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Abstract: Metabolic flux analysis (MFA) is an indispensable tool in metabolic engineering.
The simplest variant of MFA relies on an overdetermined stoichiometric model of the cell’s metabolism
under the pseudo-steady state assumption to evaluate the intracellular flux distribution. Despite its
long history, the issue of model error in overdetermined MFA, particularly misspecifications of the
stoichiometric matrix, has not received much attention. We evaluated the performance of statistical
tests from linear least square regressions, namely Ramsey’s Regression Equation Specification Error
Test (RESET), the F-test, and the Lagrange multiplier test, in detecting model misspecifications in the
overdetermined MFA, particularly missing reactions. We further proposed an iterative procedure
using the F-test to correct such an issue. Using Chinese hamster ovary and random metabolic
networks, we demonstrated that: (1) a statistically significant regression does not guarantee high
accuracy of the flux estimates; (2) the removal of a reaction with a low flux magnitude can cause
disproportionately large biases in the flux estimates; (3) the F-test could efficiently detect missing
reactions; and (4) the proposed iterative procedure could robustly resolve the omission of reactions.
Our work demonstrated that statistical analysis and tests could be used to systematically assess,
detect, and resolve model misspecifications in the overdetermined MFA.

Keywords: metabolic flux analysis; model misspecification; constraint-based model; stoichiometric
model; Chinese hamster ovary cell culture

1. Introduction

The ability of biological systems to produce highly complex molecules at high enantiomeric
excess has pushed metabolic engineering that relies on directed alterations of the cell’s biochemical
reactions through recombinant DNA technology to the center stage of biotechnology [1,2]. The
understanding of cellular metabolism and its manipulation encompass much of the research activities
in modern biotechnology. Mathematical modeling of cellular metabolism, particularly constraint-based
or stoichiometric modeling, has been playing an important role not only in the analysis of metabolic
phenotypes (metabolic flux distribution) but also in the design and optimization of metabolic pathways
to enhance productivity or to synthesize new desired products. The most widely used model-based
analysis in metabolic engineering is the metabolic flux analysis (MFA), which comprises methods for
determining intracellular metabolic fluxes. MFA employs a stoichiometric model of the metabolic
reaction network based on the mole balance equation of the intracellular metabolites under a
pseudo-steady state assumption [1,3].

A simple strategy of MFA, from here on referred to as the overdetermined MFA, uses a reduced
stoichiometric model of the cell’s metabolism such that the estimation of the metabolic fluxes is
mathematically well-posed, i.e., the flux estimation involves an (over)determined system. For larger
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and more realistic metabolic models, the flux estimation in the MFA often becomes underdetermined
as the number of unknown fluxes exceeds the number of balance equations. There has been a flurry of
activity in the development of MFA methods for large metabolic models based on linear programming
(notably flux balance analysis) [4], which goes hand in hand with the creation of genome-scale
metabolic models. While the MFA strategies above are predominantly based on measurements of
extracellular concentration of metabolites, a different class of MFA techniques that rely on data from 13C
isotopic labeling experiments has emerged and matured over the past two decades. The experimental,
analytical, and computational procedures for 13C-based MFA have now been standardized [5].

Due to the experimental and computational complexity in the application of MFA using
genome-scale metabolic models and 13C isotopic labeling experiments, the overdetermined MFA
continues to be used in practice, thanks to its simple formulation and numerical implementation [6,7].
A common criticism of the overdetermined MFA is the use of a reduced (incomplete) description of
the metabolic network. The accuracy of the flux estimates is often a concern in the application
of the overdetermined MFA, and the formulation of an appropriate reduced order model for a
given set of extracellular species measurements in a particular organism is challenging. Past studies
have established several guidelines for good practices in the overdetermined MFA. For example,
analytical conditions that guarantee the ability of the stoichiometric model to balance, i.e., the measured
rates of extracellular species concentrations can be balanced, and ensure the existence of a unique
solution for the intracellular metabolic fluxes have been formulated [8]. In consideration of data noise
(measurement errors), statistical tests on the goodness of fit could be used to assess the consistency
between the data and the stoichiometric model [9,10]. The accuracy of the flux estimates could also be
quantified by computing the corresponding confidence intervals [11] or by propagating known errors
in the measurements to the flux estimates [12]. Finally, the significance of observed changes in the flux
distribution between conditions or strains could and should be established by standard statistical tests
(e.g., t-test) [13].

The test for goodness of fit or statistical significance of regression in the overdetermined MFA
could fail because of several reasons, including (1) incorrect assumptions abuot the characteristics of
data noise (e.g., on the mean and variance of the noise) and (2) model specification errors [14,15]. In
such a scenario, the resulting flux estimates of the overdetermined MFA may have large inaccuracy
or bias. Procedures for detecting and locating gross measurement errors and missing or incorrectly
specified components have previously been proposed based on either the improvement of goodness of
fit upon the removal of a measured variable [9] or the directionality of the residual vectors [14]. Despite
its long history, the assessment, detection, and rectification of misspecifications of the stoichiometry
matrix in the overdetermined MFA have not received much attention. In a recent study, Sokolenko et
al. provided a procedure for detecting model error through the in silico generation of flux profiles and
the common statistical t-tests [16].

In this work, we adapted statistical analysis and tools for model misspecifications commonly
used in the field of linear least square regression to address the issue of missing reactions in the
overdetermined MFA. We posited that the simplification of the stoichiometric model, either manually
or using a numerical algorithm [17], to generate an overdetermined flux estimation problem in the
overdetermined MFA may inadvertently remove important metabolic reactions. In this study, we
illustrated how an omission of reaction(s) could lead to biases in the flux estimates, and evaluated the
performance of several statistical tests including Ramsey’s RESET test, the F-test, and the Lagrange
multiplier test, to detect such specification errors. Finally, we proposed an iterative procedure based on
the F-test to resolve the issue of missing reactions. We demonstrated the ability of the aforementioned
model misspecification tests and correction procedure by applying them to the flux analysis of Chinese
hamster ovary metabolism and in silico metabolic networks.
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2. Materials and Methods

2.1. Metabolic Flux Analysis

The MFA is based on the mole balance equation for the intracellular metabolites under a pseudo
steady state assumption, as follows:

dc
dt

= Sv = 0 (1)

where c is the vector of m metabolite concentrations, v denotes for the vector of n metabolic fluxes,
and S denotes the m × n stoichiometric matrix. The fluxes describe either the rate of reactions that
consume or produce the metabolites or the rate of the transport of metabolites between the cell and the
extracellular environment or between different intracellular compartments. In the typical formulation
of MFA, some, if not all, of the exchange fluxes, i.e., the fluxes of metabolites in and out of the cell,
could be estimated from the measurements of extracellular species concentrations. The task at hand is
to estimate the unknown internal metabolic fluxes from the exchange fluxes. For such a purpose, we
begin with partitioning the stoichiometric matrix S and the flux vector v into:

Sv =
[

SE SI

][ vE

vI

]
= SEvE + SIvI = 0 (2)

where the subscripts E and I refer to the exchange and internal fluxes, respectively. Thus, given the
values of exchange fluxes vE, the estimation of unknown internal fluxes vI is reduced to solve the
following linear equation:

SIvI = −SEvE (3)

The estimation of the internal metabolic fluxes vI as stated in Equation (3) could be cast as a linear
least square regression problem:

y = Xβ+ e (4)

where y denotes the vector of measured response variables, X denotes the (non-random) design matrix
containing the values of explanatory variables, β denotes the unknown parameter vector, and e denotes
the vector of measurement errors (noise). The ordinary least square (OLS) estimate of the parameter β
is given by the minimum of the following error function:

ΦOLS(β) = (y − Xβ)T(y − Xβ) (5)

By invoking the first order necessary condition for optimality (dΦOLS/db = 0), the OLS parameter
estimate is given by:

β̂OLS =
(

XTX
)−1

XTy (6)

According to the Gauss-Markov theorem [18], when the measurement errors are additive
and uncorrelated with zero mean and constant variance (i.e., Cov(e) = σ2I), β̂OLS gives the
minimum variance unbiased estimate (MVUE) of β among all linear estimators, with the following
variance-covariance matrix:

Cov
(
β̂OLS

)
=
(

XTX
)−1

XTCov(e)X
(

XTX
)−1

= σ2
(

XTX
)−1

(7)

If the measurement errors are correlated and/or have unequal variance with a known
variance-covariance matrix Cov(e), then one could resort to the generalized least square (GLS)
formulation by minimizing the following error function:

ΦGLS(β) = (y − Xβ)TCov(e)−1 (y − Xβ) (8)
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Naturally, the GLS estimation requires the variance-covariance matrix Cov(e) to be invertible.
When Cov(e) = LLT is invertible, the GLS is equivalent to the OLS regression for the linear problem
L−1y = L−1Xβ+ L−1e. The GLS parameter estimate β̂GLS is therefore given by:

β̂GLS =
(

XTCov(e)−1X
)−1

XTCov(e)−1y (9)

Here, β̂GLS is the MVUE of β with the following variance-covariance matrix:

Cov
(
β̂GLS

)
=
(

XTCov(e)−1X
)−1

(10)

By drawing parallels between the linear equation of the MFA in Equation (3) and the least square
regression problem in Equation (4), we could set y = −SEvE, X = SI, and β = vI and use the OLS or
GLS formulation, whichever is appropriate, to obtain the flux estimate v̂I. Note that the existence of an
optimal parameter estimate for the OLS (or GLS) requires the matrix XTX

(
or XTCov(e)−1X

)
to be

invertible, i.e., the matrix X needs to have a full column rank. In the context of the overdetermined
MFA, the rank condition puts a constraint on the dimension of the matrix SI, such that the number of
unknown internal fluxes vI. should not exceed the number of metabolite species in the mole balance
equation. The rank condition also necessitates that the reactions be linearly independent, i.e., each of
the reactions could not be written as a linear combination of the other reactions. Upon violation of
the above rank condition, for example when the number of reactions exceeds that of the species, the
non-zero degrees of freedom in the mole balance equation allow the existence of many solutions (not
all physically or biologically feasible), a problem that is addressed by strategies such as the flux balance
analysis [4]. In this work, we focused on the MFA, with the matrix SI. having a full column rank.

2.2. Model Misspecification

Due to the rank condition on SI, one often faces the challenge of choosing a small number
of reactions, for example from the genome scale metabolic models, to include in the mole balance
equation used in the overdetermined MFA. Despite the long history of MFA, the impact of an incorrect
stoichiometric matrix specification, particularly due to the omission of reactions, on the accuracy
of the flux estimate has not received much attention. Recently, Sokolenko et al. used the GLS
framework, statistical t-test, and simulated flux values to show that model errors could lead to gross
deviations in flux estimates that are not statistically significant [16]. In the field of linear least square
regression, the impact of a model misspecification on the parameter estimates is well studied, and
several tests have previously been developed to detect model misspecifications. In this study, we
evaluated the performance of several such tests, including Ramsey’s RESET test, the F-test, and
the Lagrange-Multiplier test, in detecting specification errors of the stoichiometric matrix in the
overdetermined MFA.

2.2.1. Effects of Missing Reactions

In the following, we considered the problem of missing or omitted reactions in the stoichiometric
matrix. We assume that the metabolic network model in the MFA given in Equation (1) is incomplete
and that the true mole balance is governed by:

[
SE SI SO

] vE

vI

vO

 = SEvE + SIvI + SOvO = 0 (11)
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where SO contains the stoichiometric coefficients of the omitted reactions and vO denotes the vector of
the metabolic fluxes of the omitted reactions. The least square problem of estimating the unknown
metabolic fluxes vI and vO from the measurements of the exchange fluxes vE is given by:

− SEvE = SIvI + SOvO + u (12)

where u denotes the vector of measurement errors for the true model. Without a loss of generality, in
order to illustrate the impact of omitting reactions, we could consider the OLS estimate of the internal
fluxes vI using the mole balance in Equation (2), as follows:

v̂I =
(

SI
TSI

)−1
SI

T(−SEvE) (13)

Substituting −SEvE from the true model in Equation (12) into the OLS estimate from the misspecified
model as stated in Equation (13) above, we obtain:

v̂I =
(

SI
TSI

)−1
SI

T(SIvI + SOvO + u)

v̂I = vI +
(

SI
TSI

)−1
SI

TSOvO +
(

SI
TSI

)−1
SI

Tu
(14)

The above formula could also be derived using the GLS estimation whenever appropriate. Therefore,
even when the measurement error u has zero mean, the flux estimate v̂I may no longer be unbiased,
i.e., the expected value of v̂I may not equal to vI. More specifically, the specification bias caused by the
missing reactions is given by:

bias = E(v̂I)− vI =
(

SI
TSI

)−1
SI

TSOvO (15)

where E(v̂I) is the expected value of v̂I. Therefore, the specification bias scales with the degree of
correlations between the stoichiometry of the accounted reactions in SI and that of the omitted reactions
in SO (from SI

TSO) and with the magnitude of the omitted reaction fluxes vO. As illustrated in Case
Study I below, the omission of a single reaction could lead to a large bias in the flux estimate.

The derivation above shows how the omission of or failure to include reactions in the
stoichiometric model could cause a bias in the flux estimate in the overdetermined MFA. In addition
to the flux bias, missing reactions would also result in a lower variance, i.e., the variance of the OLS
estimate of vI computed using the (misspecified) model in Equation (2) is smaller than the variance of
the OLS estimate computed using the (true) model in Equation (11) [19]. Under certain conditions,
the mean square error of the OLS estimate of the misspecified model may also be lower than that of
the true model [19]. On the contrary, the inclusion of irrelevant reactions in the stoichiometry matrix,
wherein S contains reactions that are non-existent in the actual system, would not introduce any bias
to the OLS estimate of the fluxes. However, having additional reactions would artificially increase the
variance and mean square error of the flux estimate [19].

2.2.2. Model Misspecification Tests

There exist several tests to detect model misspecification in a linear least square regression.
In this study, we focus on tests of the misspecification of regression mean; whether Xβ is a good
description of the response variable y. While tests for checking the validity of constant variance or
the normality of the error variables in the least square regression also exist, we do not deal with these
so-called misspecifications of higher moments. Interested readers are referred to the article by Long
and Trivedi [20]. The first misspecification test under evaluation is the Ramsey’s RESET (Regression
Equation Specification Error Test) test [21], which does not require any information on the possible
missing variables (reactions) to formulate the hypothesis test. In the context of the overdetermined
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MFA, this scenario corresponds to when the stoichiometry of the missing reactions is unknown. The p
order RESET test is based on the following linear least square problem:

y = Xβ+ α1ŷ2 + . . . + αpŷp+1 + e∗ (16)

where ŷ = Xβ̂OLS and ŷp are the vectors of p powers of ŷi elements. The premise of the RESET test is
that the contribution from the missing variables could be approximated by the powers of ŷ (by way of
a Taylor series expansion). The null hypothesis in the RESET test is that the coefficients αi’s are zero,
i.e., H0: α1 = . . . = αp = 0. The null hypothesis will be rejected if the following condition on the test
statistic SRESET is satisfied:

SRESET =

(
ΦOLS

(
β̂OLS

)
− ΦOLS

(
β̃OLS, α̃OLS

))
/p

ΦOLS

(
β̃OLS, α̃OLS

)
/(N − K − p)

> Fp,N−K−p(a) (17)

where β̂OLS is given in Equation (6), β̃OLS and α̃OLS are the OLS estimates for β and α for the regression
problem in Equation (16), N is the length of the response vector y, K is the dimension of the unknown
parameter β, and Fp,N−K−p(a) is the (1 − a)th percentile point of the Snedecor’s F distribution with p
and N − K − p degrees of freedom. In essence, the inequality in Equation (17) is fulfilled when the
additional parameters α in Equation (16) lead to a (statistically) significantly better data fitting than the
linear equation in Equation (4). A rejection of the null hypothesis is therefore taken as strong evidence
supporting the existence of a model functional misspecification.

The next two misspecification tests apply to the scenario in which the stoichiometry of the
candidate missing reactions are known. Given the current extensive knowledge on metabolic reactions,
including the complete maps of metabolic networks for many major organisms and the availability of
extensive and curated biochemical reaction databases (e.g., Kyoto Encyclopedia of Genes and Genomes
(KEGG) [22], MetaCyc [23], Rhea [24]), one could efficaciously put together a list of possible missing
reactions in the overdetermined MFA. Here, we consider the least square regression problem:

y = Xβ+ Zα + e∗ (18)

where Z denotes the design matrix of the candidate missing variables; namely, the stoichiometric
matrix of the possible missing reactions in the overdetermined MFA.

The first test in this category is based on a similar null hypothesis as the Ramsey RESET test.
The null hypothesis H0: α = 0 will be rejected if the following condition of the test statistic SF−test is
fulfilled: [25]

SF−test =

(
ΦOLS

(
β̂OLS

)
− ΦOLS

(
βOLS,αOLS

))
/o

ΦOLS
(
βOLS,αOLS

)
/(N − K − o)

≥ Fo,N−K−o(a) (19)

where βOLS and αOLS are the OLS estimate for β and α for the regression problem in Equation (18)
and o is the number of possible missing variables (i.e., the dimension of α). We refer the model
misspecification test above as, for the lack of a better word, the F-test. Note that the existence of a
unique solution of βOLS and αOLS requires that the combined matrix

[
X Z

]
has a full column rank.

The third and last misspecification test in this work is derived from the Lagrange multiplier (LM)
test, as proposed by Davidson and Mackinnon [26]. The premise of the LM test is to examine whether
there exists a significant correlation between the residuals of the proposed linear model in Equation (4)
and the part of the matrix Z in Equation (18), denoted by denoted by Zc, which remains after removing
the linear influence by X. In addition, the LM test also incorporates a heteroscedasticity-consistent
(HC) covariance matrix to accommodate the situation when the variance of the measurement error is
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not constant. Following the procedure formulated in Long and Trivedi [20], we first compute the Zc

as follows:
Zc = Z − X̆

(
X̆TX̆

)−1
X̆TZ (20)

where X̆ =
[

1 X
]

and 1 is the (column) vector of 1s with the same row dimension as the matrix X.
The test statistic is given by:

SLM = êTZc
(

N − K
N − K − o

ZcT
Ω̂Zc

)−1
ZcT

ê (21)

where ê = y − Xβ̂OLS denotes the OLS residuals and Ω̂ is a diagonal matrix with the squares of the
standard errors as the diagonal elements (Ω̂i,i = ê2

i ). The null hypothesis H0: ZcT
ê = 0 is rejected if

SLM ≥ χ2
o(a), where χ2

o(a) denotes the (1 − a)th percentile point of the chi-square distribution with o
degrees of freedom. The rejection of the null hypothesis due to a (statistically) significant correlation
between the residual ê and Zc is taken as strong evidence for the existence of a model misspecification.

2.2.3. Resolving Model Misspecification

The rejection of the null hypothesis in the tests above does not immediately point to the identity
of the missing or omitted reactions. Given the set of possible missing reactions, we could nevertheless
apply the F-test or LM test to determine whether the addition of a reaction or a set of reactions among
the possible missing reactions would significantly improve the linear regression. Reactions that are
positively identified by the tests could therefore be added into the stoichiometric matrix. The procedure
above can be repeated until no more reactions can be added. More precisely, we propose the following
iterative procedure for correcting misspecifications in the stoichiometric matrix for the overdetermined
MFA using the F-test:

1. Given the exchange fluxes vE, the stoichiometric matrices SE and SI, and the possible missing
reaction stoichiometric matrix SA, we formulate the linear least square regression problem with
y = −SEvE, X = SI, and β = vI.

2. Compute SF−test using Z constructed from every k-tuple combination of the columns (reactions)
of SA.

3. Identify the k-tuple combination(s) satisfying SF−test ≥ Fo,N−K−o(a) and move the corresponding
columns from SA to SI.

4. Repeat steps 2 to 3 until no more reactions can be moved from SA to SI, that is, until the remaining
set of k-tuple reaction combinations satisfying SF−test ≥ Fo,N−K−o(a) is empty.

The procedure above is written generally for any k-tuple combination of reactions. In the case
study, we performed the procedure, first using k = 1 (single reactions) and using k = 1 followed by k = 2
(pairs of reactions). If desired, the LM test could also be used in place of the F-test.

2.3. In Silico Metabolic Network Models and Data Generation

2.3.1. Chinese Hamster Ovary Model

In the demonstration of the specification bias caused by missing reactions and the iterative
procedure for resolving the stoichiometric matrix misspecification, we employed a metabolic network
model previously created for the flux analysis of Chinese hamster ovary (CHO) batch cultivation
data [16,27]. The model describes the concentration of 49 metabolites, out of which 34 are transported in
and out of the cell by exchange fluxes. The stoichiometric matrix SI has a dimension of 49 metabolites
and 47 internal fluxes with a full column rank. Figure 1 illustrates the CHO metabolic network
model that corresponds to the stoichiometric matrix SI in the MFA. The complete list of reactions, the
measured uptake flux values, and the standard deviations reported by Sokolenko et al. [16] are given
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in Supplementary Table S1. The standard deviation of the fluxes has a linear relationship with the
uptake rates, as shown in Supplementary Figure S1.
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Figure 1. Chinese hamster ovary metabolic network model in Case Study I and III (adapted
from [16,27]). The dashed arrows indicate the measured exchange (uptake) fluxes. The magnitudes of
the flux estimates v̂I,GLS are indicated by the thickness of the arrows, while the colors of the arrows
represent the average relative magnitude of the specification bias caused by the removal of the reaction.

2.3.2. Random Metabolic Models

For a large-scale evaluation of the model misspecification tests, we generated in silico data
y = −SEvE using randomly generated stoichiometric matrices SI of various sizes (m = 50 to 200
metabolites and n = 55 to 220 reactions) and with different numbers of exchange fluxes (between 25
and 100). More precisely, for each data vector y, we employed the RMBNToolbox (MATLAB) [28]
to generate a random stoichiometric matrix SI with the desired dimensions and a full column rank,
wherein each species participated in at least one reaction. For the specified number of exchange fluxes
mE, we assigned the first mE metabolites (rows) of SI as the species whose exchange fluxes were
measured, while the remaining species only existed intracellularly (without exchange fluxes). More

specifically, we used the matrix SE with the block structure SE =

[
ImE

0

]
, where ImE denotes the

mE × mE identity matrix and 0 denotes the (m − mE)× mE zero matrix. Accordingly, we partitioned
the matrix SI into:

SIvI =

[
SI,E

SI,NE

]
vI = −SEvE =

[
−vE

0

]
(22)

where SI,E corresponds to the first mE rows of the measured exchange fluxes and SI,NE corresponds to
the remaining rows. We simulated the measured flux data in two steps: (1) we generated an internal
flux vector vI using a linear combination of the kernel of SI,NE with uniform random coefficients
between −1 and 1 and (2) we calculated the exchange fluxes using vI in Step (1) according to Equation
(22) and contaminated the exchange flux vector with a vector of independent realizations of Gaussian
distributed random numbers with zero mean and for different coefficients of variation (CoV of 1
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to 20%). Note that since the noise standard deviation scales with the noise-free y (motivated by
Supplementary Figure S1), only the first mE elements of y were non-zero. The misspecification tests
were applied to the in silico generated data y, using the design matrix X, constructed by removing
reactions randomly (between two to 20 reactions) from the matrix SI.

The performance of each misspecification test was judged based on the rate of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) results. For the Ramsey RESET test, the
true positives and false negatives were determined by applying the test to the generated data using the
stoichiometric matrix SI with some of the reactions (columns) randomly removed. In this scenario, a
rejection of the null hypothesis corresponded to a TP, while a non-rejection was a FN error. Meanwhile,
the numbers of FP and TN of the RESET test were computed based on rejections and non-rejections of
the null hypothesis, respectively, when applying the test using the full stoichiometric matrix SI (no
missing reactions). The data generation and the RESET test were repeated 1000 times, each using a
different randomly generated stoichiometric matrix SI.

In order to determine the TP and FN rates of the F-test and LM test, we generated in silico data y
as described above and applied the tests using the stoichiometric matrix SI with a set of its reactions
randomly removed. Here, the matrix Z came from the set of actual reactions that were removed from
the matrix SI. On the other hand, for the determination of the FP and TN rates, we repeated the
above tests but using a matrix Z containing a distinct set of linearly independent reactions of the same
size as the set of the omitted reactions. While the arrangement for determining the FP and TN rates
does not reflect the null hypotheses in the F- and LM tests, it reflects better the typical scenario in
practice (where the true model is unknown). The rates of TP, FN, FP, and TN were computed from
1000 repeated runs of the above tests. Finally, in all of these tests, we ensured that the rank condition
for the OLS estimation was always satisfied.

3. Results

3.1. Case Study I: Specification Bias

In this case study, we considered the CHO metabolic model in Figure 1 with the measured
exchange flux values and standard deviations reported previously [16]. We first employed the GLS
regression to obtain the estimate of vI, denoted by v̂I,GLS (see Supplementary Table S2). Figure 1
further depicts the flux distribution according to v̂I,GLS. Below, we evaluated the impact of omitting a
single reaction from the CHO metabolic network in terms of the bias in the estimated flux values and
the significance of the linear regression. We computed the specification bias using Equation (15) and
reported the bias in relative (percent) values with respect to v̂I,GLS. Meanwhile, we employed ANOVA
(analysis of variance) to establish the statistical significance of the linear regression [29].

Table 1 gives the minimum, median, mean, and maximum absolute specification bias for the
omission of single reactions, one at a time, from the stoichiometric matrix SI. Here, we only removed
reactions that would not create an orphan species, i.e, a species that does not participate in any
reaction. For each reaction removal, we also generated 10,000 vectors of in silico data of y = SIvI

using the full SI matrix and contaminated the data with independent Gaussian random noise with
the variance-covariance matrix constructed from the reported standard deviations [16]. For each data
vector, we evaluated the significance of regression by ANOVA using the reduced SI matrix, i.e., the
matrix SI with a missing column (reaction). The averages of the p values from the ANOVA are given
in Table 1. Here, we took p value of 0.05 as the threshold to reject the GLS regression; any p values
higher than the threshold indicate a poor regression outcome.
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Table 1. Case Study I: Specification bias in the Chinese hamster ovary (CHO) model.

Reaction a v̂I,GLS p Value c Absolute Specification Bias (%) d(
nmol

106 cells h

)
Min Median Mean Max

25 −0.02 0.00 ± 0.00 0.00 0.41 2.73 54.1
19 0.03 0.00 ± 0.00 0.00 0.39 2.48 48.8
10 −1.46 0.00 ± 0.00 0.00 0.15 1.96 11.6
45 −0.21 0.00 ± 0.00 0.00 2.04 18.3 269
17 −0.21 0.00 ± 0.00 0.00 2.11 19.0 280
31 −0.24 0.00 ± 0.00 0.00 2.83 24.9 361
27 0.34 0.00 ± 0.00 0.00 2.12 15.6 229
14 12.50 0.00 ± 0.00 0.00 1.31 33.3 855
9 12.50 0.00 ± 0.00 0.00 1.31 33.3 855
46 15.04 0.00 ± 0.00 0.00 0.88 38.1 1020
8 15.04 0.00 ± 0.00 0.00 0.88 38.1 1020
37 0.27 0.00 ± 0.00 0.00 5.86 54.1 753
12 17.42 0.00 ± 0.00 0.02 1.28 43.1 1190
11 17.84 0.00 ± 0.00 0.02 1.09 44.0 1220
13 18.06 0.00 ± 0.00 0.02 1.66 46.7 1230
30 −0.27 0.00 ± 0.00 0.00 6.87 63.8 889
24 −0.38 0.00 ± 0.00 0.00 6.67 60.9 860
26 0.27 0.00 ± 0.00 0.00 4.19 36.1 509
35 0.13 0.00 ± 0.00 0.00 3.12 28.8 399
33 0.22 0.00 ± 0.00 0.00 11.7 124 2060

32 b −1.18 0.01 ± 0.01 0.00 21.0 196 2770
29 b 0.99 0.01 ± 0.01 0.00 13.9 170 3840
34 b 0.47 0.01 ± 0.01 0.00 16.2 152 2110
36 b 0.87 0.02 ± 0.01 0.00 23.1 217 3020
23 b −1.34 0.02 ± 0.01 0.00 17.1 177 2470
28 b 1.03 0.02 ± 0.01 0.00 17.6 158 2220
15 12.31 0.05 ± 0.02 0.00 14.3 121 2210
4 1.24 0.05 ± 0.02 0.00 5.25 65.1 2420
21 −6.81 0.13 ± 0.03 0.00 53.9 475 6980
16 19.26 0.15 ± 0.03 0.00 61.4 573 8100
18 −21.53 0.20 ± 0.04 0.00 61.6 632 8830
43 19.52 0.46 ± 0.04 0.00 74.0 477 8050
22 7.24 0.47 ± 0.04 0.00 121 988 14,700
7 19.63 0.52 ± 0.04 0.00 21.8 114 2360
2 157.77 0.97 ± 0.01 0.00 1.28 803 21,600
3 315.55 0.97 ± 0.01 0.00 1.28 803 21,600

a The reaction numbers refer to the CHO metabolic network in Figure 1; b The omission of reactions with a low flux
could cause large specification biases in the flux estimate; c The significance of regression was assessed by ANOVA.
The average p value (mean ± standard error) was computed for 10,000 GLS regressions using independently
generated in silico data; d The minimum, median, mean, and maximum biases were computed over the remaining
reaction fluxes in the model.

The individual removal of roughly 3/4 of the reactions (26 out of 36 reactions) still produced
a significant regression with p < 0.05. On average, the median, mean, and maximum specification
biases in the flux estimates were higher for the removal of reactions that caused a poor regression
(p > 0.05). The two highest p values expectedly came from the removal of reactions with the two
largest fluxes, and each expectedly had large specification biases. There were nevertheless exceptions
where a poor regression resulted from removing a reaction with a moderately low flux value (e.g.,
reactions 21 and 22). On the other hand, many of the cases with a significant regression (p < 0.05) were
associated with high maximum specification biases. In fact, several of the cases among the lowest p
values (i.e., the most significant regression) had a mean bias of >30% and a maximum bias of above
800%. Equally important, the removal of several reactions with a low flux magnitude led to large
mean and maximum flux biases (mean bias >150%), as highlighted in Table 1 and by thin red arrows
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in Figure 1. Therefore, while a poor regression generally points to a model misspecification problem
or a violation of the assumption of measurement noise, a statistically significant regression does not
guarantee a small specification bias in the flux estimates. In addition, removing reactions with a low
flux magnitude can cause disproportionately large specification biases in the flux estimate. These
observations clearly motivate the use of a more systematic assessment of the model misspecification
issue in the overdetermined MFA.

3.2. Case Study II: Stoichiometric Model Misspecification Tests

We evaluated the ability of the Ramsey RESET test, F-test, and LM test to detect the issue of
stoichiometric matrix misspecification in the overdetermined MFA, particularly the existence of omitted
or missing reactions from SI. As outlined in Materials and Methods, we determined the rates of TP, TN,
FP, and FN using randomly generated pairs of data y = −SEvE and stoichiometric matrices SI with
missing reactions. For the F- and LM tests, we used the information on the actual missing reactions, as
well as a distinct set of reactions, as the design matrix of the missing variables Z. The results using the
baseline MFA problems with 100 metabolites (m), 60 unknown internal reactions (nvI), 50 measured
exchange reactions (nvE ), and two, five, or 10 missing reactions (nvO ) for different noise levels (1 to 20%
CoV), are summarized in Table 2. Note that by definition, the TP and FN rates sum to 1 and so do the
FP and TN rates.

Table 2. Case Study II: Performance of model misspecification tests (values represent rates).

m nvI nvE nvO CoV
RESET Test (p = 1) RESET Test (p = 2) F-Test LM Test

TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN

100 60 50

2

0.01 0.18 0.82 0.56 0.44 0.33 0.67 0.75 0.25 0.86 0.14 0.09 0.91 0.68 0.32 0.11 0.89
0.05 0.28 0.72 0.57 0.43 0.44 0.56 0.78 0.22 0.82 0.19 0.09 0.91 0.67 0.33 0.14 0.86
0.1 0.32 0.69 0.58 0.42 0.51 0.49 0.76 0.24 0.82 0.19 0.10 0.90 0.66 0.34 0.16 0.84
0.2 0.42 0.58 0.56 0.44 0.69 0.31 0.81 0.19 0.71 0.29 0.08 0.92 0.60 0.41 0.18 0.82

5

0.01 0.11 0.89 0.57 0.43 0.33 0.67 0.76 0.25 0.99 0.01 0.14 0.87 0.71 0.29 0.07 0.93
0.05 0.12 0.88 0.54 0.46 0.34 0.67 0.73 0.27 0.98 0.02 0.12 0.88 0.73 0.27 0.06 0.94
0.1 0.19 0.81 0.54 0.46 0.41 0.59 0.75 0.25 0.97 0.03 0.13 0.87 0.71 0.29 0.11 0.90
0.2 0.29 0.71 0.55 0.45 0.58 0.42 0.82 0.19 0.93 0.07 0.11 0.89 0.70 0.30 0.12 0.88

10

0.01 0.11 0.89 0.57 0.43 0.40 0.60 0.73 0.27 1.00 0.00 0.11 0.89 0.47 0.53 0.00 1.00
0.05 0.13 0.87 0.57 0.43 0.42 0.58 0.76 0.24 1.00 0.00 0.10 0.90 0.48 0.52 0.01 0.99
0.1 0.16 0.84 0.54 0.46 0.47 0.53 0.75 0.26 1.00 0.00 0.13 0.87 0.48 0.52 0.01 0.99
0.2 0.26 0.74 0.57 0.43 0.57 0.43 0.79 0.21 0.99 0.01 0.12 0.88 0.44 0.56 0.01 0.99

In general, the results in Table 2 showed that the F-test consistently outperformed the RESET and
LM tests and was able to provide high TP rates at moderately low FP rates across all noise levels and
different numbers of missing reactions. The results of further evaluations of the F-test performance
for metabolic networks of different sizes (m = 50 and 200 metabolites and n = 55 and 220 reactions,
respectively) in Table 3 confirmed the robust performance of the F-test. In general, for the F-test, as
the level of measurement noise increased (higher CoV), the TP rates expectedly dropped. We also
observed that the smaller the number of missing reactions, the poorer were the TP rates of the F-test.
This trend was also expected since, with fewer missing reactions, the reduced SI was closer to the true
system and could more accurately capture the flux balance. Therefore, for the F-test to correctly detect
a misspecification of SI, the missing reactions would need to cause a significant deterioration in the
data fitting, a scenario that was less likely to occur as the number of missing reactions became lower.
Meanwhile, the FP rates were not a strong function of the noise level. The FP rates improved with a
lower number of missing reactions, albeit only slightly.



Bioengineering 2017, 4, 48 12 of 17

Table 3. Case Study II: Additional misspecification tests using the F-test (values represent rates).

m nvI nvE nvO CoV TP FN FP TN

50 30 25

2

0.01 0.86 0.14 0.11 0.89
0.05 0.82 0.18 0.10 0.90
0.1 0.75 0.25 0.09 0.91
0.2 0.69 0.31 0.09 0.91

5

0.01 0.99 0.01 0.10 0.90
0.05 0.98 0.02 0.10 0.90
0.1 0.97 0.03 0.10 0.90
0.2 0.92 0.08 0.11 0.89

10

0.01 1.00 0.00 0.10 0.90
0.05 1.00 0.00 0.09 0.91
0.1 1.00 0.00 0.09 0.91
0.2 0.99 0.02 0.11 0.90

200 120 100

2

0.01 0.76 0.24 0.11 0.89
0.05 0.73 0.27 0.10 0.90
0.1 0.67 0.33 0.07 0.93
0.2 0.58 0.42 0.10 0.90

5

0.01 0.97 0.03 0.16 0.84
0.05 0.95 0.05 0.11 0.89
0.1 0.94 0.07 0.13 0.87
0.2 0.88 0.12 0.13 0.88

10

0.01 1.00 0.00 0.15 0.85
0.05 0.99 0.01 0.16 0.84
0.1 1.00 0.01 0.13 0.87
0.2 0.98 0.02 0.15 0.85

20

0.01 1.00 0.00 0.14 0.86
0.05 1.00 0.00 0.14 0.86
0.1 1.00 0.00 0.15 0.86
0.2 1.00 0.00 0.14 0.86

With larger networks, detecting the same number of missing reactions using the F-test became
more difficult, as expected. At the largest network size (m = 200), the rate of correctly detecting a
misspecification with two missing reactions was slightly lower than 60%. Fortunately, the TP rates for
detecting five or more missing reactions were still high (>88%), and the FP rates depended weakly on
the size of the networks and the number of missing reactions and remained relatively low, between
10% to 15%, in most of the cases in our study (see also Supplementary Table S3).

On the other hand, the RESET test performed very poorly in this case study, in which the FP rates
were consistently higher than the TP rates. The general trends observed for the F-test also did not
apply to the RESET test. We noted that the RESET test is derived based on the assumption that data
error has a constant variance (i.e., the data noise is homoscedastic) [20]. Since the data noise in this
case study has a standard deviation that scales linearly with the mean flux value, this assumption
was violated. Upon repeating the RESET test using homoscedastic in silico flux data, the RESET test
performed much better, with much lower FP rates (see Supplementary Table S4). In addition, the
trends of lower TP rates with increasing noise levels and with fewer missing reactions were applicable
to the RESET test results when the data noise was homoscedastic.

The LM test performed better than the RESET test but produced lower TP rates than the
F-test, particularly at the highest number of missing reactions (nvO = 10). The LM test can handle
heteroscedastic data through the use of heteroscedasticity-consistent (HC) standard errors in the matrix
Ω̂. The results in Table 2 showed that, like the F-test, the TP rates of the LM test decreased with
increasing noise levels. Also, as with the F-test, the TP rates of the LM test increased upon increasing
the number of missing reactions from two to five, but, upon increasing the number of missing reactions
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further, the TP rates of the LM test decreased. With an increasing number of missing reactions, the
magnitude of the residuals from the OLS estimation using the misspecified model, and therefore the
diagonal elements of the HC matrix Ω̂, would become larger. Since the rejection rates of the null
hypothesis decreased with larger Ω̂, the FP rates tended to decrease with more missing reactions. For
the same reason, the TP rates of the LM test dropped at the highest number of missing reactions.

Considering its robust performance in this case study, we therefore recommend the F-test for
detecting model misspecification in the overdetermined MFA. The F-test requires the stoichiometry
of the candidate missing reactions as an input. With the extensive knowledge on metabolic reactions
available in the literature and in online public databases, such a requirement may not be overly limiting.

3.3. Case Study III: Resolving Model Misspecification

In the last case study, we evaluated the performance of the proposed iterative procedure
to resolve stoichiometric matrix misspecifications in the overdetermined MFA (see Materials and
Methods). Here, we returned to the flux analysis of the CHO metabolic network in Figure 1. For the
performance assessment, we created 100 different stoichiometric matrices SI,true by randomly removing
a number nextra of columns from the stoichiometric matrix SI of the CHO model. For each SI,true, we
generated an artificial data vector y = SI,truevI,true using the GLS flux estimate (see Supplementary
Table S2) and contaminated the data vector with independent Gaussian noise with zero mean and the
variance-covariance matrix, as in Case Study I. The data generation procedure was repeated 100 times.
For each data vector, we then created a reduced matrix SI,red by randomly removing a number nomit
of reactions from SI,true. The reactions removed in the creation of SI,true and SI,red were subsequently
combined in the matrix SA. In other words, the set of candidate missing reactions SA had equal
fractions of the actual omitted reactions and the extra reactions that were not used in the in silico data
generation. Finally, we applied the strategy for resolving model misspecification to each data vector
using the matrix SI,red as the reduced stoichiometric matrix and the matrix SA as the candidate missing
reaction matrix. The strategy was implemented using two settings: (1) k = 1 and (2) k = 1 followed by
k = 2.

Table 4 gives the number of reactions in SA that were not positively identified by the iterative
procedure to be included in the stoichiometric matrix. As an indication of good performance, the
number of omitted reactions (extra reactions) that remained should be low (high). The results in Table 4
demonstrated that the proposed procedure using k = 1 was able to correctly detect and incorporate
almost all of the omitted reactions, while keeping the incorrect inclusion of extra reactions low. As
expected, performing an additional run with k = 2 after finishing the procedure with k = 1 led to a
higher incorporation rate of the omitted reactions, but such a strategy came at the cost of a higher rate
of incorrect addition of the extra reactions. Due to the small size of the CHO model and the number of
missing reactions considered, a higher k (e.g., k = 2) led to the incorporation of all omitted and extra
reactions (see Supplementary Table S5). Considering the trade-off above, we thus recommend using a
simple implementation with k = 1 to resolve the issue of stoichiometric matrix misspecifications in the
overdetermined MFA.

Table 4. Case Study III: Iterative procedure for resolving model misspecification in the CHO model.

k nextra nomit
Number of Remaining Reactions a

Extra Reactions Omitted Reactions

1
3 3 2.82 ± 0.38 0.99 ± 0.10
5 5 4.13 ± 0.63 1.34 ± 0.46
8 8 5.89 ± 0.83 2.21 ± 0.48

1 then 2
5 5 3.66 ± 0.59 0.97 ± 0.17
8 8 5.03 ± 0.70 1.00 ± 0.29

a The number of remaining reactions (mean ± standard error) corresponds to the average over 100 generations of
the stoichiometric matrix SI,true, of the median number across 100 in silico data simulations.
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4. Discussion

Metabolic flux analysis is an indispensable tool for elucidating and understanding the metabolic
phenotype of cells, with numerous applications in biotechnology and biomedical fields. The core of
the MFA is the stoichiometric model of the metabolic network, which, under pseudo-steady state
assumption, enforces a constraint on the distribution of the metabolic flux values. The power of
MFA methods stems from their ability to provide estimates of the intracellular metabolic fluxes from
measurements of extracellular species concentrations or 13C isotopic labeling experiments, using only
the stoichiometry on the metabolic reactions. However, because of its reliance on the stoichiometric
model, the accuracy of the flux predictions should therefore depend sensitively on the veracity of
the stoichiometric matrix in the MFA. Despite its obvious importance, the impact, detection, and
rectification of stoichiometric matrix misspecifications have not received much attention in the past.
We aimed to fill this gap for the overdetermined MFA, for which the flux estimation problem constitutes
an overdetermined linear regression problem.

Statistical analysis of linear least square regression has provided numerous tools for assessing,
among other things, the goodness of fit, gross measurement errors, accuracy of flux estimate, and error
propagation in the overdetermined MFA (as presented in Introduction). In this work, we adapted
statistical analysis and tests for model misspecifications in linear least square regressions. To the best
of our knowledge, such analysis and tests have not yet been applied to the flux estimation problem of
the overdetermined MFA. Here, we first derived a simple formula to evaluate the specification bias in
the flux estimate due to missing reactions in the stoichiometric model. Using a stoichiometric model of
the CHO metabolism, we showed that the significance of the regression is not a sufficient indicator of
a low flux bias. In particular, the omission of reaction(s) that results in a high bias (error) in the flux
estimate could still produce a statistically acceptable regression. Furthermore, we demonstrated that
the removal of reactions with a low flux value could also cause disproportionately large specification
biases. In practice, the significance of the regression and the prior information on the magnitude
of reaction fluxes are often used for the curation of a reduced order stoichiometric model for the
overdetermined MFA. Our findings from the first case study clearly motivated computing the potential
flux specification bias during the removal of reaction(s).

Among the statistical tests that we evaluated for detecting stoichiometric matrix misspecifications,
the results from random metabolic networks clearly demonstrated the superiority of the F-test. The
F-test could provide high TP rates and low FP rates for detecting missing reactions for most problem
sizes (except when there were only very few missing reactions). Based on these findings, we proposed
an iterative procedure using the F-test to detect and correct missing reactions. In each iteration, we
used the F-test to identify a combination of k reactions from the set of candidate missing reactions
that would (statistically) significantly improve the linear regression. The combinations that passed a
certain p value threshold are then incorporated in the stoichiometric model. The application of this
iterative procedure to the CHO stoichiometric model indicated that the simple implementation using k
= 1 gave the most robust performance. The computational cost of performing the iterative procedure
scales linearly with the number of candidate reactions when using k = 1 or combinatorically when
using k > 1. Fortunately, since the F-test involves only computationally efficient matrix inversions and
matrix-vector multiplications, each iteration of this procedure takes little time to finish. For example,
each iteration in Case Study III, with eight missing reactions, using k = 1 finished in roughly 4 × 10−3

seconds on a standalone workstation (MATLAB R2016b, 3.2 GHz Intel Core i5, 16GB memory). The
MATLAB codes for the case studies are provided as a supplementary material.

Finally, there exist several obvious limitations in the statistical tests evaluated in this work. First,
these tests rely on the assumption of normality for the noise. The validity of this assumption could
be checked by standard normality tests such as the Lilliefors or Shapiro-Wilk tests [30] or using a
normal probability plot. When the number of measurements is sufficiently large (>30 for non-skewed
noise), the normality assumption is typically reasonable thanks to the central limit theorem. Another
limitation of the tests is the imposition on the rank of the matrices, i.e., the set of reaction stoichiometry
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produces a stoichiometric matrix with a full column rank. In other words, the reactions in the model
are non-redundant, and the stoichiometry of the reactions is linearly independent. Note that this
rank condition is a requirement for finding a solution to the linear least square regression problem
of the overdetermined MFA. While detailed metabolic network models typically have redundant
reactions, the metabolic models used in the overdetermined MFA are curated to satisfy the rank
condition above; for example, by lumping of reactions and species belonging to a pathway together [31].
Thus, a ‘reaction’ in the overdetermined MFA often represents the overall stoichiometry of multiple
reactions. Within the scope of the overdetermined MFA, the F-test also requires that the set of candidate
missing reactions have linearly independent stoichiometry with respect to the misspecified model.
The candidate reactions again may not represent elementary reactions but could come from the
combinations of several reactions to ensure the satisfaction of the rank condition above.

5. Conclusions

In this work, we addressed the misspecification of the stoichiometric matrix in the overdetermined
MFA, particularly the omission of reactions. For this purpose, we adapted statistical analysis and
tools from linear least square regression to quantify, detect, and resolve the issue of missing reactions.
In particular, we derived a simple formula to evaluate the flux bias caused by missing reactions in
the overdetermined MFA. We further assessed the performance of several model misspecification
tests, namely Ramsey’s RESET test, the F-test, and the Lagrange multiplier test, in detecting missing
reactions for overdetermined stoichiometric models. Finally, we proposed an iterative procedure
for resolving the issue of missing reactions based on applying the F-test to the candidate missing
reactions one at a time and incorporating reactions that pass the significance test. The application
of these techniques to the CHO metabolic model and random metabolic networks provided several
important conclusions. First of all, the significance of the regression, a common metric for assessing the
data-model consistency in the overdetermined MFA, does not guarantee a low bias in the flux estimates.
In addition, a high flux bias could result from the removal of a reaction with a low flux magnitude that
would be typically deemed unimportant in the construction of the stoichiometric matrix. Therefore,
the potential flux bias due to any removal of reaction(s) should be computed during the construction
of the stoichiometric model. When the stoichiometry of the candidate missing reactions is known,
the F-test provides a robust means, with a high TP rate (nearly 100% for many cases) and a relatively
low FP rate (<15%), to detect model misspecifications in the overdetermined MFA. Upon a positive
detection of model misspecification in the overdetermined MFA, the proposed iterative procedure in
this study gives an effective and robust systematic approach to resolve this issue.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5354/4/2/48/s1,
Figure S1: Coefficient of variation analysis of the fluxes, Table S1: Metabolic reactions and exchange fluxes in
the Chinese hamster ovary metabolic model, Table S2: Intracellular flux estimate of the CHO cell culture, Table
S3: Case Study II: Other misspecification tests using the F-test, Table S4: Case Study II: Performance of model
misspecification tests assuming homoscedastic noise with CoV of the mean flux value (values represent rates),
Table S5: Case Study III: Iterative procedure for resolving model misspecification in the CHO model (k = 2), and
MATLAB codes of the misspecification tests and the flux analysis of the CHO model.
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