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Abstract
Since the outbreak of the COVID-19 pandemic, computer vision researchers have been working on automatic identifica-
tion of this disease using radiological images. The results achieved by automatic classification methods far exceed those of 
human specialists, with sensitivity as high as 100% being reported. However, prestigious radiology societies have stated that 
the use of this type of imaging alone is not recommended as a diagnostic method. According to some experts the patterns 
presented in these images are unspecific and subtle, overlapping with other viral pneumonias. This report seeks to evaluate 
the analysis the robustness and generalizability of different approaches using artificial intelligence, deep learning and com-
puter vision to identify COVID-19 using chest X-rays images. We also seek to alert researchers and reviewers to the issue 
of “shortcut learning”. Recommendations are presented to identify whether COVID-19 automatic classification models are 
being affected by shortcut learning. Firstly, papers using explainable artificial intelligence methods are reviewed. The results 
of applying external validation sets are evaluated to determine the generalizability of these methods. Finally, studies that 
apply traditional computer vision methods to perform the same task are considered. It is evident that using the whole chest 
X-Ray image or the bounding box of the lungs, the image regions that contribute most to the classification appear outside of 
the lung region, something that is not likely possible. In addition, although the investigations that evaluated their models on 
data sets external to the training set, the effectiveness of these models decreased significantly, it may provide a more realistic 
representation as how the model will perform in the clinic. The results indicate that, so far, the existing models often involve 
shortcut learning, which makes their use less appropriate in the clinical setting.
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1  Introduction

In December 2019, a new viral infection caused by Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), 
a member of the β-coronavirus single-stranded RNA [1], 

was discovered in China. In March 2020, the World Health 
Organization (WHO) proclaimed coronavirus disease 2019 
(COVID-19) a pandemic. This disease has the characteristic 
of being highly contagious, which has led to its arrival in 
almost all corners of the planet. To date, more than 180 mil-
lion people are reported to be infected and more than 3 mil-
lion have died1. This situation has caused the total or partial This article is part of the COVID-19 Health Technology: Design, 
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lockdown of many regions leading to wide-spread, adverse 
public health, economic and social outcomes.

Isolation of positive patients is key to cutting off the chain 
of infection. The gold standard for diagnosing COVID-19 is 
from the identification of viral RNA by Reverse Transcription-
Polymerase Chain Reaction (RT-PCR). However, this method 
has some limitations such as its modest diagnostic perfor-
mance and the delay in obtaining results. For example, the 
method may take between 6 and 9 h to confirm infection [2]. 
In addition, sampling can be quite variable, depending on the 
site, personnel and viral load of the individual at the time [3]. 
Furthermore, this test decreases its sensitivity if not applied 
within a specific period of time [4, 5].

The rapid spread of the coronavirus and the serious 
effects it causes in humans make early diagnosis of the dis-
ease imperative [6]. The fact that COVID-19 often presents 
with pulmonary pathology has led a large number of studies 
on the utility of chest radiography to determine the presence 
of disease [4]. However, prestigious radiological societies 
have questioned the role of chest imaging alone as a diag-
nostic method [7, 8].

A large number of studies to determine the presence of 
disease using chest radiography (CXR) using computer 
vision, often based on deep learning (DL), have been 
reported [9]. These papers have reported performance rates 
much higher than those of human expert observers. One of 
the potential shortcomings of these techniques is the intro-
duction of the bias referred to as “shortcut learning” [10]. 
That is, the models may rely on features that are not related 
to the pathology they are trying to classify. This bias can 
lead to models with very high-performance rates when 
evaluated on sets coming from the same distribution as the 
training set (called independent and identically distributed 
or iid). However, the same may not hold true when to a data 
set not from the same distribution (called out-of-distribution 
or ood). In such a case, the generalizability of the model may 
be severely limited.

In this research we will focus on the review of articles 
based on CXR as this imaging modality is widely used in the 
diagnosis and follow-up of patients and has some advantage 
compared to CT modality especially in COVID-19 positive 
patients as will be explained in this report. This is a con-
tinuation of previous work [11], providing further evidence 
of errors and biases made by researchers in the automatic 
identification of COVID-19 using CXR. This report seeks 
to reveal the weaknesses of models proposed so far to diag-
nose COVID-19 from CXR autonomously, using artificial 
intelligence (AI). In particular, we seek to alert researchers 
and reviewers to the concerns of shortcut learning which 
has been ignored in almost all the papers reviewed in the 
context of COVID-19 [12] as well as in other field of image 
classification [10]. In this research, two analyzes are pro-
posed to verify whether the methods are being affected by 

this issue. Specifically, studies that use explainable artificial 
intelligence to determine the regions that contribute the most 
to the classification are reviewed. Similarly, works that make 
use of an external validation set are analyzed to determine 
the generalizability of methods based on DL. In addition, 
studies based on traditional computer vision approaches are 
examined.

This paper is organized as follows. Firstly, we will discuss 
the “IMPORTANCE OF CXR AND CT IMAGING IN 
THE TIMELY MANAGEMENT OF COVID-19”. After 
that, we will state the criteria of important radiological 
society about the “USE OF CXR AND CT AS A DIAG-
NOSTIC METHOD FOR COVID-19”. Afterwards, in 
section entitled “THE USE OF AI IN RADIOLOGICAL 
IMAGING” we will show the performance index achieved 
by the radiologist and the artificial intelligence method for 
classifying COVID-19, which reflect contradictions. There-
after, section “DEEP LEARNING TECHNIQUES AND 
SHORTCUT LEARNING” will introduce the Deep Learn-
ing techniques and how Shortcut Learning is affecting these 
methods. The next section, “EVIDENCE OF SHORT-
CUTS LEARNING IN CXR CLASSIFICATION” will 
discuss studies that show the effect of this phenomenon, 
specifically on CXR images. One of the ways to determine 
the presence of Shortcut Learning is by using Explanatory 
Artificial Intelligence, these methods will be reviewed in 
the section “EXPLANATORY AI METHODS IN THE 
IDENTIFICATION OF COVID-19 USING CXR”. On 
the other hand, another way to determine Shortcut Learning 
is by using an external dataset to validate the models, many 
few studies are reported in the scientific literature which 
are discussed in the section “EXTERNAL VALIDATION 
SET TO DETERMINE GENERALIZATION CAPA-
BILITY OF THE MODELS”. Because Deep Learning 
algorithms compute their own features and therefore may 
exacerbate the shortcut learning phenomenon, in the sec-
tion “BEHAVIOR OF TRADITIONAL COMPUTER 
VISION METHODS” the results achieved using traditional 
computer vision methods will be discussed. Subsequently, 
in section “DISCUSSION AND FUTURE WORK” the 
main limitation of the analyzed research will be explained 
and some issues will be suggested to avoid the encountered 
limitations. Finally, the “CONCLUSIONS” reached in the 
research will be provided.

2 � Importance of CXR and CT imaging 
in the timely management of COVID‑19

Undoubtedly, medical imaging of the lungs is an important 
tool to assist specialists, both in the management of patients 
with acute respiratory infections (ARIs) as well as other 
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diseases. In the case of COVID-19, studies confirm visible 
abnormalities in the lung region for some patients, thus serv-
ing as a decision-making tool for human specialists [13]. It 
is important to take into account that, there are patients with 
positive PCR who do not develop signs or symptoms, so it 
is likely impossible to make the diagnosis using CXR alone.

CT images present greater sensitivity as a diagnostic and 
follow-up method compared to CXR. For example, there are 
reported cases of COVID-19 with visible lesions on CT but 
not visible on CXR [14]. In fact, one of the main CT findings 
in patients with COVID-19 are ground-glass opacities in the 
peripheral regions of the lower lobes, which may not be seen 
on CXR (Fig. 1). However, CT imaging capability may not 
be available in many medical centers where COVID-19 is 
diagnosed around the world. In addition, where CT equip-
ment does exist, it is not possible to dedicate it exclusively 
to COVID-19 diagnosis, given the high virology of the dis-
ease and the pressure of care. On the other hand, CXR has 
the advantage of being available in most healthcare facili-
ties. Its cost is much lower compared to CT imaging, and 
the portability of CXR can help to prevent the patient from 
moving about the medial center, and, thus, minimizing the 
possibility of spreading the virus. In many instances, this 
makes CXR preferable, even though it may be less sensitive 
for diagnosis and patient follow-up.

The most frequent findings on CXR for COVID-19 are 
bilateral consolidated, absence of plural effusion, bilateral 
ground-glass pattern, peripheral and in basal lobes, which 
appear as the clinical disease progresses from ten to twelve 
days after the onset of symptoms [16]. However, the use 

of this technique as a diagnostic method has shown low 
sensitivity and specificity in current radiological practice 
in asymptomatic patients with mild to medium grade dis-
ease [17]. For example, according to Ref [18] the sensitivity 
using CXR to detect SARS-CoV-2 pneumonia is 57%. In 
older patients the sensitivity was slightly higher compared 
to younger patients, but, in both cases, it was low. On the 
other hand, in [19], higher sensitivity values were recorded 
by radiologists, 65%. These values demonstrate the difficulty 
on the part of radiologists in making a diagnosis of COVID-
19 using CXR alone.

3 � Use of cxr and ct as a diagnostic method 
for covid‑19

Due to the increase of COVID-19 positive cases, since 
March 2020 prestigious radiology organizations (Fleisch-
ner Society [7], American College of Radiology (ACR), 
Canadian Association of Radiologists (CAR) [8], Canadian 
Society of Thoracic Radiology (CSTR) and British Soci-
ety of Thoracic Imaging (BSTI) [20]) issued recommenda-
tions on the use of CT and CXR as a method of screening, 
diagnosis and patient management for COVID-19. These 
organizations agree that, the use of these chest images alone 
should not be used to diagnose COVID-19, nor should they 
be used routinely in all patients with suspected COVID-19.  
These imaging techniques should also not be used to inform 
the decision to test a patient for COVID-19, as normal chest  
imaging findings do not exclude the possibility of COVID- 

Fig. 1   Example of CXR image (A) and CT image (B) for a COVID-19 positive patient. Red arrows show a lesion visible on CT, but not detect-
able using CXR, extracted from [15]
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19 infection. In addition, abnormal chest imaging findings 
are not specific for diagnosis of COVID-19. In general, chest 
imaging findings in COVID-19 are nonspecific and can over-
lap with other infections, such as influenza, H1N1, SARS 
and MERS. There are patients who present with positive 
PCR, but do not develop signs and symptoms of disease and 
thus may have a normal CXR or CT. Therefore, they can-
not be diagnosed as positive using lung imaging alone [21]. 
Consequently, CXR or CT may be used to assess the status 
of patients at risk of disease progression and with worsen-
ing respiratory status, but should not be used as the primary 
diagnostic screening tool.

4 � The use of ai in radiological imaging

The non-specific, subtle and difficult manifestations on both 
CT and CXR makes it difficult to achieve a high success 
rate in the diagnosis of COVID-19. Despite this, investiga-
tors from the fields of AI, DL and computer vision, have 
published a number of reports in this arena [9]. Articles in 
peer-reviewed journals have reported on automatic disease 
identification using CT and CXR. Such investigations should 
be considered with caution so as not to create false expecta-
tions, since, in many cases, the results reported far exceed 
those achieved by expert observers such as radiologists [22]. 
In general, radiologists may consider AI as a useful diag-
nostic support tool, but are concerned that the diagnostic 
accuracy using these techniques alone is overstated. [23].

Advances in automatic COVID-19 identification using 
CXR and CT imaging are reviewed in many studies [9, 
24–33] the average accuracy of AI methods of approxi-
mately 90%. On the other hand, the values for CXR com-
pared to CT are even higher at 96%. In some studies, the 
reported sensitivity is 100% [34, 35]. These reported values 
contradict, firstly, the fact that CT, in general, has higher 
sensitivity than CXR. Secondly, the lack of specificity of 
CXR would lead many radiology expert opinions, these 
images should not be used as a diagnostic tool for these 
patients. Note that radiologists only achieve a sensitivity 
between 57 and 65% [19] in the review of similar cases. 
None of the aforementioned review papers, question or ana-
lyze these high results achieved. In fact, in one report [36] 
it is stated that their method was able to identify with 100% 
effectiveness patients presenting lesions visible using CT, 
while not detectable on CXR.

According to one report [37] the advances achieved in the 
automatic classification of COVID-19 from CXR have little 
or no utility in clinical practice. Despite reporting encour-
aging results, the use of these models as specialist decision 
support systems must undergo more rigorous investigations 
and meet regional regulatory and quality control require-
ments. In particular, their performance must be validated 

and their efficacy demonstrated in the clinical workflow. On 
the other hand, in many investigations, the image sets used 
were small and poorly balanced. One review on the current 
limitations of studies using CXR to perform diagnosis [11] 
indicated that the use of datasets from different sources leads 
to models that learn features not related to the disease they 
are trying to identify, i.e. they demonstrate the phenomenon 
known as shortcut learning.

5 � Deep learning techniques and shortcut 
learning

Most of the techniques used in the COVID-19 automatic 
identification task based on CXR are based on DL that 
specifically rely on convolutional neural networks (CNN). 
These approached have achieved substantial, recent success 
in biomedical applications [38]. CNNs specialize in clas-
sifying images autonomously, without the need to consider 
previously defined features to perform the classification, 
as with traditional CV methods. As a result, the process of 
feature extraction and classification can be performed in a 
single stage. In short, CNNs consist of the serial connection 
of a feature extraction network and a classification network. 
Through the training process, the weights of both networks 
are determined. The feature extraction stage contains the 
filters for convolution, clustering, normalization, evaluation 
of an activation function, and so on. Meanwhile, the fully 
connected layers in the last stage act similarly to a conven-
tional Multi-Layer Perceptron (MLP)[39]. That is, a CNN 
in its training phase learns the coefficients that minimize the 
classification error, having to adjust millions of parameters. 
This explosion in the use of CNNs, even for complicated 
applications such as the analysis of medical images, has been 
made possible by the increase in computational power and 
capability [40] [41].

However, these DL methods are beginning to be evalu-
ated critically and some limitations have been reported. 
One of the difficulties studied is the bias known as shortcut 
learning where decision rules may that perform well on 
standard benchmark sets, but do not transfer to more diffi-
cult test conditions, such as real-world scenarios. For exam-
ple, models achieve superhuman performance in object 
recognition, but even small changes invisible to humans 
[42] or modifications to the image background [43, 44]. 
Furthermore, models can correctly classify an image, but 
worryingly, they may do so without taking into account 
what actually confers that classification [45]. That is, the 
models use features that are capable of correctly separating 
the class, but are not directly related to the task at hand. 
For instance, these models rely on differences in the back-
ground rather than the object to be classified. For example, 
the approach may be able recognize faces accurately, but 
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show high error rates for faces from marginalized groups 
that were not adequately represented in the training set [46]. 
These types of observations are beginning to cause concern 
in the scientific community.

Shortcut learning can present a major obstacle to achiev-
ing more reliable models. Overcoming this issue entirety 
may be exceedingly difficult if not impossible, but any pro-
gress in mitigating it will lead to more reliable solutions. 
The hope is that the models can behave in a similar way 
even in situations outside their learning. In other words, we 
want the model to have high generalizability outside of its 
training set. Currently, research on shortcut learning and its 
mitigation remains fragmented. Many studies do not address 
these limitations and do not take into account this important 
issue as evident in their research. However, there are oth-
ers that attempt to foster discussions and raise awareness of 
these issues among researchers, trying to make the rule of 
what has so far been only the exception. For example, it is 
recommended [10] that the results be considered carefully, 
using explainable AI techniques. It is also proposed as an 
essential rule to determine the generalization power of the 
model, using a set that does not come from any of the sets 
used in the training stage. These recommendations can apply 
to the COVID-19 identification task using CXR as will be 
discussed.

6 � Evidence of shortcuts learning in cxr 
classification

The use of DL methods has been extensively studied in the 
field of CXR imaging [30]. As mentioned above, the evalu-
ation of the generalizability of the proposed method from an 
ood set has been limited. However, some have reported evi-
dence about existence of shortcut learning [47–49]. In one 
case [47], irregularities are reported when training a model 
on an image set and evaluating on an ood set. Specifically, 
from four sets A, B, C and D, it was observed that when 
training and evaluating on set A, the results are superior 
compared to training using sets B, C and D, and evaluat-
ing with set A. Another study demonstrated the presence 
of shortcut learning [50] when the model was able to iden-
tify the originating hospital with more than 95% accuracy. 
According to the network activation map, it was observed 
that, to achieve this result, the model relied on the text labels 
on the CXR images, instead of the lung region. This demon-
strates that the performance of CNNs in disease diagnosis 
using radiographs may reflect not only their ability to iden-
tify specific disease findings in the image, but also their abil-
ity to exploit confounding information such as text labels.

Current DL models for identifying COVID-19 using CXR 
do not escape of shortcut learning. For example, one study 
[51] performed a classification with more than 90% accuracy 

without using the lung region demonstrating that the models 
have a lot of information to exploit that is not related to the 
disease manifestations in the lung region particularly when 
the entire image is utilized. In the same study, the absence 
of an ood set to assess generalizability is strongly criticized. 
On the other hand, another report [52] recognized that most 
of published work has not performed any analysis to demon-
strate the reliability of network predictions. In the context of 
medical tasks, this is particularly relevant. That is, most of 
the state-of-the-art studies have validated their results with 
datasets containing tens or a few hundred COVID-19 sam-
ples, which may limit the general impact of the proposed 
solution. As proposed in this study, one of the ways to obtain 
greater reliability of the methods is to use techniques that 
visualize the regions on which the findings of the models 
are centered.

Most of the research published on the application of AI 
and DL in the context of COVID-19 is based on images 
from different sources. After the publication of the GitHub-
Cohen [53] image dataset, in which a set of COVID-19 pos-
itive images was made freely available to the international 
scientific community, there have been numerous reports 
applying AI techniques for automatic disease classification. 
That is, to date, this has been the most widely used source 
of COVID-19 positive images by the scientific community. 
The formula used by most research to increase the num-
ber of negative (non-COVID-19) images has been to add 
images from sets available from other sources. A detailed 
explanation of the current sets, as well as their limitations, 
has been reported [54, 55]. In fact, in one study [54] it was 
determined that only five of the 256 datasets identified met 
the criteria for an adequate assessment of the risk of bias. 
In that study, it was observed that most of the data sets used 
in 78 published articles are not among these five data sets, 
resulting in models with a high risk of shortcut learning and 
other forms of bias.

7 � Explanatory ai methods 
in the identification of covid‑19 using cxr

Automatic diagnostic methods rely on interpretations from 
expert human observers on which they base their decisions. 
One of the current lines of research is the development of 
explainable artificial intelligence (XAI) methods [56]. Spe-
cifically, in the field of image-based medical applications, an 
adequate explanation of the decision obtained is essential. 
That is, a decision support system should be able to suggest 
the diagnosis and show, to best of its ability, what image 
content contributed to the decision reached by the algorithm. 
Such methods allow for the assessment of the veracity of the 
models. Therefore, through these techniques it is possible to 
verify if the decisions determined by the models are centered 
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on regions that should be used for diagnosis. For example, is 
the determination of presence of pulmonary complications 
from COVID-19 based on an analysis of CXR findings in 
the lungs?

XAI techniques have also been applied in the environ-
ment of automatic detection of COVID-19 from CXR. 
Table 1 lists some of the papers published to date that make 
use of these XAI tools. As can be seen, several techniques 
are reported, among the most used are LIME [57], Grad-
Cam [58] and Grad-Cam +  + [59]. The table also records 
the presence of segmentation methods to determine the lung 
region. This is of vital importance, since as will be shown 
below, when not only the lung region is used, the models 
tend to focus on regions where its association with disease 
in question is unclear. Figure 2 (extracted from [52]) shows 
an example of how when using the whole image, CNNs may 
use as most important regions for classification areas that 
are not within the lungs. This means that there are regions 
that provide enough information to adequately separate the 
classes with features not related to the disease that they are 
trying to classify. This is likely a case where the model is 
using shortcut learning.

An example of lung segmentation necessity is reported 
in one study [61], where the outcome of attention maps was 
evaluated by two radiologists. Reportedly, the model half 
focused on regions outside the lungs to perform the classifi-
cation in half of the cases. The recommendation put forward 
by the authors was to train on a much larger data set, so that 
the model would show a more robust performance in that 
aspect. In response to this recommendation, another study 
[12] image sets of a greater number of were used. The objec-
tive was to determine which regions were most used by the 
models to assign an image to a class. It was evident that, at 
times, saliency maps marked lung fields as important, sug-
gesting that the models took into account genuine pathology 
of COVID-19. However, the saliency maps in some cases, 
highlighted regions outside the lung fields that may represent 
confounds. For example, the saliency maps frequently high-
lighted laterality markers as differing between the COVID-
19 negative and COVID-19 positive datasets, and similarly 
highlighted arrows and other annotations that appear exclu-
sively in the GitHub-Cohen dataset. Also, by applying the 
CycleGAN technique, images were generated that showed 
textual markings as important patterns for determining class. 
It is worth noting that this study made use of an external 
validation set. In this case, it was evident that the perfor-
mance of the models decreased drastically when evaluated 
in the external (ood) set.

On the other hand, applying lung segmentation prior to 
classification and thus eliminating the use of regions out-
side the lungs leads to models that perform the classification 
based on features unrelated to the disease. Therefore, studies 

that use the complete image to perform the classification and 
achieve spectacular results (note that they are more than 30 
percentage points in relation to specialists in radiology) but, 
in truth, are not valid.

For example, in one report [52] the imaging regions that 
contributed most to the identification of COVID-19 were 
evaluated using three imaging variants. In the first experi-
ment, the full image was used and again, it was observed 
that the model took regions outside the lungs to perform 
classification. In the second experiment, the bounding box 
region of the lungs was used, where the same problem as 
in the previous experiment also appeared. Finally, in the 
third experiment an image of the segmented lungs was 
used, which forced the method to find the features within 
these regions. This time the results obtained indicated lower 
performance than the previous variants demonstrating that 
when using the previous variants, the models use features 
that are not related with the pathology in question.

Another attempt to visually assess the regions that a 
model uses to determine class was reported [63] show-
ing that, when using the whole image as input, the CNNs 
pointed out as important regions those that did not belong to 
the lungs. In this case, the models focused their attention on 
the text labels present on the images. As a result, the models 
were able to identify with high accuracy the site where the 
images were acquired and thus whether they were likely to 
be cases of COVID-19. This occurred even after applying 
lung segmentation. Therefore, there are hidden features in 
the images that can be exploited by the models to perform 
classification and need to be handled coutiously to achieve 
reliable models.

In other cases, the demographic characteristics of the pop-
ulation can be a strong confounding factor. Several papers 
have used image sets where one of the classes belongs to 
children [55]. On the other hand, patients with COVID-19 
often showed artifacts such as electrodes and their wires 
while other patients are intubated. Also, the position of 
the patients can have an effect, since in healthy patients, 
the X-ray view wass usually AP while in the COVID-19 
patients, patients were more often supine, and the view is 
PA.

XAI methods have been used to determine the regions of 
the image that contribute most to the classification and thus 
build more reliable models. Furthermore, it became evident 
that, when using the whole image, the regions marked as 
important may not be related with the classification label, 
invalidating the results achieved. On the other hand, the seg-
mentation of the lungs does not guarantee that the models 
really focus on appropriate regions and may contain under-
lying features that may still mask the good performance of 
the models. Nevertheless, as can be seen in Table 1, there 
are studies that, reporting the regions on which their models 

1336 Health and Technology (2021) 11:1331–1345



1 3

Table 1   Main studies using XAI techniques to identify COVID-19 using CXR

Ref Lung Segmentation XAI method used Performance index Evaluation 
using ood 
set

[64] No Grad-Cam, Grad-Cam +  + , LRP Precision = 92%
Recall = 92%
Fscore = 0.92

No

[65] No Grad-Cam Acc = 95.57% No
[66] No Grad-Cam, Grad-Cam +  +  Precision = 96.58%

Recall = 96.59%
Fscore = 0.96

No

[67] No Grad-Cam Precision = 96.44%
Recall = 96.33%
Fscore = 0.96
Acc = 96.33%

No

[61] No Grad-Cam Two class
Acc = 100%
Sensitivity = 99%
Specificity = 100%
AUC = 1
Three class
Acc = 98%
Sensitivity = 96%
Specificity = 99%
AUC = 0.99

No

[68] No Occlusion, Saliency,
Input X Gradient, Integrated Gradients, Guided Back-

propagation,
DeepLIFT

Micro-F1 = 0.89 No

[69] No RISE Sensitivity = 100%
Acc = 90.5%

No

[70] No LIME, Saliency Map, Grad-Cam Two class
Acc = 98.02%
Three class
Acc = 97.12%

No

[71] No Grad-Cam +  +  Acc = 91.26% No
[12] No CycleGAN, Expected Gradients Internal Partition (iid)

AUC = 0.99
External Dataset (ood)
AUC = 0.76

Yes

[72] No Grad-Cam Acc = 96.3% No
[73] - Grad-Cam Positivity Predicted Value = 95%

Sensitivity = 94%
Fscore = 0.95

No

[52] Yes Grad-Cam Acc = 91.67%
Fscore = 0.94

No

[62] Yes (bounding box of 
the lungs)

Grad-Cam, LIME Fscore = 0.92 No

[74] Yes Saliency Map, Guided Backpropagation, Grad-Cam Acc = 97.94%
AUC = 0.984

No

[75] Yes Grad-Cam, Acc = 98.67%
Fscore = 0.98

No

[63] Yes LIME, Grad-Cam Fscore = 0.88 No
[76] Yes Grad-Cam Acc = 88.9%

Fscore = 0.84
Specificity = 96.4%

No
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are based and knowing that they do not correspond to the 
disease they are trying to identify, report high rates of effec-
tiveness in the classification. Again, this is evidence of the 
presence of shortcuts learning, as well as the omission of 
this issue by scientific community. Hence, an external evalu-
ation set is needed as a complement to demonstrate that the 
models maintain their behavior. Despite this, an evaluation 
methodology is not reported in any of the studies using the 
XAI techniques.

8 � External validation set to determine 
generalization capability of the models

One way to eliminate biases in CXR image sets is use image 
processing techniques to pre-process the image before 
applying the AI and DL methods. One approach is to auto-
matically limit the portion of the image to be analyzed to a 
bounding box region enclosing the lungs. A second approach 
is to segment the lung region automatically. With these tech-
niques, spurious labeling marks that could artificially assist 
the model with classification are removed. However, the 
removal of these marks does not guarantee improvement 
in the model’s generalizability. One way to test the validity 
and generalizability of the model is to evaluate it with an 
external, ood data set. To date, few studies report the use of 
an ood validation.

A discussion regarding validation on a set of external, ood 
image set has been reported. Table 2 presents an update of 
the published studies that when evaluated on external vali-
dation sets showed evidence of a lack of generalizability. 
These studies demonstrate that the algorithms learn features 
related to the source dataset, rather than the disease they are 

trying to classify, that is, studies being affected by shortcut 
learning. Note that the results of studies using an internal 
validation set report extremely good performance. How-
ever, when using the external evaluation set, these resulting 
performance decreases considerably. In fact, the reported 
performance measures have values close to that of a random 
classifier in most cases. Table 2 also presents the link to the 
image sets used by these investigations, which can constitute 
a starting point to carry out a more rigorous evaluation of 
the proposed models.

The creation of an appropriate evaluation strategy to 
address such biases is imperative. In other words, making 
a correct assessment reveals the existence of an issue that 
may otherwise remain hidden. Understanding the existence 
of the problem is the first step towards a solution. This issue 
needs to be taken seriously, especially since these systems 
are intended for use in clinical settings for the identification 
of COVID-19.

9 � Behavior of traditional computer vision 
methods

According to the review studies analyzed, the majority of the 
investigations (27 articles) used CNN to identify COVID-
19, most commonly ResNet, using different amounts of lay-
ers. DL techniques may tend to overfitting the classification 
models by generating their own features in the training pro-
cess. Therefore, the use of traditional computer vision (CV) 
methods could lead to models with greater generalizability, 
especially, when using data sets that present marked differ-
ences [55].

a b c 

Fig. 2   Activation map for a modification of the CNN COVID-Net 
[60], obtained from the Grad-Cam method, by using the whole image 
to perform the classification. Image “a” belongs to the normal class, 

“b” belongs to the pneumonia class and “c” to COVID-19 class. In 
all cases, the regions on which the network is basing its decision are 
outside the lungs
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Traditional CV algorithms involve four main stages: 1) 
image preprocessing is performed by applying noise filter-
ing, enhancement, resizing techniques, etc., 2) the detec-
tion of regions of interest is performed based on different 
sampling strategies or using segmentation techniques, 3) 
feature extraction is performed by means of some generally 
hand-constructed descriptor, e.g., SIFT [81], Local Binary 

Pattern (LBP) [82] among others, 4) the features describing 
the image are used by automatic classification algorithms to 
find the boundaries separating each class. These computed 
features can have high dimensionality, something that deters 
the good performance of the methods. One of the ways to 
eliminate this problem has been through feature selection 
techniques [83]

Table 2   Summary of research using an external image set (ood) as a method of evaluating their models

2  https://​github.​com/​ieee8​023/​covid-​chest​xray-​datas​et
3  https://​nihcc.​app.​box.​com/v/​Chest​Xray-​NIHCC
4  https://​bimcv.​cipf.​es/​bimcv-​proje​cts/​bimcv-​covid​19/
5  https://​bimcv.​cipf.​es/​bimcv-​proje​cts/​padch​est/
6  https://​github.​com/​linda​wangg/​COVID-​Net
7  https://​dasci.​es/​es/​trans​feren​cia/​open-​data/​covid​gr/
8  https://​data.​uni-​hanno​ver.​de/​datas​et/​cov-​19-​img/​resou​rce/​38e72​a9b-​30a9-​422a-​a481-​c7491​e6554​37
9  https://​wiki.​cance​rimag​ingar​chive.​net/​pages/​viewp​age.​action?​pageId=​70226​443
10  https://​stanf​ordml​group.​github.​io/​compe​titio​ns/​chexp​ert/
11  https://​www.​kaggle.​com/c/​rsnap​neumo​nia-​detec​tion-​chall​enge/​data

Ref Region used in the image Performance index on iid set Performance index on ood set Sets of images

[12] Whole Image Dataset 1
AUC = 0.992
Dataset 2
AUC = 0.995

Dataset 1
AUC = 0.76
Dataset 2
AUC = 0.70

Dataset 1
(GitHub-COVID)2

(ChestX-ray14)3

Dataset 2
(BIMCV-COVID-19 +)4 (PadChest)5

[21] Bounding box of lungs Dataset 1
Using COVID-Net CXR model 

[60]
Sensitivity = -
Specificity = -
Acc = 93.33%
Using COVID-CAPS model [77]
Sensitivity = 90%
Specificity = 95.8%%
Acc = 95.3%

Dataset 2
Using COVID-Net CXR model 

[60]
Sensitivity = 99.29%
Specificity = 0.23%
Acc = 49.76%
COVID-CAPS model [77]
Sensitivity = 69.01%
Specificity = 26.30%
Acc = 47.66%

Dataset 1
(COVIDx)6

Dataset 2
(COVIDGR)7

[78] Bounding box of lungs Dataset 1
AUC = 1
Dataset 2
AUC = 0.96

Dataset 1
AUC = 0.38
Dataset 2
AUC = 0.63

Dataset 1
(V2-COV19-NII)8

(ChestX-ray14)3

Dataset2
(COVID-19-AR)9

(BIMCV-COVID-19 +)4,
(Chexpert)10

(Padchest)5

[79] Segmented Lungs Dataset 1
Sensitivity = 100%
Specificity = 100%
AUC = 1
Acc = 100%

Dataset 2
Sensitivity = 56%
Specificity = 58%
AUC = 0.59
Acc = 57%

Dataset 1
(GitHub-COVID)2

Dataset 2
CORDA (Private)

[80] Segmented Lungs Dataset 1
State 1 (classify pneumonia)
Sensitivity = 92.85%
Specificity = 90.05%
AUC = 0.9672
State 2 (classify COVID-19)
Sensitivity = 85.26%
Specificity = 85.86%
AUC = 0.8804

Dataset 2
State 1 (classify pneumonia)
Sensitivity = 63.64%
Specificity = 90.48%
AUC = 0.9394
State 2 (classify COVID-19)
Sensitivity = 50%
Specificity = 40%
AUC = 0.4

Dataset1
(GitHub-COVID)2

(Padchest)5

(RSNA)11

Dataset2
Private image sets from Taiwanese 

hospitals
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Table 3   Summary of works using traditional Computer Vision approach to identify COVID-19 using chest X-Ray imaging

Ref Feature Extraction Method Feature Selection/Reduction 
Method

Classification 
Algorithm

Performance Index Image Use of ood

[84] New Orthogonal Exponent 
Moments of Fractional 
Orders Derived

New feature selection 
method: Manta Ray;

Foraging Optimization 
(MRFO) using Differential 
evolution

Knn Acc = 93% Whole Image No

[72] VGG-19 + DenceNet-121 - SVM Acc = 98.28% Whole Image No
[87] Each pixel as Feature;

CNN;
LBP;
Gray Level Co-occurrence

- MLP
CNN

AUC = 0.93 Whole Image No

[88] Alexnet
VGG-16
VGG-19
Xception
Resnet18
Resnet50
Resnet101
Inceptionv3
Inceptionresnetv2
GoogleNet
Densenet201

- SVM Acc = 95.38%
Sensitivity = 97.29%
Specificity = 93.47%

Whole Image No

[89] ChexNet [90] PCA MLP
SVM
Knn
SRC-Dalm
SRC-Hom
CRC-light
CRC​
CSEN1
CSEN2
ReconNet
ResNet-50
Inception-v3

Acc = 99.26%
Sensitivity = 97.14%
Specificity = 99.49%

Whole Image, and 
lateral view

No

[91] MobileNet
DesnseNet121
DenseNet201
Xception
InceptionV3
InceptionResNetV2
ResNet50
ResNet152
VGG16
VGG19
NASNetLarge
NASNetMobile
ResNet50V2
ResNet101V2
ResNet152V2

- Decision Tree
Random Forest
XGBoost
AdaBoost
Bagging
LightGBM

Acc = 98.00
Precision = 98.00
Recall = 98.00

Whole Image No

[92] New CNN - SVM
Decision Tree
Knn

Acc = 98.97%
Sensitivity = 89.39%
Specificity = 99.75%
Fscore = 0.96

Whole Image No

[93] New architecture of CNN;
Texture-based;
FFT;
Wavelet;
GLCM;
GLDM

DNE
Relief
LPP
Fast-ICA
recursive feature elimination
variable ranking techniques

SVM
GLM
Random Forest

Precision = 95%
Sensitivity = 94%
Fscore = 0.94

Whole Image No
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Such approaches have also been used in the COVID-
19 automatic classification task using CXR. Table 3 pre-
sents a summary of some of studies that make use of 
this methodology. There is a tendency in these studies to 
use pre-trained CNN networks as the method for feature 
extraction. However, other studies use traditional meth-
ods to extract features such as LBP and GLCM, among 
others. Likewise, in another study [84], a new descriptor 
based on orthogonal moments is proposed. Also, the use 
of algorithms for dimensionality reduction has also been 
studied, although it has not been a common practice. On 
the other hand, a great diversity of classification meth-
ods is also observed in Table 3. In fact, Support Vector 
Machine (SVM) and Random Forest (RF) are the most 
used, [85], where these classifiers are reported as the best 
performing ones. The performance indices achieved are 
comparable with those achieved by the CNNs analyzed in 
previous sections, also with values above what is reported 
by expert observers such as radiologists.

These studies have not taken into consideration the 
elimination of features that are not related to the dis-
ease since, in all cases, the complete image was used to 
extract the features. Thus, the same mistakes associated 
with the use of the whole image and the marks it contains 
can be made. Only one study addressed this issue [86], 
in which a manual segmentation of the images was per-
formed such that the bounding box region enclosed the 
lungs and thus eliminated the labels from the analysis. 
That study also evaluated class imbalance distribution 
issues using resampling techniques. However, the authors 
of that study themselves in a new investigation [63] state 
that, although the experimental results achieved in [86] 
showed that it may be possible to identify COVID-19 
using CXR, it was a challenge to ensure that other pat-
terns not belonging to the lungs did not contribute to the 
classification.

Finally, Table 3 also shows that none of these inves-
tigations make use of an external validation set. In all 
cases a partition of the training set was used. It should be 

noted that, in all cases, the image sets used were obtained 
in a similar way as in the studies using CNN. That is, the 
image datasets present the same issues and biases dis-
cussed above.

10 � Discussion and future work

Automatic COVID-19 classification using CXR imaging 
is an active topic by the scientific community. Most papers 
report high performance (Tables 1, 2 and 3). The majority 
of these studies use the DL approach, although the use 
of traditional CV methods to address the task has also 
been reported. In both cases, the results are far superior 
to those achieved by experienced radiologists. However, 
most of the studies using automated approaches utilized 
internationally available image sets. In these data sets, the 
positive and negative cases may have come from differ-
ent sources, and the methods may learn to recognize the 
source rather than the disease. This can result in a lack of 
generalizability of the models as seen in Table 2.

The main concern has been the absence of a correct 
evaluation protocol on the proposed models. In the studies 
analyzed, the results of using images that do not belong 
to any of the sources of the image sets used in the training 
of the models are rarely presented. In the case of mak-
ing use of an ood set, a notable decrease in performance 
has been reported. In one review [94], it was determined 
that none of the articles analyzed in their research met 
the requirements to be considered reliable. The authors 
found no sufficiently documented manuscript describing 
a reproducible method. Also, no method was identified 
that follows best practices for developing a machine learn-
ing model with sufficient external validation to justify the 
applicability of the model. These are issues that should 
be taken into account to ensure the development of better 
quality, reproducible models that were free from biases 
such as shortcut learning.

Table 3   (continued)

Ref Feature Extraction Method Feature Selection/Reduction 
Method

Classification 
Algorithm

Performance Index Image Use of ood

[86] Inception-v3
LBP
LPQ
LDN
EQP
LETRIST
BSIFT
OBIF

- SVM
Knn
MLP
Decision Tree
Random Forest
Ensemble (Sum 

rule, Product 
rule, Voting 
Rule)

Clus-HMC

Fscore = 0.83 Lung bounding box No
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An important step in this process lies in the proper selec-
tion by computer vision specialists together with radiologists 
and medical physicists of an adequate training set. Special 
care must be taken to select the training set minimizes the 
potential for biases in the resulting models such as those that 
learn by shortcuts. Otherwise, the models may yield good 
results in the iid sets but poor results in the ood sets, as has 
often been the case. In addition, one should be aware of the 
need to demonstrate as well as possible what the decisions 
reached by model are based upon. This will make the deci-
sion process of AI techniques more transparent from which 
human specialists can learn. So far, it seems unlikely that 
CXR alone can provide an accurate diagnosis of COVID-19. 
In fact, radiologists typically rely on other patient character-
istics and information to make a diagnosis. Thus, the union 
of several clinical features seems to be the way forward to 
achieve a system that really helps human specialists.

11 � Conclusions

This paper reviewed the main approaches presented in 
the scientific literature to address the issues of automatic 
COVID-19 classification using CXR. According to the 
reviewed papers, the performance rates reported by auto-
matic classifiers outperform human specialists by more than 
30 percentage points. However, a review of published papers 
using XAI that, CNNs base more of their classifications on 
regions outside the lung area. This suggests that these net-
works are performing shortcut learning. One approach to test 
the generalizability of these models is to base evaluation on 
an external, ood data set. However, this methodology has 
not been applied in most of the studies reviewed. In fact, 
the papers that have evaluated models on ood sets report 
performance rates close to random classification. This is 
evidence that the models proposed so far learn patterns that 
are not related to the disease they are trying to classify. That 
is, evaluating the performance of the models on an iid as a 
validation set (as most current benchmark tests do) is insuf-
ficient to distinguish the generalization power of the mod-
els. Therefore, as a fundamental step in model evaluation is 
to require the use an external, ood data set. Studies based 
on traditional computer vision methods showed the same 
issues as DL approaches. Hence, ood generalization tests 
should become the rule rather than the exception, especially 
in biomedical solutions where inadequate diagnoses may be 
applied to patients that negatively impact the choice of treat-
ment for serious diseases such as COVID-19. When properly 
validated, AI and DL methods can provide the radiologist 
with valuable tools to assist in the diagnosis and classifica-
tion of these diseases.
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