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Abstract: Background: Perchlorate-induced natrium-iodide symporter (NIS) interference is a
well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose
exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term.
Thus, the aim of this review was to overview and summarize literature results in order to clarify
this issue. Methods: Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional
websites and Google until April 2020 for relevant information about the fundamental mechanism of
the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical
consequences. Results: Food and drinking water should be considered relevant sources of perchlorate.
Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects
thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying
thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy
leads to a worse neurocognitive and behavioral development outcome in infants, regardless of
maternal thyroid hormone levels. Discussion and conclusion: The effects of a chronic low-dose
perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for
highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define
strategies of detection and prevention.

Keywords: perchlorate; Natrium/Iodide symporter; iodine; endocrine disruptors; review; drinking
and Food; Hypothyroidism

1. Introduction

Endocrine disrupting chemicals (EDCs) have been defined as a group of compounds or a mixture
of natural or man-housed exogenous chemicals which interfere with the hormonal network, or induce
endocrine cell damage [1]. Interference may be attributable to several mechanisms such as receptor
agonism or antagonism, modulation of receptor expression, modification of signal transduction,
hormone synthesis or incretion, plasmatic distribution and clearance [2]. Moreover, epigenetic effects
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have been hypothesized for EDCs and concerns about a possible “transmission” of EDCs across
the generations is a topic of debate [3,4]. To date, a wide range of environmental chemicals have
been identified as being involved in the pathogenesis of thyroid diseases [5,6] and several chemicals
or common pollutants may act as thyroid disruptors [7–9]. Perfluorooctanoic acid [10], a chemical
largely employed for the manufacturing of waxes, cosmetics, carpets, cleaning or waterproof products,
and bisphenols [11], hugely used as plasticizers, were found to increase the prevalence of thyroid
diseases in exposed patients [12], including thyroid autoimmunity [13]. Moreover, legacy pesticides
were experimentally shown to affect thyroid function [14] and, despite some controversy, they may
also induce hypothyroidism, thyroid autoimmunity, thyroid volume enlargement or nodules in
humans [15]. The bactericide triclosan was mostly found in personal hygiene products (oral care,
shampoos, hand sanitizers, soaps), and was proven to increase the risk of thyroid diseases, too [16].
Thyroid disruption includes different pathways, and may be due to either interference or synergism
among different EDCs [17]. The leading mechanisms of thyroid interference by pollutant agents
have been explored, and frequently include the inhibition of thyroperoxidase activity, competitive
natrium-iodide symporter (NIS) inhibition, impairment of binding protein transport and peripheral
deiodinase activity, enhancement of liver catabolism [18]. Since food and drinks are also a relevant
source of thyroid disruptors, a lifelong human exposure to these chemicals could induce potentially
harmful consequences on thyroidal homeostasis. Given this consideration, this review aims to
specifically focalize on NIS interference by specific agents, mainly perchlorate compounds, which are
commonly found in food and drinks.

2. Materials and Methods

The authors summarized iodine metabolism and its importance in thyroid homeostasis and
hormonal synthesis. Furthermore, the authors searched PubMed/MEDLINE, Scopus, Web of Science,
institutional websites and Google for relevant information about the fundamental mechanism of NIS
interference induced by perchlorate compounds orally assumed and the consequences on thyroidal
health status associated with chronic exposure to these chemicals.

3. Results

3.1. Overview on Iodine Metabolism in Healthy Humans

The primary source of iodine (I) is represented by natural food (seafood, milk, eggs, vegetables,
legumes, fruits), fortified food (salt) and mineral waters. I is basically available in two forms,
organic and inorganic (iodide); the latter form is absorbed at the level of stomach and duodenum [19]
through a specific natrium-iodide symporter (NIS) which regulates iodine homeostasis in human
body [20]. After gastrointestinal absorption, I enters the circulation, undergoing to a large distribution
into the plasma, red blood cell cytoplasm and extracellular fluid, and is finally intercepted by
tissues [21]. A wide range of tissues express the NIS, including salivary glands, breast, and thyroid [22].
Nevertheless, thyroid represents the most important reservoir of the ion considering that, in a healthy
human body, the gland normally stores up to 80% of the entire iodine pool (15–20 mg). The NIS is a
13-domain transmembrane protein which mediates transmembrane I and sodium (1 to 2 ratio) transport
at the level of thyrocyte’s basolateral membrane [23,24]. Transmembrane sodium gradient is generated
by the sodium-potassium ATPase pump which indirectly provides energy for an almost continuous
intrathyroidal I uptake (secondary active transport). Given this thyroid avidity, I concentration in
thyrocytes is 30 to 60 times higher than its plasmatic levels [25]. As a mean, thyroid secretes 80 µg a
day of I in the form of both levothyroxine and triiodothyronine [26]. Due to peripheral metabolism
of thyroid hormones, I circulates in bloodstream finally undergoing to both renal and hepato-biliary
clearance and thyroidal re-uptake, as well. An intrathyroidal I recycling has also been described [27].
Thyroidal uptake considerably fluctuates according to I intake, and ranges from 10% to over 80% of
the entire amount of ingested I. Contrariwise, urinary I excretion is inversely correlated with thyroid
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uptake, and in the case of adequate I intake, more than 90% of the ion is cleared by the kidneys with
urine [28]. Urinary I concentration is thus a reliable biomarker of I intake, and is a useful tool for
screening patients suspected for I deficiency [25]. Both the thyroid hormone synthesis and urinary I
excretion increase during pregnancy [29], while 126 to 269 µg of I could be excreted with each liter
of breast milk in lactating women [30]. Iodine intake is generally recommended at 150 µg per day
for adults in order to ensure the daily iodine recycle [31]. Thus, the recommended dose of iodine
intake raises at 200 - 250 µg per day during pregnancy and lactation for sustaining an increased
requirement [32]. I is an essential micronutrient for thyroid hormones synthesis [33,34]. Afterward the
transition into thyrocyte cytoplasm, I moves towards the apical surface of thyrocyte’s plasmatic
membrane into the follicular lumen. This transport is mediated by a ionic carrier belonging to the
SLC26A family, otherwise known as pendrin [35], and is also expressed at the level of the inner ear,
kidney and bowel. Specifically, pendrin is essential for favoring the efflux of iodine into follicular space
in exchange of chloride (1 to 1 ratio) and a defective synthesis or function of this carrier is responsible
for a the so called Pendred’s syndrome [36]. Once into follicular lumen, I undergoes oxidation by
thyroperoxidase, thus becoming promptly available for thyroglobulin’s organification. Thyroid I
content is the most important regulator of thyroid hormone synthesis. Indeed, I overload reduces the
expression of NIS, decreases both the thyroid peroxidase and deiodinases activities, and finally leads
to a transient impairment of thyroid hormone synthesis [37]. In predisposed patients, iodine excess
increases oxidative stress, and may induce or exacerbate thyroid autoimmunity and hypothyroidism
(Wolff–Chaikoff effect) [38]. Finally, I overload may exacerbate a latent hyperthyroidism in patient
with single thyroid nodule or multinodular goiter [39].

3.2. Perchlorate Compounds and Iodine Interference

The evidence that high doses of perchlorate (ClO4
−) anion decreased thyroid hormone synthesis

has been known since the 1950s [40], and given this peculiarity, it has been used to effectively treat
hyperthyroidism such as in Graves’ disease and amiodarone-induced hyperthyroidism [41]. Specifically,
ClO4

− competes with I at the level of the NIS (Figure A1), the former having a 30-fold higher affinity
for the symporter when compared to the latter [42]. A dose-response sigmoid curve has been reported
for describing NIS sensitivity to ClO4

− inhibition in different species and the half maximal inhibiting
concentration in humans was found at 1.566 µM [43]. To confirm these experimental results, an orally
delivered acute exposure to up to 520 µg/kg of body weight (bw) induced a significant increase in
serum thyroid stimulating hormone (TSH) levels, with a relevant decline in serum-free levothyroxine
concentrations [44]. On the other hand, it is thought that a chronic low-dose exposure to ClO4

−,
normally observed as the consequence of food and drink intake, could impair thyroid function by
reducing iodine uptake particularly in predisposed individuals, such as those with an underlying
iodine deficiency [45,46].

3.3. Perchlorate Compounds in Food and Water

ClO4
− may naturally occur in the atmosphere from spontaneous photogenic reaction between

chloride and ozone, or arises from man-made products such as oxidizers, fertilizers, explosives,
propellants, fireworks, airbag inflators spread into environment. In addition, ClO4

− can be
also produced from the degradation of the common water disinfectant hypochlorite [47].
Perchlorate compounds occur in different form, such as metal perchlorate, ammonium and alkali
metal forms, organic and inorganic forms and salts. Antarctic ice represents the most important
sediment of ClO4

− in the planet, with different concentrations depending on drilling areas [48].
The Atacama desert (Chile, South America) is another important natural source of geogenic ClO4

−,
and elevated concentrations of its compounds have been found in soil (290 to 2565 µg/Kg) and surface
waters (744 to 1480 µg/L) [49]. Other relevant sources of natural ClO4

− have been discovered in
Alaska, Puerto Rico, New Mexico, Texas, California (United States of America, USA), and Bolivia
(South America). Anthropogenic ClO4

− compounds have been found in soil, sea and rainwater,
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surface and groundwaters, indoor and outdoor dust, ice and snow [50]. Given data from ice drilling
analyses, anthropogenic ClO4

− started to accumulate in Arctic ice from the 1980s [51]. In Devon Island
(Canada, North America), ClO4

− compounds were found in ice and snow at variable concentrations
ranging from 1 to 18 ng/L [52]. A great variability in rainwater ClO4

− levels was observed due to
differences in analyzed geographical sites and seasonality. In fact, ClO4

− concentration ranges from
0.02 to 1.6 µg/L in Texas (USA) [53], 0.02 to 6.9 µg/L in India (Asia) [54], and 0.35 to 27.3 ng/mL in China
(Asia) [55]. Moreover, Munster et al. evaluated the levels ClO4

− in total deposition from November
2005 to July 2007 in Long Island (New York State), relieving a mean concertation of 0.21 µg/L and with
a maximum level of 2.81 µg/L recorded after fireworks displays occurred during the Independence
day celebration [56]. Another observation reported different levels of ClO4

− in wet deposition only,
ranging from <5 to 105 ng/L (mean 14 ng/L) with higher concentrations recorded in spring and
summer than winter [57]. Soil usually does not retain ClO4

− and more than 90% is confined in the
aqueous phase [58] where ClO4

− spreads and persists due to its high solubility and resistance to
photolysis and anaerobic bacterial biodegradation [59]. Fruits and vegetables represent a relevant
food source of ClO4

−, particularly because of the widespread use of perchlorate-based fertilizers [60].
In particular, leafy vegetables, spinach, salad plants, raspberries, apricots, asparagus, cantaloupes,
and tomatoes accumulate ClO4

− as a consequence of farming techniques [61]. The mean concentration
of perchlorate in tested food appears variable and the highest levels have been found in Guatemalan
cantaloupes (156 µg/Kg), spinach (133 µg/Kg), Chilean green grapes (45.5 µg/Kg) and Romaine lettuce
(29 µg/Kg) [62]. Vega et al. reported variable concentration of ClO4

− in Chilean drinking waters
which ranged from 4 to 120 µg/L [63]. Conversely, lower levels of ClO4

− in drinking water have been
observed in the USA [64] and Europe, including Italy (0.5–75 µg/L) [65].

3.4. Chronic Esposure to Perchlorate Compounds by Food and Drinking Water

The 2018 “Italian Institute for Food and Agriculture Market Services” ranking reported the
USA as the most valuable country in exporting fruits and vegetables, followed by Mexico and Chile.
Given the volume of exports, Spain (4th) and Italy (7th) are responsible for the 42% of the entire
European market of fruits and vegetables, ahead of Poland, France and Greece [66]. Chile has a
remarkable export economy [67], and usually exports several thousands of millions of kilograms of
fruits a year worldwide [68]. Specifically, the European Union is Chile’s third-largest trade partner
in the world, after China and the USA, and currently imports 19% of the Chilean global export of
vegetable products [69]. Cherries and table grapes, followed by apples, Chilean blueberries and
plums are the most exported vegetable products to Europe. Vegetables from Chile are notoriously
rich in ClO4

− and the excessive consumption of these products could have chronically negative
consequences on thyroid homeostasis. Indeed, ClO4

− food exposure is essentially driven by vegetables
and fruits and widely ranged according to geographical area as well as seasonality [70]. To confirm
this assumption, ClO4

− was detected in a wide range of vegetable samples, ranging from 21 to
162 µg/kg [71]. Vegetables consumption in Italy seems to slightly but continuously increase over time
and some of the most consumed vegetable products, such as spinach, leaf vegetables and spices were
found to be a relevant source of ClO4

− [72]. Normal consumption of these vegetables does not usually
lead to exceeding the maximal total daily dose according to the European Food Safety Authority
2014 (0.3 µg/Kg of bw). However, a higher daily consumption of these products led to a relevant
exceeding of the maximal tolerated dose by 32% in adults, 61% in children and 56% in infant [72].
In addition, tea and herbal infusions could represent another relevant source of ClO4

−, oscillating from
630 to 730 µg/Kg for dark tea; 80 to 430 µg/Kg for black tea; and 250 to 500 µg/Kg for green tea [73].
Therefore, the consumption of the aforementioned products should be moderate and intermittent for
avoiding a consistent ClO4

− overload. Indeed, acute exposure to high or very high levels of ClO4
−

normally is not enough for overcoming thyroidal compensation and ability to maintain normal serum
concentration of thyroid hormones in healthy individuals [64]. Chronic consumption of ClO4

− in
adults has been estimated as high as 0.07 to 0.34 µg/Kg of body weight per day in Europe [70], and 0.2
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to 0.4 µg/Kg of body weight per day in the USA [74]. Despite ClO4
− consumption being generally

below the level of recommended reference dose in adults [75], it may become critical, especially
in some categories, such as children, high sensitive patients, cigarette smokers, iodine deficient
people, and pregnant and breast feeding women as well [76–78]. Indeed, the inhibition of I uptake
and any potential downstream effects induced by ClO4

− are strictly dependent on the exposure to
other environmental NIS inhibitors, such as thiocyanates and nitrates, and iodine intake itself [79].
These potential confounders should therefore be considered in future studies and calculations for
risk assessment [80]. Finally, breast milk and infant formulas are the most significant sources of
ClO4

− for newborns and infants [81–83]. Compared with adults, infants and children exhibited a
greater ClO4

− exposure per Kg of bw per day [75,84], particularly breastfed children (0.22 µg/Kg of
bw/day) respective to those fed by cow milk-based formula (0.1 µg/Kg of bw/day) or soy-based formula
(0.027 µg/Kg of bw/day) [85]. Food intake more than drinking water is considered the main source of
ClO4

− for children [81] and adults [86], since ClO4
− exposure from drinking water alone is not able to

suppress thyroid function [87]. Nevertheless, this assumption is controversial considering that other
results suggest opposite conclusions [70,74].

3.5. Perchlorate Compounds Toxicity

From this point of view, concerns have been supposed in case of ClO4
− exposure during fetal and

infantile life [88,89]. The placental NIS ensures maternal-to-fetal transition of I [90], therefore allowing
fetal uptake of ClO4

− and other goitrogen chemicals, too. Blount et al. specifically analyzed the
perinatal exposure to goitrogen chemicals in 150 mothers from New Jersey (USA), showing that
the placental barrier was more permeable to I respective to goitrogens and maternal urinary ClO4

−

concentrations were directly correlated with ClO4
− concentration in amniotic fluid, thus resulting

an useful tool for assessing fetal exposure [91]. As observed in a Chinese population, ClO4
− was

detected in infant’s urine (22.4 ng/mL) and cord blood serum (3.2 ng/mL) at a concentration about
22 times greater compared to that reported by Blount (0.14 µg/L) [92]. This finding is difficult to
explain, but could be attributable to different environmental exposures or dissimilarities in assay
or both. Several studies analyzed the impact of a mild-to-moderate exposure to ClO4

− in early
pregnancy on both maternal thyroid function and several neonatal outcomes. In a cross-sectional trial
in Athens (Greece), 139 first-trimester pregnant women with mild iodine deficiency were chronically
exposed to dietary sources of ClO4

− as suggested by median levels of urinary ClO4
− concentration at

around 4 µg/L. The authors specifically found that ClO4
− urinary concentration, possibly associated

with a moderate iodine deficiency, was inversely related with plasmatic levels of triiodothyronine
and thyroxin in this cluster of patients [93]. A cross-sectional study in 200 first-trimester Thai
pregnant women (<14 weeks of gestation age) confirmed a chronic low-level environmental exposure
to ClO4

− compounds (and thiocyanates) and this exposure was positively associated with serum
TSH concentration and negatively related with serum levothyroxine levels [94]. Data from San Diego
(South California) reported a mean urinary ClO4

− concentration of 8.5 µg/L in first-trimester pregnant
women, and the higher the level of ClO4

−, the higher the level of TSH and the lower those of total
thyroxine and free thyroxine [95]. Pearce et al. analyzed the effects of environmental exposure to
ClO4

− in a cohort of 1600 first-trimester pregnant women, with mild-to-moderate iodine deficiency,
who had been enrolled in the Controlled Antenatal Thyroid Screening Study (CATS) from Cardiff
(Wales) and Turin (Italy). The results of this observation displayed a low-level environment exposure
to ClO4

− in all participants but no thyroidal impairment due to this contamination was noted [96].
These findings were also confirmed in first-trimester pregnant women from Los Angeles (California)
and Cordoba (Argentina) in whom a low concentration of urinary ClO4

− were detected (mean of
7.8 and 13.5 µg/L, respectively) but no correlation with ClO4

− exposure and thyroid function was
demonstrated [97]. A cross-sectional association between urinary ClO4

−, thiocyanate and nitrate
concentration and thyroid function was also assessed in healthy pregnant women living in New York
City (New York State). The results confirm that a co-occurrent exposure to ClO4

−, thiocyanate and
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nitrate may possibly impair thyroid homeostasis leading to hypothyroidism and ClO4
− specifically

displayed the largest weight in driving this outcome [98]. Taylor et al. evaluated the relationship
between maternal ClO4

− exposure and neurocognitive development in first-trimester pregnant women
with hypothyroidism or hypothyroxinemia and mild iodine deficiency. The results display that
maternal urinary ClO4

− concentration in the highest 10% of the population were associated with
an higher risk of offspring’s verbal intellective quotient impairment [odds ratio 3.14 (1.38–7.13),
p 0.006] and levothyroxine replacement did not improve the outcome [99]. In addition, a high
risk of mild reduction in the verbal intellective quotient in 3-year-old children who were prenatally
exposed to ClO4

− was observed irrespective of their mother’s thyroid function during pregnancy [100].
Furthermore, maternal ClO4

− concentration was found to positively correlate with male infant
bodyweight, especially in preterm [101].

Several observations assessed the relationship between maternal perchlorate exposure and
neonatal or infant thyroid homeostasis with controversial results according to the different clinical
end-points used for the assessment of euthyroidism [102–104]. ClO4

− may affect children growth as
reported by Mervish et al., who observed that girls with higher ClO4

− exposure displayed lower body
mass index and waist circumference than controls [105]. In addition, the results of a cross-sectional
study in 3151 participants (12–80 years old) displayed for each logarithmic unit increased exposure to
both ClO4

− and thiocyanate, the level of free thyroxine decreased by 8% in adolescent girls and 9% in
adolescent boys, respectively [106].

3.6. Overview on Other Halogenate Compounds

Other halogenated compounds may interfere with I uptake as similarly observed for ClO4
−,

including bromine and brominated compounds [107] and fluoride and fluorinated compounds [108].
Bromine compounds naturally occur in marine and terrestrial plants, but industrial compounds account
for 80% of bromine production [109]. In particular, bromine compounds are essentially found in
phytochemical, pharmaceutics, pesticides, dyes, and photographic and water treatment chemicals [109].
Bromine has been found at higher concentrations in seawater (65 to 80 mg/L) compared to natural waters
(in mean 0.5 mg/L) and groundwaters (1 to several mg/L) [110]. In addition, potassium bromate is an
inexpensive oxidizing agent used as dough improver in the baking industry [111]. Specifically, it leads
to the formation of disulfide bonds between gluten proteins, ameliorating bread’s proprieties, such as
swelling and volume [112]. Chronic exposure to potassium bromate was associated with toxic
effects and carcinogenicity in animal models [113–115]. However, no data are currently available to
also confirm toxicity and carcinogenicity in humans, thus the International Agency for Research on
Cancer classified potassium bromate in group 2B (possibly carcinogen to humans) [116]. Given these
considerations, potassium bromate has been precautionarily banned from several countries, such as
those in Europe, the United Kingdom, Canada, Nigeria, China, South Korea, and several countries in
South America, but it is still considered safe in the United States. Indeed, according to the Food and
Drug Administration, no sufficient evidence of potassium bromate adverse effects has been collected
in humans thus allowing the use of additives in the bread baking industry not exceeding 75 parts per
million [117]. For this reason, bromate levels should be constantly and reliably monitored in bread
whether potassium bromate has been used as an additive in flour processing [112]. In one observational
study in Nanchang (China), bromine was detected in all 131 whole blood samples, thus suggesting
a higher prevalence of contamination among people [84]. The daily intake of bromide ranged from
2 to 8 mg in the USA and 9 mg in Europe (the Netherlands) [110]. Regulatory agencies defined
limits of concentration bromide in drinking-waters at 6 mg/L for adults and 2 mg/L for children and
acceptable daily intake currently ranges from 0 to 1 mg/Kg of bw [110]. Human exposure to brominated
compounds usually occurs by food intake and consistently increases over time, resulting particularly
higher in Occidental countries [118]. Breast milk as well as hair and adipose tissue may accumulate these
chemicals, thus resulting as reservoirs for further persistence of brominated compounds in the human
body [118]. Bromide may interfere with thyroid homeostasis, particularly competing with I uptake and
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I clearance [119,120] however, human toxicity data demonstrated that polybrominated compounds
may interfere with gonadal function and sexual steroids’ metabolism [118]. Fluoride and fluorinated
compounds has been found in different rock-forming minerals, fertilizers, pesticides, and propellants,
and has also been found in drinking water generally at acceptable levels according to regulatory
agencies (<1.5 mg/L or <4 mg/L) [121] and groundwater [122]. Considering that a low dose of
fluoride increases overall oral health, several countries add it to their public water supply at 0.7 to
1.5 mg/L [118]. In Italy, public waters are naturally rich in fluoride (1 mg/L), thus making fluoride
addition in public supply unnecessary [123]. However, fluoride concentration in public waters
differs among regions, and is particularly higher in Lazio, where an excessive consumption of public
drinking-water may lead to a fluoride overexposure [123]. Concerns over fluoride overexposure
through drinking water have been raised in several countries [124], in which the levels of fluoride
intake exceed safety limits, leading to a relevant increase in the prevalence of both dental and skeletal
fluorosis [125]. Fluoride has been found to block I uptake by two fundamental mechanisms: inhibition
of sodium-potassium ATPase and a cytokine-mediated reduction in NIS gene expression [126].
Indeed, fluoride exposure in early stages of life, mostly for preventing dental caries, is believed to
be linked with an higher risk of future development of several diseases, including hypothyroidism
and impaired intellective quotient [127]. Moreover, the exposure to fluoride concentration at 100 ppm
(mg/L) in experimental conditions were associated with apoptosis, organelle damage and oxidative
stress resulting in neurodegeneration, endocrine dysfunction and diabetes mellitus [128]. Due to
anthropogenic and industrial activities, a great number of pollutant entry in water systems leading to
possible concerns for wildlife and human health. Defluoridation of water may contribute in reducing
the level of fluoride contamination in water and different physicochemical and electrochemical methods
have been used for this purpose [129]. Among these, biosorption should be considered an easily
available, recyclable and inexpensive tool [129].

4. Discussion

I sufficiency and euthyroidism are essential for preventing negative neurodevelopmental [130]
outcomes and processing disorders [131], thus I deficiency or interference should be hazardous
particularly during pregnancy and earlier stages of life given the particularly vulnerable thyroid
function in this developmental phase. Conventionally, I deficiency has been defined as a 24-h urinary
excretion <100 µg/L [132]. Given this criteria, more than 2 billion people worldwide are at high risk of
iodine insufficiency and at least half of European citizens exhibit a mild to moderate I deficiency [133].
Italy has been historically defined as being endemic for I deficiency, particularly in the northern
mountainous regions. Strategies of implementation of iodine intake have been allowed by law
since 1972 through the use, on a voluntary basis, of fortified salt with an I content of 15 µg/Kg,
subsequently augmented to 30 µg/kg (law 55/2005). Supplementation provided a slow but progressive
improvement of iodine status over time but did not completely eradicate the risk [134,135] and the
prevalence of mild-to-moderate I deficiency remains a current matter [136], especially in pregnancy
and lactation [137]. Of note, patients with I deficiency should be considered as highly susceptible
for developing I interference by food intake. ClO4

− has a short half-life (up to 8 h) due to a quick
renal clearance [138], thus its accumulation in human body is clearly due to chronic exposure to drinks
and food [139,140]. ClO4

− exposure may be harmful for thyroid homeostasis, especially in childhood
and pregnancy. Two trials were performed to assess short term effects of a ClO4

− acute exposure
(2 weeks) to either 0.5 or 3 mg daily, showing no effect on thyroid function [141,142]. However, 2 weeks
of ClO4

− exposure at higher doses (10 to 30 mg per day) resulted in significantly reduced iodine
uptake, potentially affecting thyroid hormone synthesis [143,144]. The results of these studies should
be interpreted with caution, particularly considering that short-term exposure is usually insufficient
to affect thyroid secretion of levothyroxine. Moreover, to achieve these levels of exposure, it could
be necessary to have an extremely high daily consumption of ClO4

− for a limited period of time
which is normally not reproducible in real life (i.e., 2 litres of drinking water at ClO4

− content as
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high as 200 µg/L). On the other hand, studies which assessed the effect of a chronic ClO4
− exposure

(i.e., occupational) on thyroid hormone synthesis reported inclusive or equivocal results, despite I
uptake being usually impaired in almost all participants [145–147]. Given these findings, it was
difficult to make an unequivocal conclusion. The National Research Council of the National Academics
sustained that, in healthy individuals, I uptake would be reduced by at least 75% for months in order
to significantly impair thyroid hormone synthesis [47]. Thus, a sustained exposure to 0.5 mg/Kg of
bw/day of ClO4

- would be most likely to induce a significant decline in I uptake consequentlyaffecting
thyroid hormone synthesis [47]. However, the US Environmental Protection Agency adopted a
recommended reference dose for ClO4

− at 0.7 µg/kg of bw/day [141]. This conservative decision was
based upon a non-observed effect level found by Greer et al. in 2002 (7 µg/Kg of bw/day) divided for
an uncertainty factor of 10 attributable to intra-human variability intended to calculate an acceptable
daily intake [144]. The Office of Environmental Health Hazards Assessment developed a public health
target for ClO4

− in drinking water of 6 µg/L in 2002 to 1 µg/L in 2012 [148]. In 2011, the Joint Food
and Agriculture Organization—World Health Organization recognized a maximum tolerable daily
intake of 10 µg/kg of body weight [149]. In Europe (France and Germany), the acceptable level of
exposure to ClO4

− was set at 0.7 µg/kg of bw with a tolerable concentration in drinking water of
15 µg/L, successively reduced to 4 µg/L [47]. Furthermore, the European Food Safety Authority in
2014 predisposed the maximum tolerable daily dose of 0.3 µg/Kg of bw/day [70]. Water and soil
contaminations have become a concern due to detrimental consequences for both wildlife and human
health. Efficient methods for reducing the levels of ClO4

− in fruits and vegetables represent useful
tools to decrease the levels of exposure. Considering that the contamination of fruits and vegetables
should reflect ClO4

− concentration in soil, water for irrigation and fertilizers, several processes found
application in this field [150]. As an example, ion exchangers, which replace ClO4

− with other resident
anions, such as bicarbonate, sulfate and nitrate, are one of the most used methods for removing ClO4

−

from water and may be considered as a tool for dropping ClO4
− levels throughout soil watering [151].

Biological degradation by perchlorate-reductase producer bacteria [152] or plants [150] could be
counted as another useful method for reducing ClO4

− in water and soil, respectively. Photocatalytic
reduction of aqueous oxyanions converts toxic anions (such as ClO4

− or bromate) into harmless and
less and/or not toxic ions in contaminated waters [153]. However, several limitations have been
described for this method, which include high costs of technologies, sunlight harvesting capability and
generation of dangerous radical substances [153]. Physical methods include reverse osmosis coupled
with nanofiltration membrane systems [154], or a less expensive semipermeable membrane system
coupled with electrodialysis [155]. Moreover, iron-media adsorbent have been used for removing
ClO4

− and other anions in aqueous solutions [156]. In particular, granular ferric hydroxide was
found to induce a rapid uptake of ClO4

− in water, considering that its maximum absorption and
equilibrium were achieved in 30 and 60 min, respectively at 25 ◦C with optimal pH at 3–7 [157].
ClO4

− contamination of soil and water is strictly related to geogenic ClO4
− naturally occurred in

the atmosphere and subsequently precipitated. However, fertilizes may be considered a source of
ClO4

− accumulated in food chain [158]. Among fertilizers, higher levels of ClO4
− were detected

in nitrogenous fertilizers (32.6 mg/Kg) compared to natrium-phosphorus-potassium (12.6 mg/Kg),
non-nitrogen (10.2 mg/Kg) and phosphates (11.5 mg/Kg) fertilizers [159]. Thus, the type and the amount
of fertilizer may influence the source of entry for ClO4

− in crops. Additionally, agronomic practices
of fertilization may also contribute in this risk. As an example, fertigation is an innovative and less
expensive methods of fertilization which allows for less water being wasted, better distribution of
fertilizers and superior micronutrient assimilation by crops, but given these principles, it may be easier
to foster more significant accumulations of ClO4- in fruits and vegetables [60].

5. Conclusions

In conclusion, acute exposure to ClO4
− by food and drink should not be a harmful concern

for thyroid homeostasis in healthy individuals. Generally, chronic exposure to ClO4
− by eating
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and drinking does not exceed the safety reference levels. However, lifelong effects of a low-dose
exposure to ClO4

− are currently unknown and concerns remain, especially for highly susceptible
individuals such as pregnant and breastfeeding women, infants and children, cigarette smokers and
high vegetable consumers, such as vegans. These clusters of patients should be advised about this
worry, and encouraged to limit daily consumption of rich in perchlorate vegetables, as well as to
implement I intake.

On the other hand, producers should be encouraged to use specific culture systems,
fertilizers (as an example nitrate-free) as well as technologies for reducing the level of ClO4

− in soil
and irrigation waters in order to prevent an unnecessary ClO4

− enrichment of crops. For this purpose,
economic sustainment should be considered particularly for small and medium-size companies in
order to reduce management costs.

Finally, further and specific long-term studies are probably needed to better explore this issue,
aiming to clarify whether monitoring of perchlorate exposure over time, especially in individuals at
risk, could be of interest for endocrinologists for better defining strategies of detection and prevention
in exposed patients.
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