained 0.15% nipagin (Sigma-Al-

drich) and 0.45% propionic acid (Acros Organics).

Isolation of bacterial species from Drosophila

In order to analyze different bacterial species from the gut microbiome of Drosophila, both white[-] and

Oregon-R male flies (9 individuals) were surface sterilized by washing with 10% bleach, 70% ethanol and

PBS before homogenization and plating on MRS and ACE agar plates. MRS agar plates (Oxoid, Thermo

Scientific) contain (in 1000 mL dH2O): Agar (15 g), casein peptone, tryptic digest (10 g), meat extract (10

g), yeast extract (5 g), glucose (20 g), Tween 80 (1 g), K2HPO4 (2 g), Na-acetate (5 g), (NH4)2 citrate (2 g),

MgSO4 x 7 H2O (0.2 g), MnSO4 x H2O (0.05 g), pH 6.2–6.5. ACE agar plates (Blum et al., 2013)

contain: (in 1000 mL dH2O): Agar (15 g), yeast extract (8 g), casein peptone (15 g), glucose (10 g), after
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autoclaving: acetic acid (3 mL), ethanol (p.a.) (5 mL) and Cycloheximid (100 mg). The plates were incubated

at 28�C for three to five days and single colonies were picked and isolated on new agar plates for three

rounds to obtain pure cultures. These were then stored in glycerol stocks for later DNA extraction and

analysis.
METHOD DETAILS

Single colony PCR and analysis of 16S rRNA genes

Of the different pure cultures single colonies were picked and transferred into PBS buffer containing

200 mg/ml Proteinase K and 10 mg/ml Lysozyme and incubated for 30 min at 37�C and 2 min at 95�C.
The samples were centrifuged for 2 min at 13.000 rpm and the supernatant transferred to a new vial.

The 16S rRNAGenwas amplified using the GM3F andGM4R primers (Klindworth et al., 2013) using the Phu-

sion Polymerase (New England Biolabs) which produced a product of about 1500 bp. These PCR products

were then ligated into the TOP TA Vector (TOPO TA Cloning Kit for Sequencing, Invitrogen) and trans-

formed into chemocompetent E. coli DH5alpha according to the manufacturer’s instructions. The vector

including the insert was extracted from E. coli and the insert analyzed by Sanger sequencing (MWG

Biotech). The DNA sequence was afterwards subjected to BLAST analysis to identify the isolated bacterial

species.
DNA extraction from bacterial species for genome sequencing

The DNA extraction was performed using the Qiagen QiaAmp DNA Mini kit according to the manufac-

turer’s recommendation, with the followingmodifications. Briefly, an inoculation loop was used to pick bac-

terial colonies from the pure cultures grown on ACE or MRS agar plates and the bacteria were resuspended

in gram-positive lysis buffer (20 mg/ml lysozyme; 20 mM Tris$HCl, pH 8.0; 2 mM EDTA; 1.2% Triton�). The

following lysis and purification steps were performed according to the kit’s protocol for DNA extraction

from gram-positive bacteria.
Liquid media bacteria growth experiments

For the bacterial growth experiment, we prepared pre-cultures in the respective semi-selective medium

(MRS for Lactobacillus sp. and ACE for Acetobacter sp. (Blum et al., 2013)). Subsequently, we either directly

used the optical dense overnight culture or adjusted it to an OD600 of 0.8. Next, we performed a 1:1000

(MRS and ACE) or 1:100 (HD) dilution and distributed the bacteria to transparent 96-well flat bottom plates

(Sarstedt). The medium was covered with mineral oil and incubated in a BioTek Synergy Mx Plate Reader

with (Acetobacter) or without (Lactobacillus) shaking for at least 48 hours. Optical density was measured

every five minutes. Per experiment, all growth curves were measured in at least triplicate and the figures

provide mean values.
Whole genome sequencing of isolated bacterial species

The isolated genomic DNA samples from the gut microbiota species were sequenced using the Illumina

MiSeq platform following standard procedures. The library preparations and sequencing were performed

by the Genomics and Transcriptomics Lab at the HHU.
Genome reassembly

For the genome reassembly the tool ASA3P (Schwengers et al., 2020) was used. ASA3P is an automatic, scal-

able assembly, annotation, and analysis pipeline for genomes of bacterial origin. The pipeline consists of

four steps: Processing, characterization, comparative genomics, and reporting. Each step provides

different analysis information about the used sequenced genome through different software tools and da-

tabases. While processing and reporting is mandatory, the steps of characterization and comparative ge-

nomics is optional and can be skipped by the user. The first step processing includes the task of quality

control, genome assembly, scaffolding and annotation. The second step of characterization determines

the taxonomy, performs amulti locus sequence typing (MLST) analysis, tries to detect antibiotic resistances

(ABRs), a detection of virulence factors (VFs), performs amapping by using quality clipped reads onto refer-

ence genomes provided by the user, and annotates single-nucleotide polymorphisms (SNPs). The third

step of comparative genomics consists of the calculation of a phylogenetic tree and of a core, accessory

and pan-genome while detecting isolate genes. The last step is a graphical presentation of the pipeline

results. All ASA3P results are provided in the supplement.
iScience 24, 103216, November 19, 2021 19



ll
OPEN ACCESS

iScience
Article
Reconstruction of bacterial metabolic models

The sequenced genomes were used to reconstruct their genome-scalemetabolic models using the gapseq

analysis pipeline (Zimmermann et al., 2021). We used for the reconstruction and gap-filling step the MRS,

ACE and HD as the growth medium. All metabolic models were created combining each genome

sequence and every single medium. During the model generation process, we considered in particular

stochiometric consistency, mass and charge balance as well as metabolite connectivity and introduced

necessary changes following manual curation. In order to test for the quality of our models, we used the

MEMOTE analysis pipeline (Lieven et al., 2020). All analysis results are provided as supplemental data.

In brief, the models resulted in at least 77% model quality scores. Most importantly, the key requirements

for the models all reached at least 99%. The score was only decreased by e.g. missing gene or metabolite

annotation cross-references, which we do not focus on in the present manuscript and have no influence on

flux predictions in constraint-based modeling. A central part of genome-scale metabolic models is the

biomass reaction, which represents the metabolite consumption for the formation of all cell constituents.

The biomass reaction is commonly, and also in this study, used as objective function for flux balance anal-

ysis (FBA) or FBA-derived simulation techniques. The gapseq software automatically adds a biomass reac-

tion to the models based on the organism’s Gram-staining phenotype in order to account for biomass

composition differences due to differences in the structural characteristics of the cell wall. The exact

biomass reaction stoichiometries in gapseq are directly derived from ModelSEED (Henry et al., 2010),

which in turn derived the biomass reaction definitions from curated genome-scale metabolic models

from Escherichia coli (Orth et al., 2011) as a proxy for Gram-negative bacteria and Bacillus subtilis (Oh

et al., 2007) as a proxy for Gram-positive bacteria. The biomass compositions for all Lactobacilli models

(Gram-positive) and Acetobacter models (Gram-negative) are provided in Data S1.
Constraint-based modeling

Flux balance analysis (FBA; (Orth et al., 2010)) was used to perform the growth and metabolic flux analysis.

The mono- and co-culturing in silico experiments were performed using the BacArena tool (Bauer et al.,

2017), which is also based on FBA.
In silico growth media

In silico experiments used parametrized versions of the experimentally used MRS, ACE and HD media

(Supp. Table 1). MRS and ACE medium are semi-defined as the contain complex ingredients such as yeast

extract. Therefore, we obtained compositional information from the suppliers of the respective media in-

gredients (see Data S2). For some media components, which are required to run the simulations, no quan-

titative information could be obtained. Those compounds were manually curated and added. We limited

the number of such manually added compounds to the absolute minimum and provide all media informa-

tion as supplemental data. The parametrized HD medium is based on the protocol of (Piper et al., 2014),

which is completely synthetic and thus did not require any modifications.
Calculation of predicted relative flux ratios

To identify reactions with a higher flux and reactions corresponding to a crosstalk between Lactobacillus

brevis B6 and the Acetobacter sp. we calculated a predicted relative flux ratio for each reaction and

time point.

We calculated the predicted relative flux ratio as followed:

vRatio; Reaction i;t =
vLactobacillus B6; Reaction i;t

vAcetobacter ; Reaction i;t
(Equation 1)

where vLactobacillus B6; Reaction i;t is the flux of the reactioni of Lactobacillus B6 at time point t in mmol
gDW�h,

vAcetobacter; Reaction i;t is the flux of the reactioni of Acetobacter sp. at time point t in mmol
gDW�h.

If the predicted relative flux ratio value is between 1 and -1 we calculated the values as followed:

vRatio; Reaction i;t =
1

vRatio; Reaction i;t
;1> vRatio; Reaction i;t> � 1 (Equation 2)

where vRatio; Reaction i;t is the unitless predicted relative flux ratio. We choose this representation of the value

range between 1 and -1 to highlight the higher flux value between Lactobacillus B6 and theAcetobacter sp.
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Calculation of cumulative flux values

In order to analyse themetabolic impact of an additional metabolite in the holidic diet towards the bacteria

grown on the media we calculated the cumulative flux for each time point.

First, we calculated the sum of flux values:

vSum;M; Reaction i =
Xn

t = 0

vM; Reaction i (Equation 3)

where vSum;M; Reaction i is the sum of flux values over the time t with mediumM in mmol
gDW�h, vM; Reaction i is the flux

value at a time point with medium M in mmol
gDW�h.

Next, we calculated the difference of the sum flux values between the standard holidic diet HD and the me-

dium M:

vcflux; Reaction i = vSum;HD; Reaction i � vSum;M; Reaction i (Equation 4)

where vcflux; Reaction i is the difference between the summed flux values of HD and mediumM over the time t.

Finally, we calculated the cumulative flux as followed:

vcflux;Reacton i = logð��vcflux; Reaction i

�� + 1Þ (Equation 5)

where vcflux;Reaction i is the cumulative flux value between HD and the medium M for a reaction in

log

�
mmol
gDW�h

�
. The cumulative flux value can also be calculated for a group of reactions.
QUANTIFICATION AND STATISTICAL ANALYSIS

Figures represent averaged or representative results of multiple independent experiments or simulations.

The figure legends provide details concerning the N of experiments or simulations. Analyses and Plots

were performed with custom Python scripts.
ADDITIONAL RESOURCES

All data is available at data.mendeley.com under the URL https://doi.org/10.17632/2tgjd6y4zb.1.
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