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Abstract 

Background:  Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders which are more common 
in males. The ‘prenatal sex steroid’ hypothesis links excessive sex-steroid exposure during foetal life with the behav-
ioural differences observed in ASD. However, the reason why sex steroid exposure may be excessive remains unclear. 
Epidemiological studies have identified several environmental risk factors associated with ASD, including develop-
mental vitamin D (DVD) deficiency. We have demonstrated in an animal model that DVD-deficiency is associated 
with a hyper-inflammatory response in placentas from male but not female foetuses. Vitamin D also regulates the 
expression of several steroidogenic enzymes in vitro. Therefore using this animal model, we have examined whether 
DVD-deficiency leads to increased sex-steroid levels in both the maternal and foetal compartments.

Methods:  Female rats are fed a vitamin D deficient diet from 6 weeks before mating until tissue collection at embry-
onic day 18. We examined the levels of testosterone, androstenedione and corticosterone in maternal plasma, foetal 
brains and amniotic fluid. We further examined gene expressions of steroidogenic enzymes and DNA methylation of 
aromatase promoters in foetal brains as a potential molecular mechanism regulating testosterone expression.

Results:  We show that DVD-deficiency increases testosterone levels in maternal blood. We also show elevated levels 
of testosterone and androstenedione in the amniotic fluid of female but not male DVD-deficient foetuses. Testoster-
one levels were also elevated in DVD-deficient male brains. Vitamin D, like other steroid-related hormones, regulates 
gene expression via methylation. Therefore we examined whether the significant elevation in testosterone in male 
brains was due to such a potential gene-silencing mechanism. We show that the promoter of aromatase was hyper-
methylated compared to male controls.

Limitations:  A reduction in aromatase, in addition to causing excessive testosterone, could also lead to a reduction 
in estradiol which was not examined here.

Conclusions:  This study is the first to show how an epidemiologically established environmental risk factor for ASD 
may selectively elevate testosterone in male embryonic brains. These findings provide further mechanistic support for 
the prenatal sex steroid theory of ASD.
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Background
Vitamin D has long been known to regulate calcium 
homeostasis and promote healthy bones [1]. Recent clini-
cal and pre-clinical studies have informed the research 
community on a much broader role of vitamin D. For 
example, in addition to its role in calcium absorption, 
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vitamin D affects fundamental developmental processes 
such as cellular differentiation and regulation of immune 
function [2, 3]. Evidence also continues to accumulate, 
suggesting that vitamin D is an active neurosteroid and 
developmental vitamin D (DVD) deficiency is associated 
with adverse brain outcomes [4]. Two recent epidemio-
logical studies have linked low maternal vitamin D levels 
during pregnancy and an increase in the risk of autism 
spectrum disorder (ASD) diagnosis in offspring. The first 
of these studies showed that vitamin D deficiency from 
mid-gestation to birth is associated with ASD-related 
traits in a large Dutch population-based cohort [5]. This 
study also assessed ASD diagnosis in children and con-
firmed this relationship [6]. The second study was a large 
case–control cohort from Sweden. This study found that 
both maternal and neonatal vitamin D deficiencies are 
associated with increased risk of developing ASD [6]. 
This relationship has also been replicated by two other 
studies [7, 8]. It is important to note two recent studies 
did not support this link [9, 10]. However the populations 
in which these two studies were conducted had far higher 
mean levels of vitamin D > 75  nM which is regarded as 
vitamin D sufficient [11], thus minimising the possibility 
of testing this relationship. In addition to this, DVD-defi-
cient animals display several behavioural traits relevant 
to the core ASD symptoms across a range of develop-
mental stages such as delays in motor development, 
altered ultrasonic vocalizations, stereotyped repetitive 
behaviour and deficits in social play behaviour [12, 13]. 
Some behaviours such as delays in motor development 
were more prominent in males.

Vitamin D also plays an important role in the preven-
tion of ASD. For example, there is one study conducted 
to investigate the effect of maternal vitamin D supple-
mentation on the reoccurrence of ASD in “high risk” 
group [14]. This open-label prospective study showed 
that expectant mothers who already had at least one 
autistic child, when supplemented with high doses of 
vitamin during subsequent pregnancy (5000 IU/day), and 
then gave 1000 IU/day to their newborns for 3 years, had 
offspring with a reduced reoccurrence of ASD. This study 
while promising unfortunately had a small sample size 
and no control group so can therefore be considered as 
a preliminary model for future clinical trials into vitamin 
D supplementation at best. Furthermore, an animal study 
shows that vitamin D supplements during pregnancy 
in an animal model of maternal immune activation also 
completely prevent ASD traits in their offspring [15].

ASD is a neurodevelopmental disorder character-
ized by early deficiencies in social interaction and com-
munication together with highly repetitive stereotyped 
behaviour [16]. While ASD is known to involve a genetic 
component, the biological pathways contributing to ASD 

likely vary between individuals [17]. ASD has a pro-
nounced gender-biased prevalence with an estimated 
male to female diagnostic ratio of 3:1 [18]. Increased 
exposure of the male foetus to testosterone has been 
identified as one plausible reason for such sex differences. 
More direct support comes from amniocentesis studies. 
Two studies from the same group have shown elevated 
levels of testosterone in the amniotic fluid of children 
who later went on to develop ASD [19–21]. Androstene-
dione which is a weak androgen and precursor for testos-
terone was also found to be elevated in the amniotic fluid 
of ASD children [19]. Direct correlations between foetal 
testosterone and ASD traits have also been demonstrated 
in many studies [20, 22, 23].

Vitamin D (25OHD) is converted into its active form 
1,25-dihydroxy-vitamin D (1,25OHD) by the enzyme 
CYP27B1. Like other steroids, 1,25OHD regulates gene 
expression through its nuclear receptor—the vitamin 
D receptor [24]. Vitamin D plays an important role in 
modulating steroidogenesis by regulating the expression 
of several genes encoding steroidogenic enzymes and 
of most relevance to this study, CYP19A1 the gene cod-
ing for aromatase which is the major catabolic enzyme 
in testosterone elimination (see Fig. 1a) [25]. Vitamin D 
has also been inversely correlated with testosterone in 
numerous tissues and cell types [26, 27]. Taken together, 
this evidence suggests that DVD-deficiency might con-
tribute to higher testosterone levels in different tissues.

The primary aim of this project was to examine if DVD-
deficiency increases foetal exposure to sex-steroids. Here 
we have examined testosterone, androstenedione and 
corticosterone in maternal blood, foetal brain and amni-
otic fluid. We selected these steroids because they are 
elevated in ASD and regulated by vitamin D [28–30]. We 
also examined the level of 2-Methoxyestradiol (2-ME) 
from the maternal serum. 2-ME is a natural metabolite 
of estradiol and implicated in preeclampsia which is a 
known risk factor for ASD [31–33]. We further examined 
the expression of multiple cytochrome P450 enzymes 
and hydroxysteroid dehydrogenases responsible for sex-
steroids formation or elimination. Finally, we explored 
plausible vitamin D-related molecular mechanisms for 
alterations in enzyme expression.

Methods
Tissue collection
DVD-deficiency was induced by feeding standard casein 
AIN93G rodent chow (Speciality Feeds, Western Aus-
tralia) without added vitamin D (0  IU cholecalciferol, 
Product # SF09-105) to 4-week-old female Sprague–
Dawley (SD) rats (Animal Resource Centre, Western 
Australia). Control female rats were fed control casein 
AIN93G diet (Product # SF09-104) containing 1000  IU 
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of cholecalciferol. Both control and vitamin D deficient 
female rats were time-mated with vitamin D normal SD 
sires at 10  weeks of age. For time-mating, four females 
were housed with one male in a single cage and the vagi-
nal plug was checked every 24  h in the morning. Suc-
cessful mating was verified by the presence of a vaginal 
plug, and the day was referred to as embryonic day (E) 0. 
Pregnant dams were euthanized at E18 which represents 
the peak foetal period of steroidogenesis in SD rats [34]. 

Maternal blood, foetal brains and amniotic fluid were 
collected. For detailed tissue collection procedures and 
further information regarding animal cohorts used in the 
study see Additional file 1.

Steroid assay
Foetal brains were homogenised in 1.0  mL cold 1:1 
acetone:ethanol using an ultrasonic homogeniser 
(Vibra-Cell, Sonic & Materials Inc Newtown, CT). Brain 
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homogenates were centrifuged and the supernatant was 
removed and 200 μL of internal standard (1.2 nM testos-
terone-[2H5], 2.5  nM 4-androstene-3,17-dione-[13C3] in 
methanol and 125  nM corticosterone-[2H4] in acetoni-
trile) was added to each sample and diluted with 3.0 mL 
of milliQ water. Diluted samples were loaded onto con-
ditioned Strata C18-E (50  mg/mL SPE cartridges (Phe-
nomenex)). Samples were eluted with 1.0  mL of 100% 
methanol and evaporated to dryness in the vacuum 
centrifuge (miVac Sample Concentrators SP Scientific 
Warminster, PA) at approximately 40  °C for 60 min and 
stored at − 20  °C. For blood samples, 1.0  mL cold 1:1 
acetone:ethanol was added to 20 µL plasma which was 
then processed similar to foetal brains.

For amniotic fluid, 50 µL of sample and standard were 
dispensed into a single well of a 96 deep-well plate. After 
that 200 μL of internal standard (1.2  nM testosterone-
[2H5], 2.5  nM 4-androstene-3,17-dione-[13C3] in metha-
nol and 125 nM corticosterone-[2H4] in acetonitrile) was 
added to each well, vortexed after which samples were 
transferred to an already conditioned 96 well Hydro-
philic-Lipophilic-Balanced, water-wettable, reversed-
phase sorbent plate (Oasis HLB Waters Corporation 
MA USA). All eluates were evaporated to dryness and 
stored at − 20  °C. Steroid levels were quantified by an 
in-house Liquid Chromatography/ Tandem Mass Spec-
trometry (LC–MS/MS) technique. The system consisted 
of a Shimadzu Nexera® UPLC system with a Phenome-
nex Kinetex® 1.7u XB-C18 100 Å (50 × 2.1 mm) column 
attached to an AB Sciex QTrap-5500® triple-quadrupole 
mass spectrometer. On the day of assessment dried sam-
ples were reconstituted in 150 μL of 1:1 methanol:water 
and 40 µL of sample extract (foetal brain, dam’s blood 
and amniotic fluid) was injected onto a UPLC system 
and eluted at 500 µL/min using a gradient method with 
mobile phase A = 0.1% aqueous formic acid and mobile 
phase B = 0.1% formic acid in 95:5 acetonitrile:water. 
The gradient began at 0% mobile phase B and increased 
to 76% mobile phase B at 4 min and then to 95% mobile 
phase B for 2 min. The detection on an API5500-QTrap 
(Applied Biosystems) was performed using positive ion 
MRM mode with electrospray ionization. The mass-
spectrometer settings for each mass transition for the 
examined steroids and their internal standards are as fol-
lows: for corticosterone m/z = 347.1 → 329.1, decluster-
ing potential, (DP) = 120 V, collision energy (CE) = 23 V; 
for corticosterone—[2H4] 351 → 333 DP = 120 CE = 18; 
for testosterone 289.1 → 97 DP = 130 CE = 29; for 
testosterone-[2H5] 294 → 100 DP = 75 CE = 29; for 
4- androstenedione 287 → 97 DP = 136 CE = 31; for]; 
4-androstene-3,17-dione-[13C3] 290 → 100 DP = 145 
CE = 29. Calibration standards and three levels of quality 
controls were prepared in protein stripped urine (Mass 

Spec Gold Urine, Golden West Biologicals). Steroid 
quantifications were performed using MultiQuant™ soft-
ware version 2.1 (AB SCIEX, MA, Framingham, USA) by 
isotope dilution and comparison with a standard curve. 
The calibration range was 0.05–3.2 nM for testosterone, 
0.2–12.8  nM for androstenedione and 10–640  nM for 
corticosterone. Test samples were diluted where neces-
sary to be within range.

Expression of steroid metabolizing enzymes
Expressions of genes encoding steroidogenic enzymes 
known to be regulated by vitamin D were assessed using 
qPCR. See Additional file  1 for qPCR conditions and a 
list of primers used in this study.

Methylated DNA immunoprecipitation
The levels of DNA methylation within the promoter of 
genes encoding aromatase were measured by methyl-
ated DNA immunoprecipitation (MeDIP) followed by 
qPCR. Briefly, DNA was extracted from embryonic 
brains (4 animals per diet group) using Qiagen DNeasy 
Blood and Tissue extraction kit following the manufac-
turer’s instructions. MeDIP was performed as previously 
described by Hu et al. [35]. Briefly, the isolated genomic 
DNA was digested with RNase A, randomly fragmented 
by ultra-sonication (Covaris) into fragments of approxi-
mately 500  bp in length, and denatured at 95  °C for 
10  min within denature buffer and put it on ice right 
away. A total of 2 µg of fragmented DNA were used for 
each MeDIP assay. 10% of fragmented DNA from each 
sample was saved and kept as input genomic DNA. The 
remaining sonicated DNA was diluted in 300 µL in IP 
buffer (10  mM sodium phosphate, 140  mM NaCl, and 
0.05% triton X-100). Overnight incubation with mouse 
anti-5-methylcytosine (5mC, Abcam) antibody or IgG 
antibody as non-specific control (Abcam) was performed 
to generate IP enriched fragments. After overnight incu-
bation, samples were incubated with magnetic beads 
(Dynabeads G) for 2 h, washed and treated with protein-
ase K for 3 h at 55 °C. The immunoprecipitated DNA was 
extracted using phenol–chloroform followed by ethanol 
precipitation.

The qPCR reaction was performed in LightCycler® 480 
System (Roche Diagnostics, Penzberg, Germany) using 
SensiFAST SYBR Green Master Mix (Bioline Meridian 
Bioscience, Memphis, TN, USA) under the following 
conditions: initial denaturation at 95  °C for 10  min fol-
lowed by 40 cycles of amplification (95 °C for 15 s, then 
60 °C for 20 s, then 72 °C for 30 s). We performed qPCR 
on input (1/10) and immunoprecipitated fragments for 
each sample, using primers spanning the − 2000  bp of 
the 2 aromatase promoters (PII and PI.f ). Primers were 
designed by using a 500  bp sliding window to identify 
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areas where the methylation levels of the proximal pro-
moter changed when compared to control (Additional 
file 1: Table S2). Relative 5mC enrichment was calculated 
as a percentage of input genomic DNA.

Statistical analysis
Results were analysed using IBM SPSS (version 25.0) 
Armonk, NY, USA. Steroid data from maternal plasma 
were analysed by independent t-test. Steroids levels in 
foetal brain and amniotic fluid were analysed by multi-
variate analysis of variance to determine the main effect 
of foetal sex, maternal diet and foetal sex × diet interac-
tions. Testosterone levels in the female amniotic fluid 
were frequently below the limit of assay methods so 
were analysed as categorical values rather than a con-
tinuous measure by a Chi-squared test. Expressions of 
steroid metabolizing enzymes were first analysed by 
repeated measure ANOVA. Significant effects were then 
followed by independent t-tests. When multiple t-tests 
were conducted, a Benjamini–Hochberg correction was 
performed to account for multiple comparisons. Relative 
gene expression was calculated by the comparative CT 
method [36]. Significantly altered genes from a 1st run 
are repeated (technical replicates) in a completely new 
second run to avoid reporting false-positive findings. 
Only genes in which there is a significant alteration in 
both runs are reported as significantly changed. MeDIP-
qPCR data were analysed by paired t-test. The effect size 
for mean differences of groups with equal sample size 
was calculated by Cohen’s d, and groups with unequal 
sample size were calculated by Hedges’ g. The level of 
statistical significance was defined as p < 0.05. We expect 
dietary intervention will produce a small effect size on 
steroid levels; hence a sufficiently large sample size was 
employed.

Results
Steroid levels in the dams
The circulating levels of steroids were assessed in mater-
nal plasma. In vitamin D deficient dams there was 
an increase in plasma testosterone levels (t(60) = 2.46, 
p = 0.018, Cohen’s d = 0.61) (Fig.  1b). However, andros-
tenedione (t(60) = 1.13, p = 0.26, Cohen’s d = 0.28) and 
corticosterone (t(60) = 0.34, p = 0.73, Cohen’s d = 0.087) 
levels were not significantly changed by diet (Fig.  1c, 
d). The 2-ME levels were also not significantly different 
(t(25) = 0.79, p = 0.38, Cohen’s d = 0.35) between DVD-
deficient and control dams. Please see Additional file  1 
for more details.

Steroid concentrations in foetal brains
As expected, there was a main effect of sex on testos-
terone levels in foetal brains. Testosterone levels were 

significantly higher in male foetal brains (F1, 318 = 565.7, 
p = 0.001, Hedges’ g = 2.65) than the females (Fig.  2a). 
More importantly there was also a significant main 
effect of maternal diet on testosterone levels in foetal 
brains. Testosterone levels were significantly elevated (F1, 

318 = 12.6, p = 0.001, Hedges’ g = 0.26) in DVD-deficient 
brains compared with controls brains (Fig.  2d). There 
was also a sex × diet interaction (F1, 318 = 7.46, p = 0.007) 
on testosterone levels in the brains. Post hoc analy-
sis revealed that this dietary effect was mainly driven 
by male (t(139) = 3.19, p = 0.002, Hedges’ g = 0.52) and 
not female foetal brains (t(175) = 1.07, p = 0.29, Hedges’ 
g = 0.16).

Again, as expected foetal brain androstenedione lev-
els were significantly (F1, 318 = 101.7, p = 0.001, Hedges’ 
g = 1.15) higher in the males compared to females foe-
tuses (Fig.  2b). However, there was no main effect of 
maternal diet (F1, 318 = 0.85, p = 0.35, Hedges’ g = 0.11) 
or foetal sex × diet interaction (F1, 318 = 0.36, p = 0.54) on 
androstenedione levels in foetal brains (Fig. 2d).

Corticosterone levels were also significantly higher 
in male foetal brains (F1, 318 = 111.8, p = 0.001, Hedges’ 
g = 1.20) (Fig. 2c). However, there was no main effect of 
maternal diet (F1, 318 = 3.63, p = 0.057, Hedges’ g = 0.21) 
nor was any foetal sex × maternal diet interaction (F1, 

308 = 0.35, p = 0.55) on corticosterone levels in foetal 
brains (Fig. 2d).

Expression of key the steroidogenic enzyme in foetal male 
brains
Since there were no significant effects of maternal diet 
on any of the examined steroids in female brains, only 
male brains were subjected to any further analysis. 
Repeated measure ANOVA revealed that as a group, all 
cytochrome P450 enzymes were reduced in DVD-defi-
cient male foetal brains (F1, 43 = 4.80 p = 0.03). However, 
when these data were further analysed by independent 
t-tests, only aromatase (CYP19A1) and CYP21A1 were 
significantly changed. Consistent with the increase in tes-
tosterone in foetal male brains, aromatase, the major cat-
abolic enzyme for testosterone was significantly reduced 
by DVD-deficiency in male foetal brains (t(43) = 2.01, 
p = 0.05, Hedges’ g = 0.63) (Fig.  3a). We next examined 
aromatase promoter methylation as a plausible mecha-
nism for this reduction. MeDIP-qPCR was used to deter-
mine the 5 methylated Cytosine (5  mC) content of the 
aromatase promoter. In the rat brain, aromatase expres-
sion is driven by two different promoters PII and PI.f [37, 
38]. Therefore, in this study we analysed the methylation 
status of the − 2000  bp proximal region of PII and PI.f 
promoters in foetal brains (Fig.  3c). Our result showed 
that 5mC levels were significantly increased (t(5) = 2.53, 
p = 0.02, Cohen’s d = 0.60) along the PII promoter of 
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aromatase in DVD-deficient brains when compared with 
controls (Fig. 3d). However, no significant differences was 
observed for the PI.f promoter (t(7) = 1.65, p = 0.14).

Finally, as a group the expression of the hydroxyl ster-
oid dehydrogenases in foetal male brains was shown to 
be unaffected by maternal diet (F1, 43 = 1.00, p = 0.32). 
In particular HSD17β3 a major enzyme in testosterone 
formation was unaltered by DVD-deficiency (Fig.  3b). 
Therefore, it is likely that reduced elimination rather than 
increased formation is responsible for the increased lev-
els of testosterone in male DVD-deficient brains.

CYP21A1 is another gene which was significantly 
(t(43) = 4.31, p = 0.04, Hedges’ g = 0.63) reduced in 
male DVD-deficient foetal brains. CYP21A1 is mainly 
involved in the biological conversion of deoxycorti-
costerone from progesterone. As corticosterone levels 
were not affected by maternal diet and progesterone 
was not measured, we did not pursue any mechanism 
for this apparent reduction in this study.
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Steroid concentrations in amniotic fluid
As expected, there was a main effect of foetal sex on 
amniotic fluid testosterone. Testosterone levels were sig-
nificantly higher in males compared with female amniotic 
fluid (F1, 308 = 52.4, p = 0.001, Hedges’ g = 0.82) (Fig. 4a). 
Similar to foetal brains, there was also a main effect of 
maternal diet on amniotic fluid testosterone. Levels were 
significantly elevated in the amniotic fluid collected from 
DVD-deficient foetuses compared with controls (F1, 

308 = 7.15, p = 0.008, Hedges’ g = 0.28) (Fig. 4d). There was 
also a significant interaction of foetal sex × maternal diet 
(F1, 308 = 5.76, p = 0.017) on amniotic fluid testosterone. 
A further post hoc analysis revealed that opposite to foe-
tal brains, in amniotic fluid this dietary effect was mainly 
observed in females but not males. Student t-test showed 
that DVD-deficiency does not affect testosterone levels in 
the male amniotic fluid [t(126) = 0.21, p = 0.83, Hedges’ 
g = 0.03]. However, testosterone levels in many of the 
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control female amniotic fluid samples were undetectable 
leading to a highly skewed distribution. Therefore, we 
performed Pearson Chi-square test. There was a signifi-
cant association between the maternal diet and testos-
terone levels in the female amniotic fluid (Χ2(1) = 6.59, 
p < 0.008). Chi-squared tests revealed that DVD-deficient 
females were more likely to have measurable testosterone 
levels compared with control females (see Table 1).

Again, there was a significant main effect of foetal sex 
on androstenedione levels in amniotic fluid. Male amni-
otic fluid had significantly higher levels of androsten-
edione than females (F1, 308 = 188.8, p = 0.001, Hedges’ 
g = 1.58) (Fig. 4b). Amniotic fluid androstenedione levels 
were also affected by maternal diet. DVD-deficient foe-
tuses had significantly (F1, 308 = 4.21, p = 0.04, Hedges’ 
g = 0.12) higher levels of androstenedione in the amniotic 
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fluid compared with controls (Fig.  4d). However, there 
was no foetal sex and maternal diet interaction on amni-
otic fluid androstenedione levels (F1, 308 = 0.56, p = 0.37).

Corticosterone levels in the amniotic fluid were also 
affected by foetal sex. In contrast to both testosterone 
and androstenedione, corticosterone levels were signifi-
cantly lower in male amniotic fluid compared to females 
(F1, 308 = 29.0, p = 0.001, Hedges’ g = 0.61) (Fig. 4c). There 
was however no significant main effect of maternal 
diet (F1, 308 = 0.20, p = 0.66, Hedges’ g = 0.009) or foetal 
sex × maternal diet interaction on corticosterone levels in 
amniotic fluid (F1, 308 = 86.0, p = 0.36).

Discussion
This is the first study to demonstrate that an epidemio-
logically validated risk factor for ASD alters steroidogen-
esis in the foetal brain. The findings from this study have 
uncovered brain-related mechanisms that not only help 
to explain how DVD-deficiency may increase ASD risk, 
but may have broader implications for many of the other 
non-genetic risk modifying factors for ASD.

First, we show vitamin D deficiency significantly 
increased maternal testosterone levels. The hypothesis 
that maternal testosterone may be associated with ASD 
has several bodies of supportive evidence [39–42]. The 
incidence of ASD is higher in the children of mothers 
with testosterone-related medical conditions [40]. For 
instance, a remarkably consistent finding is that polycys-
tic ovarian syndrome (PCOS) and preeclamptic women 
exhibit significantly higher levels of testosterone in their 
blood [41, 42]. Aromatase levels are frequently reported 
to be decreased in both these maternal conditions along 
with increased circulating testosterone specifically 
when the foetus is male [43, 44]. PCOS and preeclamp-
tic women also have more than 50% increased odds of 
having a first child with ASD [45–47]. Interestingly, a 
randomised clinical trial showed that vitamin D sup-
plementation reduced androstenedione levels in PCOS 
patients [48]. Vitamin D supplementation has also been 
shown to reduce testosterone in animal models of PCOS 

[49]. Despite these findings, to the best of our knowledge, 
there have been no studies examining the mechanism/s 
behind how vitamin D deficiency could lead to altera-
tions in maternal testosterone levels.

In contrast to clinical studies, with animal models we 
can directly assess steroid levels in developing brains as 
well as underlying mechanism/s of abnormal steroido-
genic activity locally in the foetal brain. We found that 
DVD-deficient embryos had small but significant eleva-
tion of testosterone in their brain which was statistically 
significant in males. Consistent with this we show DVD-
deficiency produced a significant reduction in brain aro-
matase which is the principal catabolic enzyme in the 
elimination of testosterone [50]. We next explored the 
methylation of the aromatase promoter as one plausible 
mechanism [51–53]. We show one of the two brain aro-
matase promoters PII is hyper-methylated in male DVD-
deficient foetal brains. Taken together hypermethylation 
of an aromatase promoter may silence its production 
leading to decreased testosterone elimination resulting 
in the increase in testosterone in DVD-deficient male 
brains.

It is not ethically feasible to measure brain testoster-
one concentrations in human foetuses. However, the 
use of stored amniotic fluid can be considered a proxy 
marker of the combined outcome of foetal/placental 
steroid production. Whether maternal testosterone 
diffuses into the amniotic fluid has not yet been estab-
lished [54]. Moreover, during late gestation, amniotic 
fluid reflects foetal urine [55]. Therefore amniotic fluid 
testosterone levels may be completely independent 
of maternal levels. In the past, amniotic fluid was the 
sample of choice for prenatal screening of risk factors 
that directly affect foetal growth [56]. Indeed, of direct 
relevance to the current study, increased levels of sev-
eral steroids including testosterone and androstenedi-
one have been found in the amniotic fluid of children 
later diagnosed with ASD [19]. Our findings here first 
show robust sex differences in amniotic fluid testoster-
one levels. This at least confirms that the foetus is the 
main source of these sex hormones. Our results further 
indicate that there is a clear effect of DVD-deficiency 
in elevating testosterone levels in female amniotic fluid. 
Androstenedione levels were also elevated in DVD-
deficient amniotic fluid but similar to testosterone, this 
dietary effect was mainly observed in female amniotic 
fluid. This may suggest that DVD-deficiency may have 
a sex-specific effect on androgen production in female 
embryonic ovaries or adrenals but not male testes or 
adrenal glands; however, this requires further investi-
gation. Previous studies have also shown sex-specific 
effects of DVD-deficiency on placental functions [57, 
58]. However as aromatase is not expressed in rodent 

Table 1  Chi-square tests of  independence in  the  female 
amniotic fluid for testosterone

In female amniotic fluid, testosterone levels were very low with many 0 values 
in the control sample. Therefore data were analysed non-continuously via Chi-
squared test. n = 92 control females, n = 88 DVD females

Female 
amniotic 
fluid 
testosterone

Detectable 
levels

Undetectable 
levels

Sample 
size

Chi-square tests 
of independence

n n N

Control 41 51 92 X2 (1) = 6.59

DVD-deficient 56 32 88 p < 0.008
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placenta [59], we believe the placenta is not playing an 
active part in these findings for this particular preclini-
cal model. Though disputed [54, 60], if maternal tes-
tosterone is capable of diffusing through the placenta 
to foetal circulation, the contribution from the mater-
nal component is likely to be far greater in the female 
embryo as the levels of testosterone production are far 
lower in the female as evidenced by levels observed in 
amniotic fluid and brain. A summary of all findings 
from this study is shown in Fig. 5.

Several studies have associated increased foetal tes-
tosterone with certain autistic traits such as reduced 
eye contact, delayed language development and nar-
row range of interests [20, 22, 61]. It remains unknown 
how increased exposure to testosterone in utero could 
produce ASD like symptoms in children. Testosterone 
is key early factor and plays important role in the devel-
opment of sexually dimorphic brain regions in human 
[62] and also has profound effects on several neuronal 
processes during brain development such as neurogen-
esis, migration and immune functions [63–65]. This 
remains an intense area of research.

Limitations
Aromatase is a key enzyme in the biosynthesis of estra-
diol. A reduction in aromatase expression may also lead 
to a reduction in estradiol levels. More importantly, a 
recent study suggests that elevated levels of amniotic 
fluid estrogens are associated with ASD, with estradiol 
levels being the most significant predictor of ASD diag-
nosis [66]. Unfortunately, estradiol was not analysed 
here. The aromatase protein and enzyme activity were 
also not assessed because of unavailability of sufficient 
embryonic brain samples. Moreover, we could not calcu-
late the relationship between steroids levels within one 
foetal compartment i.e. foetal brain and amniotic fluid as 
these samples were taken from two separate cohorts of 
animals. Vitamin D is also known to promote the tran-
scription of aromatase in different cell types [27, 67]. 
Therefore an alternative hypothesis may be that in the 
developmental absence of vitamin D the unliganded vita-
min D receptor may bind known vitamin D response ele-
ments within the aromatase promoters [68] attracting a 
variety of known transcriptional repressors to suppress 
aromatase expression as has been shown for several other 
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Fig. 5  An illustration of the potential molecular mechanism and pathways involved in the exposure of developing foetus to increased testosterone. 
DVD-deficiency downregulates aromatase expression in male brains by increasing aromatase promoter methylation potentially increasing 
testosterone levels in male foetal brains. We further found that both testosterone and androstenedione were elevated in DVD-deficient female 
amniotic fluid which may be due to sex-specific effect of DVD-deficiency on androgen production in female embryonic ovaries or adrenal glands 
or a greater contribution from the increased testosterone levels in DVD-deficient dams. Dashed arrow represents hypothetical relevance of 
testosterone transfer
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genes [69, 70]; however, this gene regulatory mechanism 
was also not assessed.

Progesterone is another important early steroid and 
developing brain is certainly sensitive to maternal pro-
gesterone during critical periods of development [71]. 
Alterations in progesterone levels have also been asso-
ciated with increased risk of ASD [19]. Although we did 
not measure progesterone levels in maternal serum, we 
examined the RNA expression of progesterone related 
enzymes in the foetal brains. Progesterone is produced 
by enzymatic conversion of 3β-hydroxysteroid dehydro-
genase 1 (HSD3β1) from the precursor, pregnenolone. 
We examined the gene expressions of both progester-
one producing enzyme HSD3β1 and its major catabolic 
enzyme CYP17A1. These enzymes were not altered by 
DVD-deficiency suggesting progesterone levels are simi-
larly unlikely to be altered by DVD-deficiency. Based on 
these results, we did not further investigate this pathway 
[72].

Conclusions
Increased foetal exposure to testosterone leading to 
increased androgenisation of the foetal brain is frequently 
cited as a possible causative process for the pronounced 
sex-bias in autism [73, 74]. However, this remains a dif-
ficult hypothesis to test directly in human embryos. 
Preclinical models based on other epidemiologically vali-
dated risk factors for ASD such as maternal immune acti-
vation or prenatal exposure to valproate produce social 
and communication deficits and stereotyped behaviours, 
all phenotypes of relevance to ASD [75–77]. Remark-
ably these phenotypes frequently appear to be more pro-
nounced in males. Here we have examined a preclinical 
model for another epidemiologically validated devel-
opmental risk factor for ASD, DVD-deficiency. In this 
study we have explored the known clinical and cellular 
links between vitamin D and the regulation of testoster-
one. We have shown DVD-deficiency elevates testoster-
one directly in the foetal brain. Increased methylation 
of the aromatase promoter is consistent with reduced 
aromatase transcription in DVD-deficient foetal brains. 
Whether other epigenetic mechanisms are also operating 
such as regional alterations to histone acetylation/meth-
ylation in the foetal brain are currently unknown. We 
speculate the male bias in other preclinical models may 
also be due to such mechanisms. The Simons foundation 
autism research initiative has made understanding sex 
differences in ASD one of its top priorities for funding 
in 2020. The findings from this study should prompt the 
examination of other developmental risk factors for ASD 
and whether they produce male-selective outcomes via a 
similar mechanism.
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