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Abstract: Research indicates that deaths due to fall incidents are the second leading cause of uninten-
tional injury deaths in the world. Death by fall due to a person texting or talking on mobile phones
while walking, impaired vision, unexpected terrain changes, low balance, weakness, and chronic
conditions has increased drastically over the past few decades. Particularly, unexpected terrain
changes would many times lead to severe injuries and sometimes death even in healthy individuals.
To tackle this problem, a warning system to alert the person of the imminent danger of a fall can
be developed. This paper describes a solution for such a warning system used in our bio-inspired
wearable pet robot, KiliRo. It is a terrain perception system used to classify the terrain based on
visual features obtained from processing the images captured by a camera and notify the wearer of
terrain changes while walking. The parrot-inspired KiliRo robot can twist its head and the camera up
to 180 degrees to obtain visual feedback for classification. Feature extraction is followed by K-nearest
neighbor for terrain classification. Experiments were conducted to establish the efficacy and validity
of the proposed approach in classifying terrain changes. The results indicate an accuracy of over 95%
across five terrain types, namely pedestrian pathway, road, grass, interior, and staircase.

Keywords: wearable robot; parrot inspired robot; terrain perception; KiliRo

1. Introduction

The World Health Organisation estimates that globally about 684,000 individuals die
every year due to falls [1]. Most fall incidents are due to people texting or talking on
mobile phones while walking, impaired vision, unexpected terrain changes, low balance,
weakness, and chronic conditions. Mobile phone usage has increased drastically over the
past few decades and is expected to reach over 7.6 billion users by 2027 [1]. With 62.9% of
the world’s population already owning a mobile phone, it is reported that young adults
spend an average of five hours a day using their mobile phones [2,3]. With reported global
revenue of about USD 450 billion through smartphone sales in 2021 [4], it is predicted
that this industry will dominate the global market in many areas, including marketing,
sales, media, and communication. Despite numerous benefits, the exponential increase in
the usage of mobile phones has also reported several concerns, such as health issues and
accidents. Usage of mobile phones while walking is one of the main concerns in recent
years, i.e., 5754 emergency cases were related to mobile phone usage while walking between
2000 and 2011 in the US [5]. Research shows that about 500,000 drivers may be using mobile
phones while driving at any given time in the United States [6] and 43% of pedestrians meet
with accidents due to mobile phone usage [7], which most of the time leads to bumping
into walls, collision between pedestrians, falling, and overlooking traffic signals. Several
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cases reported fall incidences due to mobile phone usage while walking which at times
leads to severe injuries and sometimes death [8]. Impaired vision also causes serious fall
incidences leading to serious physical damage. The literature indicates that poor visual
acuity, self-reported poor vision, visual field loss, poor stereoscopic vision, and impaired
contrast sensitivity are significantly associated with fall incidences [9]. Particularly, older
adults are at high risk of falls due to vision impairment. The CDC states that there are
over twelve million Americans with vision impairment and the number is over 2.2 billion
globally [10]. This huge population is at high risk of falls and demands an innovative
approach to a safe environment. Similarly, low balance, weakness, and chronic conditions
cause falls and serious damage to individuals. While the majority of fall incidences are due
to health conditions, unexpected terrain changes can cause falls even among any individual.

In this article, we aim to predict and warn individuals about sudden terrain changes,
one of the main causes of fall incidences as pedestrians are unaware of these transitions.
A wearable robot with the ability to warn pedestrians about terrain changes can be very
useful in avoiding such fall incidences.

The applications of wearable robots are manifold, including healthcare, education,
companionship, entertainment, security, and lifelogging. For example, Rahman et al.
developed an exoskeleton robot, a class of wearable robots for the rehabilitation of elbow
and shoulder joint movements [11]. The designed robot, ExoRob, is worn on the lateral
side of the upper arm to provide naturalistic movements at the level of elbow and shoulder
joint rotation. Similarly, there are several studies that discuss the design, development,
and deployment of wearable robots in the healthcare industry [12–14]. Similarly, the
deployment of such robots has been explored extensively for personal needs. As an
illustration, Kostov, Ozawa, and Matsuura developed a wearable accessory robot for
context-aware apprise of personal information and showed that the development of a
wearable robot is an important step toward a new era of wearable computing [15]. In
another study, a wearable robotic device to enhance social interactivity and provide an
emotionally immersive experience for real-time messaging was proposed by Dzmitry and
Alena. This device helped reinforce the personal feelings of the wearer and reproduced
the emotions felt by the partner during online communication [16]. Assisting the visually
impaired is an important area of application for wearable robots. Several studies have been
conducted to develop wearable devices for assisting them in transportation, communication,
and education [17–19]. Researchers at the University of Southern California presented a
head-mounted, stereovision-based navigational assistance device for the visually impaired.
The developed head-mounted robot enables the wearer to stand and scan the scene for
integrating wide-field information [20].

Even though the application of wearable robots has been studied in detail for several
years, including the application of pedestrian safety bio-inspired robots has never been
explored in this context. A wearable robot capable of performing terrain perception can be
very useful in alerting the pedestrian when sudden terrain changes are noted. Such robots
can largely help reduce fall incidences and minimize accidents.

Terrain perception and classification have been studied extensively in several fields,
including security, rescue, and service. Particularly, terrain traversability analysis is widely
used in unmanned ground vehicles for safe navigation and avoiding collisions [21]. Michael
and Sabastian addressed the problem of terrain modeling in robot navigation by proposing
an approach by acquiring a set of terrain models at different resolutions [22]. This approach
produced significantly better results in a practical robot system, capable of acquiring
detailed 3D maps on a large scale. In another study, Dominik and Piotr presented an
integrated system for legged robot navigation in previously unseen and uneven terrain
using onboard terrain perception [23].

Service robotics is another important area where terrain perception is applied exten-
sively. As an illustration, robotic wheelchairs available in the market use various terrain
perception methods to detect and avoid unsafe situations for the rider. Volodymyr et al.
developed a system for guiding visually impaired wheelchair users along a clear path
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using computer vision to avoid obstacles and warn the rider about terrain changes [24].
With such extensive application of terrain perception and classification methods in robotics,
we are unaware of any study that uses this method in wearable robots. Applying terrain
perception and classification in a wearable robot can contribute extensively to reducing fall
incidences and avoiding accidents related to the usage of mobile phones while walking.

Presently, there are several initiatives taken around the world to ensure pedestrian
safety. A comprehensive pedestrian safety plan was announced in New York in 2016 [25].
This multi-agency initiative has provided USD 110 million to improve safety for pedestrians
through infrastructure improvements, public education efforts, and enforcement across
the state. Displaying pedestrian safety signage, ads, and conducting safety lessons and
campaigns are a few strategies to educate pedestrians on their safety. However, about
6000 pedestrian deaths due to distraction have been recorded in the U.S. in 2017 [26]. This
alarming report demands innovative approaches to warn pedestrians of dangers while
walking. Hence, the proposed wearable bio-inspired robot, KiliRo, can be useful to warn
the wearer of terrain changes, thus avoiding fall incidents and related accidents. Though
the KiliRo robot has been used in therapeutic settings and reported success in improving the
learning and social interaction of children [27–29], this is the first time the parrot-inspired
wearable robot has been designed for helping pedestrians. Biologically inspired robots
have shown to be beneficial in several applications, including therapeutic and service
needs [30]. Particularly, human–parrot relationships have existed for several centuries.
There are references to parrots being used as a companion and messenger in Tamil literature
from several centuries ago [31,32]. The goddess Meenakshi statue at an ancient Hindu
temple in Madurai, India, built from 1190 CE to 1205 CE, is another example of the human
relationship with parrots. In this statue, the goddess’s raised hand holds a lotus, on which
sits a green parrot [33]. Parrots have helped humans in communication, companionship,
and therapeutic needs enormously. Hence, a robot designed through inspiration from a
parrot can help increase human–robot interactions and robot acceptance in humans.

In this paper, we present a terrain perception and classification system for our novel
parrot-inspired wearable robot, KiliRo, to classify five types of terrains based on visual
features and warn the wearers of sudden terrain changes. Our proposed approach uses a
speeded-up robust feature (SURF) description along with color information. The feature
extraction will be followed using K-nearest neighbor for terrain classification.

To facilitate the reading comprehension of the article, the remainder of the paper
has been organised as follows. First, in Section 2, we describe the design and develop-
ment of the wearable parrot-inspired robot, KiliRo and illustrate the methods used for
feature extraction and classification of images captured using the KiliRo robot for ter-rain
classification. Section 3 presents the experimental setup and the results obtained. In
Section 4, we discuss the potential for deploying the wearable parrot-inspired robot to warn
users on sudden terrain changes and acknowledge the limitations and need for further
research in this context. Finally, in Section 5, we conclude with the research findings and
present our future works.

2. Materials and Methods

The main scope of this research is to develop a terrain perception and classification
system for the wearable robot, KiliRo, that can warn the wearer of sudden terrain changes
when transitions are identified. In terms of morphology, the KiliRo robot can be defined as
a two-legged wearable robot, having a physical appearance that resembles a parrot.

We considered a set of design constraints in deciding the dimensions of the robot
during the concept generation process:

• height < 250 mm;
• weight < 250 g;
• head rotation range: 180◦;
• operate between 10◦ and 45◦ Celsius.



Biomimetics 2022, 7, 81 4 of 12

After a series of brainstorming sessions on concept generation and selection sessions,
we developed a new version of the KiliRo robot aimed at achieving 180◦ of a rotating head
design. The curvature of the robot’s leg design was optimized to create a wearable robot
design. The dimensions of the newly developed KiliRo and the selection of commercial
devices, such as servo motors and electronic boards, were opted to fit the robot design
constraint on size and weight. The robot has three parts: head, body, and wings. The
neck part connects the head and body. A static tail is attached at the top of the head for
aesthetic appeal. The robot’s three parts are designed to be hollow to minimize the weight
and optimize the three-dimensional printed materials. The specifications of the mechanical
properties of the wearable parrot robot are listed in Table 1.

Table 1. Specifications of the mechanical properties of wearable parrot robot.

Robot Body Material PLA (Poly Lactic Acid)

Dimensions W × H 160 mm × 80 mm
Weight 140 g

Head rotation 180◦

Head tilt 45◦

The robot’s head is mounted with two servo motors (SG90, manufactured by Tower
Pro) to provide Pitch and Yaw motions. The robot can turn its head 90◦ left and right
from the center and move up and down. In other words, the produced design can rotate
180◦ along the x-axis and move 45◦ along the y-axis. This locomotion allows the robot to
look for terrain changes while the wearer is walking. The exploded view of the KiliRo
robot is presented in Figure 1 where the detailed design of the robot parts and joints are
demonstrated. The head rotation positions are illustrated in Figure 2.
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The initial head position of the robot is set at 0◦ and, when initiated, the head rotates
along the x-axis and y-axis following a predefined cycle to detect terrain changes. The
robot uses the camera mounted on its head for terrain perception and classifications. The
hardware used in the robot is listed in Table 2.

Table 2. Robot hardware specifications.

Hardware Specification

Controller Raspberry pi
Servo motor TowerPro SG90

Servo controller Pololu-Micro Maestro 18-channel
USB servo controller

Camera Ai—ball camera
Battery Li-Po 1200 mAh 7.4v

Power regulator Dimension Engineering De-SW033

2.1. Feature Extraction and Classification
2.1.1. SURF

Prior to training the classifier, obtaining information from the training data that
are useful in classification is recommended. These features can provide a distinction
between different classes. In this paper, we use speeded-up robust features (SURF) for
feature extraction. SURF is a patented local feature detector and descriptor used for object
recognition, image registration, classification, or 3D reconstruction [34].

As the name suggests, this feature extraction is much faster than many other meth-
ods such as scale-invariant feature transform (SIFT), features from accelerated segment
test (FAST), and principal components analysis-scale-invariant feature transform (PCA-
SIFT) [35]. The first step is to find the area of interest which is performed using the blob
detector based on the determinant of Hessian, a square matrix of second-order partial
derivatives of a scalar-valued function, or scalar field. Due to its computation time and
accuracy, the Hessian matrix is used in SURF and the approach is used for selecting the
location and the scale. The Hessian matrix describes the local curvature of a function of
variables. The interest point is then sampled into a 4 × 4 grid thus separating the region into
16 square grids. Now, the HAAR wavelets (a sequence of rescaled square-shaped functions
which together form a wavelet family or basis) are extracted from each of the grids at
5 × 5 regularly spaced sample points. The feature descriptor is obtained by summing up all
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the HAAR wavelets obtained from all 16 grids. In this experiment, the feature descriptors
obtained through the above method are used for classification purposes.

2.1.2. KNN

Now that the features have been extracted, the next step is to classify the images
based on the descriptors and keywords obtained from the SURF features. The classification
method used in this paper is K-nearest neighbor (KNN). KNN is a supervised learning
algorithm, and the classification is based on finding out the K number of neighbors and
their corresponding class. One reason behind using this classification strategy is that this
algorithm supports multi-class classification and provides a much better accuracy than
many other algorithms. Moreover, it allows the user to modify the classification strategy
based on a different scenario by changing the ‘K’ value. Again, the KNN presented in the
OpenCV python package is used for this purpose.

The basic idea behind the K-NN is to find out the distance between the new test point
and the training data. The closer the test point is to a training data, the more the possibility
that the test point belongs to the respective class. The user must mention the value of K to
begin the algorithm. The algorithm then calculates the K number of training data that are
closest to the new test data. Then, the new test data belong to the class with the greatest
number of its training data within the ‘K’ nearest neighbor. For example: in the case of
k = 3, if class 1 has two training data within the 3 nearest neighbors of the test data but
class 2 has one training data within the 3 nearest neighbors of the test data, then the new
test data belong to class 1.

There are two decisions to be made during the image classification phase: One is the
value of K and the second one is the distance formula to be used for the calculation. The
value of K for this experiment is chosen to be one. Increasing the number of K increases
the accuracy but it could also, in turn, increase the time consumption and complexity of
the program. We can obtain a good result with the K value of one. In terms of distance
calculation, the Euclidean distance definition is adopted.

D(x, y) =

√√√√ N

∑
i=1

(Xi − Yi)
2 (1)

where

N is the dimension of the feature.
D (x, y) gives the Euclidean distance between points X and Y.
Xi refers the ith feature of X.
Yi refers to the ith feature of Y.

The diagram illustrating the working of KNN is shown in the following Figure 3.
The red question mark is the new test data. Now consider the case of k = 3, the new

data belong to the blue class, whereas, in the case of k = 5, the new data belong to a green
class. The flowchart for implementing the terrain classification in the KiliRo robot is shown
in Figure 4.

2.1.3. Experimental Setup

In our experiments, we considered five types of terrains, namely grass, pathway,
road, staircase, and interior. All terrains are on the campus of the Singapore University
of Technology and Design (SUTD), Singapore. As the efficiency of terrain perception and
classification depends on the effectively built database, we captured 226 images in different
lighting and background settings. After the database for terrain perception was established,
the terrain classification was performed using the SURF and KNN methods detailed in
previous sections. The key points obtained from each of the different class are shown below
in Figure 5.
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(d) staircase; (e) interior.

A picture describing how the robot would be attached to the user is shown in Figure 6.
In this picture, a tripod is used to attach the robot to the user’s shoulder and can move its
head to capture images of terrains.
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3. Results

A research assistant acting as a user was instructed to walk for a few minutes in a
predefined path of five types of terrains namely, grass, pathway, road, staircase, and interior
space to capture images at different angles. The session was continued until the required
images for terrain classification of each space were captured. Two hundred and twenty-six
pictures were taken by the parrot robot at a rate of 60 frames per second while the user
wore the robot and was exposed to different terrains. These images were then analyzed
using the developed terrain perception and classification system. The results are illustrated
in Table 3.

Table 3. Table indicating the terrain classification results for the KiliRo robot.

Terrain Grass Interior Pathway Road Staircase Accuracy

Grass 45 0 0 0 0 100
Interior 0 35 0 0 0 100

Pathway 2 0 39 0 0 95.12
Road 0 0 0 45 0 100

Staircase 0 0 0 0 62 100
Recall (%) 95.74 100 100 100 100

The above results report an accuracy value of 100% for four terrains and an accuracy
of above 95% for one terrain, which puts the overall accuracy of the classifier at 99.02%.

4. Discussion

While the literature points to several fall incidences resulting in severe injuries and
sometimes death, an approach to warn pedestrians of sudden terrain changes can help
reduce such accidents. Wearable robots capable of detecting terrains and sudden changes
in them can help reduce fall incidences by warning the wearers.

In this study, we developed a wearable parrot robot and a terrain perception and classi-
fication model to classify five types of terrains. These two are separate tasks:
(1) 226 pictures of five types of terrains were taken using the wearable parrot robot; (2) these
images were tested using the terrain perception and classification system and analyzed
the efficiency of the developed system. This is a pioneering study to develop a wearable
parrot-inspired robot and use pictures taken by the parrot robot for terrain perception and
classification. While the terrain perception approach has been extensively studied in mobile
robots [36,37] and bio-inspired robots [38], we aim to develop a terrain perception and
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classification system for the novel wearable parrot-inspired robot to warn the wearers of
sudden terrain changes. In our future studies, we will implement the terrain perception
and classification system in real time to warn the user of sudden terrain changes using voice
commands. This robot can be used in different applications including assisting the visually
impaired, elderly, pedestrians, and children. Our future research on the deployment of a
wearable robot includes assisting school children in classrooms to record and play back
lectures and entertain and investigate psychological changes of the wearer.

There are identified limitations in this study. First, we have used five pre-decided types
of terrains and novel images that were not used to test if the proposed terrain perception
and classification system was efficient. Second, the pictures were taken when the wearer
of the robot was stable and not moving, as pictures taken during movement could affect
the quality of the image and thus the feature extraction. Third, real-time classification
should be performed to identify the time delay in classifying the terrains and intimating
the wearer. Fourth, the time taken to classify the terrain was not investigated. Last, the
present morphology of the robot uses a tripod to attach the robot to the wearer and the user
may not feel comfortable with this external attachment. These limitations are noted, and
our future studies will minimize them.

5. Conclusions

In this paper, we presented a new approach for the vision-based terrain perception
and classification system for a wearable pet robot, KiliRo, which is based on speeded-up
robust features and K-nearest neighbor methods. The image features from the pictures
taken from the KiliRo robot were extracted using the SURF feature extraction method.
As mentioned in the experimental setup, the key points and descriptors for each terrain
are stored in the program. When a test image is uploaded, the algorithm uses the KNN
classification method to compare the test image to the extracted features from each of the
terrains. The terrain feature which has the closest neighbor to the features extracted from
the test image is the output and that class is chosen to be an appropriate classification. The
proposed system for the safety of pedestrians reported an accuracy of 99.02 percent. Future
work would focus on the integration of additional sensors to further improve the terrain
perception and classification for more terrains beyond what is currently possible. Another
work would be to improve the aesthetic appeal of the KiliRo robot and conduct the study
with real-time users.
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