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A B S T R A C T

Self-related information, such as one’s own face, is prioritized by our cognitive system. Whilst recent theoretical
developments suggest that this is achieved by an interplay between bottom-up and top-down attentional mech-
anisms, their underlying neural dynamics are still poorly understood. Furthermore, it is still matter of discussion
as to whether these attentional mechanisms are truly self-specific or instead driven by face familiarity. To address
these questions, we used EEG to record the brain activity of twenty-five healthy participants whilst identifying
their own face, a friend’s face and a stranger’s face. Time-frequency analysis revealed a greater sustained power
decrease in the alpha and beta frequency bands for the self-face, which emerged at late latencies and was
maintained even when the face was no longer present. Critically, source analysis showed that this activity was
generated in key brain regions for self-face recognition, such as the fusiform gyrus. As in the Myth of Narcissus,
our results indicate that one’s own face might have the potential to hijack attention. We suggest that this effect is
specific to the self and driven by a top-down attentional control mechanism, which might facilitate further
processing of personally relevant events.
1. Introduction

For centuries, the self has been of great interest for various fields of
research, an interest that can most likely be traced back to ancient Greek
culture (Morris, 1994). Over the past few years, research on the neural
correlates of the self has increased considerably, leading to the devel-
opment of new theoretical frameworks (Sui and Gu, 2017). This has been
partly due to the potential relevance of this issue for health, since recent
evidence suggests that self-processing is altered in many neuropsycho-
logical (Sui et al., 2015; Sui et al., 2013) and psychiatric disorders
(Grimm et al., 2009; Lemogne et al., 2009; Liemburg et al., 2012). This is,
for example, evident in the case of depression, in which rumination has
been linked to maladaptive self-focused attention (Northoff, 2007;
Watkins and Teasdale, 2004)

It is well known that self-related information, such as the self-name
(Imafuku et al., 2014; Moray, 1959) or the self-face (Keyes et al., 2010;
Keyes and Dlugokencka, 2014; Sui and Humphreys, 2013), is prioritized
by our cognitive system (Sui and Rotshtein, 2019). This ‘self-bias’ has
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been attributed to specific attentional mechanisms that operate during
self-processing (Humphreys and Sui, 2016; Kuang, 2016; Sui and Gu,
2017). In fact, self-bias increases (hyper-) and decreases (-hypo) can be
observed in patients with damage to brain regions supporting top-down
and bottom-up attentional control. On the one hand, lesions in executive
control areas, such as the superior temporal and left prefrontal cortices,
lead to a ‘hyper-self-bias’. On the other hand, damage to critical areas for
self-face processing, such as the hippocampus or the fusiform gyrus, is
linked to a ‘hypo-self-bias’, that is, reduced self-prioritization (Sui et al.,
2015).

During self-face processing, this self-bias is manifest in the capture
(Br�edart et al., 2006) and retention of attention (Devue et al., 2009;
W�ojcik et al., 2018). This effect might reflect the involvement of two
different but complementary attentional mechanisms. We propose that
an early bottom-up mechanism might explain the attention-capturing
properties of the self-face, whereas the later modulation of attention
via top-down control might explain the difficulties in disengaging
attentional resources from it. Recent research has already found evidence
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for an early bottom-up attentional capture by the self-face (Alzueta et al.,
2019; Bola et al., 2020; Devue and Br�edart, 2008; Keyes and Dlugo-
kencka, 2014; W�ojcik et al., 2019). However, it is unclear as to whether a
complementary top-down attentional mechanism comes into play later.
Here, we propose that endogenous attentional resources are indeed
specifically allocated to the self-face, hijacking the perceiver’s attention
as a result.

Our proposal is in line with the theoretical framework described by
Humphreys and Sui (2016), referred to as the Self-Attention Network, as
well as with the more recent neural model of the self (Sui and Gu, 2017;
see also Ocampo and Kahan, 2016; Vallesi, 2016 for a discussion about
the Self-Attention Network). According to this approach, brain regions
sensitive to self-related stimuli interact with bottom-up and top-down
attentional control networks to orient our attention and shape behav-
iour. However, some studies have brought into question the notion that
this attentional benefit is specific to the self, since similar effects have
also been observed in response to familiar faces (Bortolon et al., 2018;
Devue et al., 2009). Under these circumstances, attentional engagement
could simply be driven by the high degree of familiarity of one’s own
face, and not by the operation of the Self-Attention Network, calling into
question the current neural model of the self (Humphreys and Sui, 2016;
Sui and Gu, 2017). In the present study, we aimed to discern whether
self-bias is truly specific to the self or rather driven by familiarity, thus
contributing towards the validation of the neural model of the self.

Importantly, evidence supporting the Self-Attention Network derives
mainly from functional Magnetic Resonance Imaging (fMRI) studies. This
imposes some limitations in characterizing the temporal dynamics of the
attentional mechanisms underlying self-face processing. Hence, in the
present study we used electroencephalography (EEG) to chart the tem-
poral dynamics of oscillatory brain activity with a higher resolution. We
hypothesize a key role of alpha (8–13 Hz) and gamma band (>30 Hz)
rhythms, given their involvement in top-down controlled gating (Bon-
nefond and Jensen, 2015; Jensen et al., 2014; Klimesch, 2012). Modu-
lation of alpha band power has consistently been found to be an index of
attentional deployment (Gould et al., 2011; Thut et al., 2006; Worden
et al., 2000). Moreover, alpha power suppression in specialized sensory
regions, such as the extrastriate, visual, auditory or somatosensory
cortices, facilitates the perception of visual (Capilla et al., 2014), auditory
(Müller and Weisz, 2012) and tactile (Haegens et al., 2011) stimuli,
respectively. This attentional bias might reflect an increase in the excit-
ability levels of the brain regions specialized in processing incoming
events (Capilla et al., 2014), resulting in an increase in gamma band
power (Fries et al., 2007; Fries et al., 2001; Jokisch and Jensen, 2007).

Therefore, the purpose of the present study was to investigate the
oscillatory mechanisms underlying self-face processing. To this end,
participants performed a facial recognition task while their brain activity
was recorded using EEG. In addition to the participant’s own face, we
employed two facial stimuli as controls with varying degrees of famil-
iarity (i.e. a friend’s face and an unknown face). We hypothesize that,
unlike other faces, the self-face will induce sustained attentional
engagement, as indexed by a decrease in alpha and an increase in gamma
band power in the specialized brain regions dedicated to face processing.

2. Materials and methods

2.1. Participants

Thirty healthy volunteers (22.7 � 3.6 years old, mean � SD; 12
males) with normal or corrected-to normal vision participated in the
study. All participants were right-handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971) and provided informed written
consent. Five participants were not included in the analyses due to low
quality EEG recordings. Thus, the remaining sample was composed of
twenty-five participants (22.7 � 3.8 years old; 9 males). The study was
approved by the Ethics Committee of the Autonoma University of
Madrid, and conducted in compliance with the declaration of Helsinki.
2

2.2. Stimuli

The experimental procedure and stimuli have been described in
detail in Alzueta et al. (2019). The stimuli were faces of the same gender
with three levels of familiarity: (1) ‘Self’, i.e. one’s own face, (2)
‘Friend’, i.e. that of a classmate with whom the participant has regular
contact and has known for at least one year (see, for example, Keyes
et al., 2010), and (3) ‘Unknown’, i.e. a stranger’s face. At the end of the
experimental session, we asked each participant to confirm that the
stranger’s face was actually unknown to them. Participants were pho-
tographed (Canon EOS 500D) under studio lighting (Neewer®). To
enhance stimulus variability, 15 different photographs were taken for
each participant, maintaining a neutral expression and articulating
several speech sounds (Fig. 1A). In addition, participants were photo-
graphed wearing a grey woollen hat to naturally remove external facial
features (Fig. 1B). In order to control for differences between stimuli
across conditions each participant’s face belonged to each condition
once: as self-face (in mirror-reversed orientation; Br�edart, 2003) in
his/her own experiment, and as a friend’s and stranger’s face in other
participants’ experiments. Each photograph was edited using Adobe
Photoshop® in three steps. First, the images were centred by
converging an imaginary horizontal line through the pupils and the
vertical bisection of the face across all images. Second, all images were
cropped at 247 x 350 pixels. Third, they were converted to grayscale.
Finally, we used the SHINE toolbox (Willenbockel et al., 2010) running
under Matlab 2015b to control for low-level image properties, such as
luminance, contrast and spatial frequency. Some examples of the
experimental stimuli can be seen in Fig. 1.
2.3. Experimental procedure

Participants performed the experiment in a dimly-lit, silent, and
spacious room. The experimental task was run using Psychtoolbox
(Brainard, 1997), and presented on a computer screen located at a
viewing distance of 50 cm. Previously processed face stimuli were
randomly presented for 1000ms, subtending a visual angle of 6.8� x 9.4�.
During the inter-stimulus interval, a fixation point on a grey screen was
displayed. The length of these intervals ranged randomly between 800
and 1200 ms (see Fig. 1C).

The task consisted of identifying the images as one’s own face, a
friend’s face or a stranger’s face. Participants provided their response
by pressing a key on a numerical keyboard with either the index,
middle, or ring finger. The correspondence between key and condition
was randomly assigned across participants. Each participant completed
a total of 450 trials (15 images x 10 repetitions x 3 conditions), lasting
approximately 17 min. The experiment was administered in 3-min
blocks with short breaks between them to avoid fatigue. Participants
were given verbal instructions to avoid eye blinking and invited to
remain still and relaxed during the breaks. In order to familiarize the
participants with the task and the response key, they completed a 24-
trial practice session prior to the experiment. In this session, the stim-
uli consisted of a model face in which internal features were blurred
and replaced by a label indicating identity (‘me’, ‘friend’ or ‘stranger’).
2.4. Statistical analysis of behavioural data

The effect of face identity (Self, Friend, Unknown) on behavioural
responses (hits and response times) was tested by means of one-way
repeated measures analysis of variance (ANOVA). Greenhouse-Geisser
correction for non-sphericity was applied when required. We subse-
quently conducted post-hoc pairwise comparisons to detect differences
between conditions. Effect sizes were estimated using the partial eta-
square (η2p) method. These analyses were carried out with SPSS 15.0.



Fig. 1. Experimental stimuli and procedure. (A) Examples of different stimulus variants for one face: the left-side image shows a neutral expression; the other two
images show the same person articulating speech sounds. (B) Examples of face stimuli employed in each experimental condition: Self, Friend and Unknown face. (C)
Sequential presentation of face stimuli during the task. Note: coloured frames are shown for illustrative purposes only; they were not presented during the experiment.
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2.5. EEG recording

The EEG signal was acquired using BioSemi bioactive electrode caps
with 128 EEG channels. Four additional electrodes were employed to
register the horizontal and vertical EOG. Active electrode offsets were
kept below 25–30 mV. The data were low-pass filtered online at 100 Hz
and digitized at a sampling rate of 512 Hz.
2.6. EEG data analysis

2.6.1. Preprocessing
EEG data analysis was conducted using the Fieldtrip toolbox (Oos-

tenveld et al., 2011) and in-house Matlab code. We first re-referenced the
EEG signal to the common average. The data were then segmented into
3000 ms long epochs, starting 1000 ms before stimulus onset. These long
epochs were used with the aim of avoiding edge effects in the
time-frequency analysis. Only the trials on which the participants
responded correctly were subjected to further analysis.

Artefact rejection was carried out in three steps. Firstly, the EEG data
were visually inspected trial-by-trial. Trials contaminated with artefacts
such as cable movement, swallowing, or muscular activity were manually
discarded. Trials containing blinks or eye-movements during stimulus
presentation were also rejected as they may affect visual processing. This
procedure resulted in an approximately equal number of trials per con-
dition (123.5 � 15.3 trials in the Self-face condition, 121.0 � 15.7 trials
in the Friend condition, and 120.8 � 16.3 trials in the Unknown condi-
tion). Secondly, remaining ocular artefacts were reduced in the EEG
signal using Independent Component Analysis (‘runica’ algorithm
implemented in Fieldtrip). Finally, noisy channels were interpolated
using the signal recorded by neighbouring electrodes.

2.6.2. Time-frequency analysis of power
Time-frequency representations of power were calculated for each

trial using a (multi-) taper approach with sliding time windows (Percival
and Walden, 1993). We analysed lower and higher frequency bands
separately to optimize temporal and spectral resolution. For lower fre-
quencies (2.5–30 Hz), we employed a moving window of 400ms in 50ms
steps and a Hanning taper, leading to �2 Hz spectral smoothing. For
higher frequencies (30–100 Hz), we made use of the multitaper approach
(using discrete prolate spheroidal sequences). We applied a 200 ms
sliding window, in 50 ms time steps, resulting in �10 Hz smoothing.
Subsequently, time-frequency maps were averaged across trials for each
condition and normalized by calculating the relative change from
3

baseline (from 500 to 200 ms before stimulus onset).

2.6.3. Cluster-based statistics for time-frequency power
Statistical analysis of the time-frequency maps was conducted using

non-parametric cluster-based permutation tests (Maris and Oostenveld,
2007) to control for multiple comparisons. We first tested for differences
between the three conditions using a cluster-based F-test, and subse-
quently identified specific differences between pairs of conditions by
means of cluster-based permutation t-tests. The cluster-based F-test was
conducted on the three-dimensional data, i.e. all (channel--
frequency-time)-triplets, to identify differences between the three con-
ditions. We then reduced the data to two-dimensions, i.e.
(channel-time)-pairs over each frequency range of interest, and con-
ducted pairwise cluster-based t-tests to isolate specific differences be-
tween conditions.

The procedure for the cluster-based F/t-test analyses was as follows.
Adjacent electrodes, (frequency-bins for the F-test) and time-points with
p-values below 0.05 were grouped into clusters. Cluster-based statistics
were computed as the sum of F/t-values within a cluster. We then
determined the significance probability of the cluster statistic by means
of a permutation test. The permutation distribution was created by
randomly splitting the data set into two subsets and extracting the
maximum cluster-level statistic. We repeated this procedure 1000 times
to obtain a reference distribution of test statistics. The cluster p-value was
then obtained as the proportion of permutations above the observed
cluster-based statistic.

2.6.4. Source analysis
The final step of the analysis aimed to localize the brain sources un-

derlying significant cluster-level time-frequency effects. We applied
beamforming (Gross et al., 2001; Van Veen, Van Drongelen, Yuchtman
and Suzuki, 1997) to estimate the oscillatory activity in the standardMNI
brain (see Capilla et al., 2016; Capilla et al., 2014 for details). We
employed a standard boundary element method (BEM) volume conduc-
tion model (Oostenveld et al., 2003), as well as standard 10–05 electrode
positions. The standard MRI was segmented into 10 mm voxels, and we
computed the lead fields for each of them.

The EEG signal was band-pass filtered at the frequency of interest (i.e.
8-13 Hz for alpha, and 13–30 Hz for beta). We then extracted data seg-
ments corresponding to the extension of the statistically significant
cluster (1.2–1.6 s for alpha, and 0.7–1.3 s for beta), as well as 200 ms
segments from baseline for subsequent normalization. These segments
were concatenated to calculate the single-trial covariance matrix. This
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was used to compute the spatial filter coefficients using linearly con-
strained minimum variance (LCMV) beamformer (Van Veen et al., 1997).
Regularization (lambda) was set to 10%.

Subsequently, we projected the sensor-level band-pass filtered signal
of each trial into each voxel of source-space by means of the spatial filter
corresponding to a dipole with fixed optimal orientation. We then
computed the amplitude envelope for each trial (i.e. the absolute value of
the Hilbert transform), and averaged these across trials and time for each
condition separately. To control for the centre of the head bias, source-
level activity was normalized as relative change from baseline for each
voxel. Finally, brain activation volumes were averaged across partici-
pants in order to identify voxels showing spatial maxima/minima.

2.6.5. Relation between alpha band power and behavioural performance
Finally, we tested whether the attentional capture induced by the self-

face (as indexed by alpha band suppression) could have an influence on
behavioural performance on the subsequent trial. We focused our anal-
ysis on the alpha band as this showed a longer-lasting effect. Using an
analysis strategy similar to that described by Capilla et al. (2014), we first
selected the voxel in source-space with the minimum value of alpha band
power for all conditions. Then, for each subject, we computed the
single-trial alpha band power in the interest time window (i.e. 1.2–1.6 s),
which was then normalized in terms of relative change with respect to
baseline (0.4–0.2 s). Given that alpha power is somewhat heterogeneous
across individuals, we organized the single trials into quartile bins
instead of using alpha power as a continuous variable. This allowed us to
avoid possible bias in the analysis due to participants having very
high/low levels of alpha power. Finally, we calculated the change in
response time with regard to each participant’s mean response time for
each quartile bin. Statistical analysis was carried out by means of linear
regression across subjects, and multiple comparisons were controlled by
a permutation test. In brief, trials were randomly assigned to each
quartile bin, and response times computed for each of these. We repeated
this procedure 1000 times. In each repetition, the maximumR2 value was
stored. The resultant distribution of R2 values was employed to derive
corrected P-values.

3. Results

This study aimed to investigate the neural oscillatory dynamics un-
derlying self-face processing. Participants were asked to discriminate
between different identities (Self, Friend, Unknown) while their brain
activity was simultaneously recorded with EEG. We subsequently con-
ducted time-frequency as well as source analysis to identify the atten-
tional mechanisms specific to the self.
Fig. 2. Mean response times on the facial recognition task. The figure illustrates t
Unknown faces. Error bars represent Cousineau-Morey confidence intervals *p < .05
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3.1. Behavioural results

Overall, participants achieved a high level of performance on the
facial recognition task (mean � SD hits across all conditions 94.2 �
2.5%). Statistical analysis revealed that the three experimental condi-
tions (Self, Friend, Unknown) did not differ in terms of accuracy (F (2, 48) ¼
.796; p ¼ .383, η2p ¼ .032). In contrast, a one-way ANOVA revealed a
significant effect of face identity on response times (F (2, 48) ¼ 6.861; p ¼
.003, η2p¼ .222). Post-hoc comparisons showed an advantage in self-face
recognition (Fig. 2); that is, shorter response times for recognizing the
Self-face (542� 10ms) in comparisonwith either a Friend (570� 10ms; t
(24) ¼ �3.172, p ¼ .004, 95% CI [-0.045, -.009], d ¼.614) or an Unknown
face (562 � 8 ms; t (24) ¼ �2.684, p ¼ .013, 95% CI [-0.034, -.004],
d ¼.519). These results support the notion that self-face is processed in a
distinctive way, and not simply as a familiar face.
3.2. EEG results

Having demonstrated a self-bias at the behavioural level, we then
carried out a time-frequency analysis of the EEG signal to identify self-
specific effects at the neural level. The cluster-based permutation F-test
revealed an effect among experimental conditions – Self, Friend, and
Unknown (p¼ 0.004). This corresponded to a cluster in the observed data
around the alpha (8–13 Hz) and beta (13–30 Hz) range (see Fig. 3A).
Contrary to our expectations, we did not observe any significant effect in
the gamma band.

Fig. 3B shows the time-frequency map of each experimental condi-
tion. It is clear that all conditions exhibited a power suppression in the
alpha and beta bands, although this was more pronounced and sustained
for the self-face. An earlier power increase in theta can also be observed,
although we have not focused on this frequency band as it did not sta-
tistically differ between conditions. Subsequent cluster-based t-tests for
alpha and beta band power confirmed an effect of the Self condition in
comparison to either a Friend or an Unknown face (see Fig. 3B). Specif-
ically, for the beta band, the non-parametric cluster-based permutation
test revealed a significant cluster extending from 0.7 to 1.3 s after stim-
ulus presentation. As can be observed in Fig. 3B, beta power suppression
was higher for the Self face in comparison with both Friend (p¼ .006) and
Unknown face (p ¼ .001). Similarly, for the alpha band, the non-
parametric cluster-based permutation test revealed a significant cluster
which extended from 1.2 to 1.6 s. In this case, the Self face also elicited a
stronger power modulation than both the Friend (p ¼ .018) and an Un-
known face (p ¼ .023). It is important to note that we did not found any
significant cluster in the alpha-beta power between Friend and Unknown
faces in any case (p > .3). Finally, as shown in Fig. 3C, statistical effects
he mean response times for the three conditions in milliseconds: Self, Friend, and
, **p < .01.



Fig. 3. Top-down attentional modulation during self-face processing. (A) Time-frequency representation of the F-value collapsed across electrodes for all of the
time-frequency ranges (�0.5 to 2 s, and 2.5–100 Hz). (B) Time-frequency power maps (from 2.5 to 30 Hz) of the three experimental conditions (Self, Friend and
Unknown faces). These represent the average time-frequency activity of the group of electrodes showing the largest differences between conditions. The mean
topography of all differences between conditions in the alpha-beta range is shown on the right side; selected electrodes employed to compute time-frequency maps are
highlighted in white. Alpha and beta frequency bands exhibited a power suppression that was greater and more sustained after self-face presentation. White squares
indicate time-frequency windows for significative clusters found in the observed data (beta: 0.7–1.3 s at 13–30 Hz; alpha: 1.2–1.6 s at 8–13 Hz). (C) Topographies of
power differences in the alpha and beta bands between conditions. Electrodes for each cluster are highlighted in white.
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Fig. 5. Relationship between alpha band power in face-related areas and
response times in the subsequent trial. The figure illustrates the percentage
change in response times for the different levels of alpha power in the time
range between 1.2 and 1.6 s. Magnitude of alpha band power is represented in
quartile bins, from lowest (1) to highest (4).
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between Self and other faces were observed over occipital and fronto-
central sensors.

Overall, our time-frequency results show that the self-face induces a
greater suppression of alpha-beta power in comparison with other faces,
even those that are familiar. Critically, in the case of the alpha rhythm,
power modulation persisted at longer latencies when the facial stimulus
was no longer present.

We then carried out beamforming analysis to identify the neural
generators underlying beta and alpha power suppression. It is important
to bear in mind, however, that we did not have access to individual MRIs.
Thus, given that we used the standard MNI template to conduct source
localization analysis, our results are only approximate solutions with
regard to the locations of brain activity. We found that the alpha rhythm
was generated around the intersection between the posterior fusiform
gyrus and the inferior/middle occipital gyri, and was strongly lateralized
to the right hemisphere. The beta source was more broadly distributed
over the occipito-temporal cortex, from primary visual to face-related
areas, spanning both hemispheres (Fig. 4). Consistent with the time-
frequency analysis, the power decrease of both beta and alpha fre-
quency bands was more pronounced when processing the Self-face in
contrast to any other face (see Fig. 3).

We finally speculated whether the alpha band modulation found
around face-sensitive brain regions has an influence on processing up-
coming facial stimuli. We thus conducted a single-trial analysis to test for
a possible relationship between alpha power and behavioural perfor-
mance. The results showed a slightly negative linear relationship,
although it did not reach significance (r ¼ - .104; p ¼ .23; see Fig. 5).

4. Discussion

This study aimed to investigate the oscillatory mechanisms of self-
face recognition. Time-frequency analysis revealed a greater and sus-
tained decrease in alpha-beta power during self-face processing in com-
parison with other faces, either familiar or unknown. Critically, alpha
band desynchronization was generated in the right occipito-temporal
Fig. 4. Brain regions underlying the attentional modulation induced by the s
(bottom) power suppression for the three experimental conditions (Self, Friend and Un
alpha). The beta source was more broadly distributed over the entire visual co
right hemisphere.
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cortex, in the vicinity of brain areas specialized in face processing.
Taken together, our results suggest that perceiving one’s own face could
trigger a particular attentional mechanism that modulates the activity of
cortical regions dedicated to facial perception. Importantly, this effect is
specific to the self-face and cannot be explained in terms of familiarity.

As is generally known, sensory stimulation enhances cortical excit-
ability as indexed by high frequency oscillations, while low frequency
bands are suppressed (Pfurtscheller& Lopes da Silva, 1999). Here, we did
not find evidence for a gamma band power modulation during self-face
processing. Nonetheless, it is possible that we have not been able to
detect it, since amplitude modulations at high frequencies are subtle and
thus may have been overlooked in a statistical analysis based on clusters.
In contrast, we did find lower frequency power modulations in the alpha
elf-face. The figure shows the neural generators of beta (top) and alpha band
known faces) during time ranges of interest (0.7–1.3 s for beta, and 1.2–1.6 s for
rtex, whilst the alpha band was generated around face-related areas in the
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and beta bands, which might reflect the neural implementation of a
top-down attentional control mechanism, as we will discuss in the
following paragraphs.

Several studies have shown that alpha power decreases over parieto-
occipital areas during the deployment and maintenance of attention
(Gould et al., 2011; Siegel et al., 2008; Foxe et al., 1998). In particular,
when visual attention is focused on a given visual hemifield, alpha power
diminishes over the contralateral hemisphere (Ikkai et al., 2016; Kelly
et al., 2009; Sauseng et al., 2005). Since alpha suppression is already
triggered by the spatial cue that indicates the location of the next stim-
ulus, alpha oscillations have been interpreted as a neural mechanism of
top-down attentional control that prepares visual areas for processing
upcoming stimuli (Capilla et al., 2014; Gould et al., 2011; Sauseng et al.,
2005; Thut et al., 2006). Importantly, we found that alpha band modu-
lation arises from the right occipito-temporal cortex, including the pos-
terior fusiform and the middle and inferior occipital gyri, which are key
brain areas in facial perception and recognition (Hasson et al., 2003;
Kanwisher et al., 1997; Pitcher et al., 2011; Rossion et al., 2003). This
implies that attentional gating does not take place in early visual regions,
but rather in downstream areas along the visual ventral pathway, which
is in agreement with the findings of previous research (Capilla et al.,
2014). Our findings therefore suggest a general role for the alpha rhythm
in maintaining relevant brain areas in an “active mode”.

Conversely, the functional role of beta oscillations is less well un-
derstood. Beta has been related to the tendency of the sensorimotor
system to maintain the ‘status quo’ (Engel and Fries, 2010), although the
results of recent research points to its involvement in several cognitive
processes including memory retrieval (Hanslmayr et al., 2016) or visual
perception (Kloosterman et al., 2015), among others. During sensory
stimulation, the decrease in alpha-beta band activity has been related to
information processing in specialized cortical modules (Hanslmayr et al.,
2016; Jensen and Mazaheri, 2010). In general, the beta rhythm has been
associated with the facilitation of endogenous top-down processing
(Fries, 2015; Spitzer and Haegens, 2017), and more specifically, it has
been proposed to mediate between bottom-up and top-down interactions
in the visual cortex (Richter et al., 2018). This role is consistent with the
widespread distribution of the beta band source found here, which
spanned from early visual to higher-order areas, including face-sensitive
regions.

To the best of our knowledge, only one previous study has investi-
gated the brain oscillatory activity induced by one’s own face. Sakihara,
Gunji, Furushima and Inagaki (2012) made use of faces (self, familiar,
and unknown) and objects to study the mechanisms underlying generic
face recognition. They reported an increase in beta band power at
0.4–0.8 s over right prefrontal areas during self-face processing. In this
case, differences in beta band power were associated with the attentional
processes involved in the access to self-related information stored in
memory.

In a previous study, we found evidence to suggest that self-face pro-
cessing is characterized by a reduced need for attentional resources at an
early stage (around 200 ms), which might facilitate subsequent access to
the self-face representation in memory, and therefore recognition
(Alzueta et al., 2019). The present study completes this view, by showing
a more pronounced alpha-beta power decrease for one’s own face at a
later stage, once the face has been recognized. Importantly, alpha band
suppression was maintained for a long time even when the face was no
longer present, suggesting that an attentional process was being
deployed. According to the current Neural Model of the Self (Humphreys
and Sui, 2016; Sui and Gu, 2017) self-face processing is built on the
interaction between bottom-up and top-down attentional control. Thus,
we propose that self-face processing might be driven by bottom-up
mechanisms at early stages (Alzueta et al., 2019). Then, once we have
recognized our own face by activating its memory representation,
top-down control mechanisms would come into play by allocating
greater and sustained attentional resources to keep self-face representa-
tion in an active state. It is important to note, however, that we did not
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directly manipulate attention, and therefore our findings are open to
alternative interpretations that do not involve attentional processes.

Our suggestion that the self-face effect is most likely explained by a
top-down attentional mechanism is reinforced by the source localization
results. These results indicate that long-lasting alpha band suppression
arises from face-sensitive areas, including fusiform as well as the inferior
and middle occipital cortex in the right hemisphere (Dricot et al., 2008;
Rossion et al., 2003). Interestingly, previous research has demonstrated
that the fusiform gyrus can be modulated by top-down attentional
mechanisms (Wojciulik et al., 1998). In line with the present results,
neuroimaging studies have shown stronger activation of the right fusi-
form and inferior and middle occipital gyri during self-face processing in
comparison with other faces (see Hu et al., 2016 for a recent review).
These areas are particularly engaged during self-face processing (Devue
and Br�edart, 2011), leading to a reduction in self-prioritization when
such areas are lesioned (i.e. a hypo-self-bias) (Sui et al., 2015).

A question that remains open is whether the potential ability of the
self to hijack attentional resources might either facilitate or hamper
forthcoming stimulus processing. Our data do not provide conclusive
evidence to clarify this issue, likely because the experimental task was
too easy (with accuracy of around 95%). A more demanding task (e.g.
with shorter exposure time to the faces) would be more suitable for
testing this hypothesis. Nevertheless, taking into account the accumu-
lated evidence showing that alpha-beta activity enhances sensory pro-
cessing precision (Bauer et al., 2014; Cravo et al., 2011), and the
localization of these effects over face-related regions, we hypothesize
that alpha-beta modulation might have a facilitatory role by preparing
specialized sensory areas for potentially relevant incoming stimuli.

In addition to one’s own face, other self-related and relevant stimuli,
such as the self-name, also mobilize more attentional resources (Taci-
kowski and Nowicka, 2010). Hence, the greater deployment of attention
for the self may be an adaptive neural mechanism to facilitate subsequent
processing of socially relevant information. If this were the case, seeing
one’s own face would command attention in a similar way to hearing
one’s own name. This argument has received support from a recent ERP
study (Wo�zniak et al., 2018), which demonstrated that the presentation
of self-related stimulation facilitated subsequent processing of any other
stimulus, whether associated with the self or with other identities. The
facilitatory effect of the self has also been evidenced by a recent study
that employed faces as spatial cues in a dot-probe task (W�ojcik et al.,
2018). These authors observed that participants were faster at detecting
the target when it was preceded by the self-face in comparison with
targets preceded by other faces.

Moreover, the interesting eye-tracker study carried out by Devue et al.
(2009) is worth noting here. These authors presented the participant’s
self-face, among others, during a visual search task. In agreement with
the results obtained in the present study, they found that once fixation to
the self-face had been established it was difficult to disengage attention
from it. However, in contrast with our results, they also found a similar
effect when the faces were those of friends. We believe that this con-
flicting evidence, which can also be found in other studies (Alexopoulos
and Muller, 2012; Br�edart and Devue, 2006; Devue and Br�edart, 2008;
Keyes and Dlugokencka, 2014), might be explained by a possible
participant identification with the stimuli. According to the expanding
nature of the self (Aron and Fraley, 1999; Mattan et al., 2016; Sui et al.,
2013; Sui and Humphreys, 2013), it could be hypothesized that a familiar
face (e.g. a partner’s face) can sometimes be processed as a familiar face,
but also as a self-related stimulus as if it were part of the self (see Taylor
et al., 2009). It is therefore possible that personal identification with the
stimuli, as well as the experimental tasks employed in different studies,
could have turned familiar stimuli into self-related stimuli, thus ac-
counting for the contradictory results found in the literature. This is a
very interesting question that deserves further investigation.

Finally, it could be argued that the self-face is simply an extremely
familiar face, and therefore our findings could ultimately be the result of
a familiarity effect. However, in a recent ERP study, Alzueta et al. (2019)



E. Alzueta et al. NeuroImage 213 (2020) 116754
found support for the view that the self-face is a distinctive face stimulus,
since it was processed differently to both familiar and unknown faces at
an early stage (i.e., P200 component). In contrast, familiar and unknown
faces did not differ at this stage, but did so later at the N250 latency,
when familiarity is computed. The strong evidence that supports this
notion comes from a study by Wo�zniak et al. (2018), who found that
brain activity at early latencies are specific to the self and cannot be
attributed to familiarity. Specifically, they employed a task in which
participants had to associate newly learned faces with either themselves,
a friend, or a stranger. They also found a reduced amplitude at anterior
electrodes in response to the self-face at around 200 ms, which could not
be explained by familiarity with the self-face, since all faces were equally
unknown to the participants at the beginning of the experiment. Our
present results also support the view that the self-face is processed as a
distinctive face stimulus rather than a highly familiar face, given that: (i)
alpha-beta power differed for the self-face in comparison with both
familiar and unknown faces, and (ii) we did not find any statistical dif-
ference between the friend and unknown faces. Since this pattern of re-
sults is highly reminiscent of the P200 effect, which Wo�zniak et al.
(2018) found to be specific to the self, we suggest that the oscillatory
effects found in the present study are most likely explained by a real
self-face effect, rather than by familiarity.

In conclusion, our results show a greater and more sustained reduc-
tion in alpha-beta band power during self-face processing in face-
sensitive brain regions in comparison with other faces, suggesting the
operation of a specific top-down attentional mechanism. As in the Myth
of Narcissus, who became caught by his own reflection, our results sug-
gest that one’s own face is able to retain attention, which has led us to
refer to this phenomenon as the ‘Narcissus Effect’. We propose that this
mechanism might play an adaptive role by facilitating the processing of
subsequent personally relevant information. Our findings might also
have important implications for neuropsychiatric research, since the self
and its attentional mechanisms are altered in certain mental disorders.
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