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Polycystic Ovary Syndrome (PCOS) lacks specific biomarkers for early diagnosis. Recent evidence 
implicates cuproptosis, a copper-induced regulated cell death pathway, and N6-methyladenosine 
(m6A) RNA modifications in metabolic and inflammatory processes central to PCOS pathogenesis. 
This study aimed to construct integrated diagnostic signatures based on cuproptosis- and m6A-
related gene expression. Transcriptome data from GEO datasets (GSE95728, GSE106724, GSE114419) 
comprising 28 PCOS and 22 control granulosa cell samples were merged and batch-corrected. 
Differentially expressed genes (DEGs) overlapping with curated cuproptosis-related and m6A-target 
gene sets were identified. LASSO regression was applied to generate diagnostic models based 
on selected DEGs: CASK, AGMAT, NEDD4, and PTGES3 (cuproptosis); CLDN1, ACLY, and DDX3X 
(m6A). The combined model achieved excellent diagnostic accuracy (AUC up to 0.960), validated in 
an independent dataset (GSE168404). ssGSEA analysis revealed immune dysregulation involving 
dendritic cells, T cell subsets, and myeloid-derived suppressor cells, which correlated with risk scores. 
Drug-gene association analysis via CellMiner indicated therapeutic relevance of targets such as ACLY 
and CLDN1 (Vinblastine), as well as CASK and CLDN1 (XAV-939). qRT-PCR validation in granulosa 
cells from 5 PCOS patients and 5 controls confirmed gene expression trends. These findings suggest 
cuproptosis- and m6A-based signatures may enable accurate PCOS diagnosis and guide individualized 
immunomodulatory strategies.
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Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in reproductive-age women, characterized 
by irregular menstrual cycles, hyperandrogenism, and ovarian dysfunction1. With a global prevalence ranging 
from 5 to 20%, PCOS poses significant risks to reproductive health and contributes to metabolic disturbances, 
including insulin obesity, insulin resistance, and cardiovascular diseases2,3. Despite its high prevalence, diagnosis 
remains challenging due to its clinical heterogeneity and the absence of a definitive biomarker4. This complexity 
often delays timely intervention5, highlighting the need for novel diagnostic markers and mechanistic insights.

Although PCOS is not a malignant condition, its ovarian microenvironment exhibits striking similarities to 
the tumor microenvironment (TME), including chronic inflammation, immune cell infiltration, and metabolic 
reprogramming6. These features suggest that molecular mechanisms classically associated with tumor biology, 
such as regulated cell death pathways and epigenetic remodeling, may also play key roles in PCOS pathogenesis. 
This conceptual parallel provides a rationale for exploring gene signatures involved in processes like cuproptosis 
and RNA methylation in the context of PCOS.
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Cuproptosis is a newly identified form of regulated cell death triggered by copper accumulation. It involves 
copper binding to lipoylated components of the tricarboxylic acid cycle, leading to protein aggregation, iron-
sulfur cluster loss, and ultimately, proteotoxic stress-induced cell death7. Intriguingly, mitochondrial dysfunction, 
a hallmark of cuproptosis, has been observed in PCOS patients, including impaired oxygen consumption and 
elevated reactive oxygen species8,9. Given copper’s role in mitochondrial enzymes and evidence suggesting that 
elevated copper levels negatively impact follicle development in PCOS10,11, cuproptosis may contribute to the 
pathophysiology of PCOS. Indeed, cuproptosis-related genes have demonstrated diagnostic values in other 
diseases such as cancer and cardiovascular conditions12,13, prompting exploration of their relevance in PCOS.

Epigenetic modifications, particularly N6-methyladenosine (m6A) RNA methylation, have emerged as key 
regulators of gene expression and post-transcriptional processes. m6A modifications are installed, removed, 
and interpreted by methyltransferases, demethylases, and m6A-binding proteins, respectively, and play critical 
roles in mRNA stability, splicing, translation, and cellular signaling14. Accumulating evidence implicates m6A 
regulatory machinery in granulosa cell proliferation and apoptosis in PCOS15–17. Moreover, the immune 
dysregulation and low-grade inflammation associated with PCOS18–20 may be linked to both RNA methylation 
pathways and trace element metabolism such as copper. Notably, Ferredoxin 1, a critical cuproptosis regulator, 
has shown gene expression correlation with m6A-, m5C-, and m1A-related genes in PCOS, suggesting potential 
mechanistic overlap21.

Other RNA modifications, such as N7-methylguanosine (m7G), and genes involved in copper metabolism 
have also been implicated in PCOS development and progression22. Furthermore, integrated analyses of m6A 
and cuproptosis-related gene signatures have successfully identified prognostic markers in cancer23. These 
precedents led us to hypothesize that m6A- and cuproptosis-associated gene expression signatures may provide 
new diagnostic insights into PCOS. Therefore, this study aimed to identify differentially expressed m6A-target 
and cuproptosis-related genes in PCOS, develop diagnostic models based on these signatures, and explore their 
association with the ovarian immune microenvironment.

Methods
Data acquisition
Transcriptome expression profile data were obtained from the Gene Expression Omnibus database (GEO;  h t t p s : / 
/ w w w . n c b i . n l m . n i h . g o v / g e o /     ) . The datasets include GSE34526, GSE137684, GSE80432, GSE114419, GSE102293, 
and GSE168404. Datasets GSE34526, GSE137684, GSE80432, GSE114419, and GSE102293 were integrated, 
comprising human granulosa cell samples isolated from 28 PCOS ovaries and 22 normal ovaries (Table 1). These 
merged datasets were utilized for biomarker identification and model development. GSE168404 was reserved 
for validation purposes. Probes from each dataset were mapped to their corresponding genes, and those not 
matching any known gene were excluded. When multiple probes mapped to the same gene, their median 
expression value was used to represent the gene’s expression. Potential batch effects were removed across the 
merged datasets using the ComBat function from the “sva” R package, which uses an empirical Bayes framework 
to adjust for non-biological variation while preserving biological differences24. Principal Component Analysis 
(PCA) was performed before and after batch correction to visually confirm the effectiveness of ComBat-based 
adjustment. Genes associated with cuproptosis were identified by querying the GeneCards database with the 
term “Copper death”. By filtering for “Protein Coding” genes, we obtained 2,265 cuproptosis-associated genes. 
A total of 701 m6A target genes were further identified by sourcing the experimentally validated genes from 
the human genome (hg38) available at the m6A2 Target database (http://rm2target.cancerics.org/#/home). An 
overview of the study design is illustrated in Fig. 1.

Identification of differentially expressed genes
Differentially expressed genes (DEGs) between the PCOS and normal groups were identified using the R package 
‘limma’. Genes were considered DEGs if they had a p-value of less than 0.05. DEGs that overlapped with the list 
of cuproptosis-associated genes were defined as cuproptosis-related DEGs, and those overlapping with the m6A 
target gene list were defined as m6A-target DEGs.

Enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses 
were carried out on cuproptosis-related and m6A-target DEGs using the R package ‘clusterProfiler’. The p-values 

ID Platform Sample type Sample size Data types Role in study

GSE34526 GPL570

Human granulosa cells (PCOS or Normal Ovaries)

10 mRNA array

Merged Dataset (Discovery)

GSE137684 GPL17077 12 mRNA array

GSE80432 GPL6244 16 mRNA array

GSE114419 GPL17586 6 mRNA array

GSE102293 GPL570 6 mRNA array

Total Merged Multiple 50 (28 PCOS, 22 Control) mRNA array Model Development

GSE168404 GPL16791 10 RNAseq Independent Validation Dataset

Table 1. Sample size and sample types.
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were adjusted using the Benjamini-Hochberg correction method, and the top 15 with the most significant 
adjusted p-values are presented.

Construction of the risk-scoring models
Cuproptosis-related and m6A-target DEGs were subjected to LASSO regression analysis using the R package 
“glmnet"25. The optimal penalty parameter (λ) was established based on the minimum criterion. Genes with non-
zero coefficients were considered optimal variables. Weighted coefficients from the model, in conjunction with 
gene expression data, were used to compute the cuproptosis risk score and the m6A risk score. Comprehensive 
risk-scoring models were created using two approaches. One approach identified common genes between 
cuproptosis-related and m6A-target DEGs (intersection set), resulting in the intersection-based risk score. 
The other identified correlated genes between cuproptosis-related and m6A-target DEGs (correlation set) 
using Pearson correlation analysis. Key genes with p < 0.001 and |correlation coefficient| > 0.8 within this set 
were identified using a LASSO regression model to build the correlation-based risk score. The risk scores were 
calculated following this formula: Risk Score = ∑ (coefficienti × expression leveli), where expression leveli” is the 
normalized expression value of gene “I” and “coefficienti” is its corresponding LASSO regression coefficient.

The diagnostic efficacy of the risk score in the merged and validation datasets was evaluated using Receiver 
Operating Characteristic (ROC) curve analysis with the R package “pROC"26, calculating the Area Under the 
Curve (AUC). Additionally, patients were categorized into high and low-risk groups based on the median risk 
score using the “clusterProfiler” package27. A Gene Set Enrichment Analysis (GSEA) was then conducted on the 
GO functions and KEGG pathways for patients of varying risks.

Nomogram construction and evaluation
A diagnostic nomogram integrating cuproptosis risk score and m6A risk score was constructed using the 
R package “rms"28. The clinical decision-making performance of the nomogram was then assessed through 
calibration curves (using the “calibrate” function from the “rms” package) and Decision Curve Analysis (DCA) 
curves employing the “ggDCA” package29.

Immune infiltration analysis
The enrichment scores of 28 immune cell subtypes were evaluated using single-sample gene set enrichment 
analysis (ssGSEA) as previously reported30 using the “GSVA” package31. Immune cell abundance between PCOS 
and control groups was compared using the Wilcoxon rank-sum test. The relationship between the risk scores 
and immune cell infiltration was assessed using the Pearson correlation analysis.

Drug sensitivity prediction
The correlation between feature genes (genes included in the risk models) and drug sensitivity was investigated 
using the expression data of the NCI-60 cell line panel from the CellMiner database  (   h t t p s : / / d i s c o v e r . n c i . n i h . g o 

Fig. 1. Overview of the study design integrating bioinformatic analysis and experimental validation in 
Polycystic Ovary Syndrome (PCOS).
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v / c e l l m i n e r / h o m e . d o     ) and associated drug activity data. Correlation analysis between gene expression and drug 
IC50 values was performed using the Pearson method. The relationships between the feature genes and drugs 
were visualized.

Isolation and identification of human luteinized granulosa cells
Human luteinized granulosa cells were obtained from 5 PCOS patients and 5 age-matched infertile women 
with tubal factor infertility undergoing IVF/ICSI-ET. The study was approved by the Ethics Committee of the 
Second Affiliated Hospital of Kunming Medical University (No.2023 − 238). All participants provided written 
informed consent. We confirmed that all methods were performed in accordance with the relevant guidelines. 
All procedures were performed in accordance with the ethical standards laid down in the 1964 Declaration of 
Helsinki and its later amendments. The inclusion criteria for the PCOS group were as follows: (1) individuals 
who underwent IVF/ICSI-ET assisted reproductive treatment at the Department of Reproductive Medicine, 
the Second Affiliated Hospital of Kunming Medical University; (2) individuals less than 35 years old; (3) 
individuals meeting at least two of the 2003 Rotterdam Polycystic Ovary Syndrome PCOS diagnostic criteria 
or the 2018 Chinese PCOS diagnostic criteria32,33, including irregular ovulation, hyperandrogenism or related 
clinical manifestations, and polycystic ovarian changes as detected by ultrasound (more than 12 small follicles 
with a diameter of 2–9 mm on both sides of the ovary, or an increased ovarian volume defined as greater than 
10 mL). Exclusion criteria included other reproductive system diseases, immune diseases, medical conditions 
impacting pregnancy, chromosomal abnormalities, and diabetes. The inclusion criteria for the control group 
were individuals who received IVF-ET/ICSI assisted pregnancy treatment due to male factors or fallopian tube 
factors, utilized egg growth or antagonist programs to promote ovulation, were less than 35 years old, had basal 
follicle-stimulating hormone levels below 10 IU/L, and exhibited normal ovarian function (anti-Müllerian 
hormone greater than 1.1 ng/mL). The exclusion criteria were identical to those of the PCOS group.

Human luteinized granulosa cells were isolated and cultured using density gradient centrifugation. Following 
egg retrieval, follicular fluid was collected and centrifuged at 2000 rpm for 10 min to obtain granulosa cells, 
which were then resuspended in the medium and layered onto Ficoll solution (Solarbio, China) before 
centrifugation. The granulosa cell layer was collected, washed, and cultured in Petri dishes or plates with regular 
medium changes. Immunofluorescence was employed for cell identification. Cells were fixed, permeabilized, 
and blocked before incubation with primary antibodies against follicle-stimulating hormone receptor (FSHR; 
Abcam, Cambridge, UK) and subsequent secondary antibodies. Finally, cells were visualized under a confocal 
microscope. FSHR is a well-established marker for granulosa cells, particularly in the context of IVF protocols 
where luteinization is induced, although its expression levels can vary. The morphological characteristics and the 
isolation procedure itself further support the identity of the isolated cells as luteinized granulosa cells.

qRT-PCR
Total RNA was isolated from human luteinized granulosa cells using TRIzol. Reverse transcription was performed 
using a SweScript first-strand cDNA synthesis kit (Servicebio, Wuhan, China), followed by PCR amplification 
using 2× Universal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, China) on a CFX96 real-time 
PCR detection system (Bio-Rad, USA). GAPDH was used as an internal reference. The PCR primer sequences 
(5’−3’) are summarized in Table 2. Each reaction was performed in triplicate. The relative gene expression was 
calculated using the 2−ΔΔCt method.

Statistical analysis
All statistical analyses were performed using R (v4.3.0). The R packages “FactoMineR” and “factoextra” were 
employed for PCA and its visualization. Heatmaps were visualized using the “pheatmap” package. Venn 

Gene Forward primer Reverse primer

GAPDH  T G A C T T C A A C A G C G A C A C C C A  C A C C C T G T T G C T G T A G C C A A A

CASK  T G G A A G C T C T A C G C T A C T G C  G T T T A A C A G G T G C C G A G T T T T C

AGMAT  C T T G T C G A A G T T T C A C C A C C G T A  C T T T G G G G A G A G C A C A T A G C A T C

NEDD4  T T C C A A T G A T C T A G G G C C T T T A C  G A G G A T C T T C C C A T T G T G T T C T

PTGES3  C A A A T G A T T C C A A G C A T A A A A G A A C  G G T A A A T C T A C A T C C T C A T C A C C A C

CLDN1  C C T C C T G G G A G T G A T A G C A A T  G G C A A C T A A A A T A G C C A G A C C T

ACLY  A T C G G T T C A A G T A T G C T C G G G  G A C C A A G T T T T C C A C G A C G T T

DDX3X  A C G A G A G A G T T G G C A G T A C A G  A T A A A C C A C G C A A G G A C G A A C

BNIP3  C A G G G C T C C T G G G T A G A A C T  C T A C T C C G T C C A G A C T C A T G C

BCL2  G G T G G G G T C A T G T G T G T G G  C G G T T C A G G T A C T C A G T C A T C C

MDM2  C A G T A G C A G T G A A T C T A C A G G G A  C T G A T C C A A C C A A T C A C C T G A A T

PIK3R1  A G C A A C C T G G C A G A A T T A C G  G C T G C T G G A A T G A C A G G A T T

COX5 A  A T C C A G T C A G T T C G C T G C T A T  C C A G G C A T C T A T A T C T G G C T T G

VIM  A G T C C A C T G A G T A C C G G A G A C  C A T T T C A C G C A T C T G G C G T T C

SORL1  C A A G G T G T A C G G A C A G G T T A G T  C C A A T G C C A G G C T A T C T C G

Table 2. qRT-PCR primers.
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diagrams were created with the “ggvenn” package, and ROC curves were visualized using the “pROC” package. 
Unless specified otherwise, result plots were generated using either ggplot2 or the base R plot function. The 
Pearson method was applied for correlation analyses. The Wilcoxon rank-sum test was used to assess differences 
between two groups (e.g., gene expression, immune scores). A result was considered statistically significant with 
p < 0.05. Sample size calculations for the qRT-PCR validation were performed using G*Power software (v3.1) 
based on preliminary effect size estimates from transcriptomic data, targeting a power of > 0.8 and a significance 
level of 0.05. The calculation indicated that at least 25 samples per group were required. Our study included 
5 PCOS patients and 5 controls for qRT-PCR validation, which exceeded the required sample size, ensuring 
sufficient power to detect differential gene expression. The Wilcoxon test was used to assess differences between 
two groups. A result was considered statistically significant with p < 0.05.

Results
Identification of DEGs between PCOS and control groups
To identify DEGs that distinguish PCOS from healthy controls, we collected gene expression data from five 
datasets: GSE34526, GSE137684, GSE80432, GSE114419, and GSE102293. The merged datasets included 28 
PCOS samples and 22 control samples. Initial clustering patterns varied among different datasets (Fig. 2A and 
B), which were later resolved through batch effect removal. After this correction, samples exhibited consistent 
clustering (Fig. 2C and D). Applying a significance threshold of p-value < 0.05, 1179 DEGs were identified, with 
520 upregulated genes and 659 downregulated genes (Fig. 2E, Table S1). The heatmap in Fig. 2F displays the top 
20 DEGs.

Identification and functional enrichment analysis of cuproptosis-related DEGs and m6A-
target DEGs
Then, we intersected the DEGs with genes associated with cuproptosis and m6A modifications. Initially, we 
attempted to find an intersection between DEGs and m6A regulatory genes. However, in the absence of overlap, 
we shifted our focus to the intersection with m6A-target genes. Cuproptosis-related DEGs comprised 102 
upregulated and 119 downregulated genes (Fig. 2G). In contrast, m6A-target DEGs included 39 upregulated 
and 24 downregulated genes (Fig. 2H). Functional exploration was conducted via GO and KEGG enrichment 
analyses. Cuproptosis-related DEGs enriched biological processes (BP) included positive regulation of cytokine 
production, response to lipopolysaccharide, and response to molecules of bacterial origin. Noteworthy cellular 
components (CC) encompassed the secretory granule membrane, secretory granule lumen, and cytoplasmic 
vesicle lumen. Molecular functions (MF) embraced pattern recognition receptor activity, Toll-like receptor 
binding, and mannosyltransferase activity (Fig. S1A, Table S2). KEGG pathways highlighted C-type lectin 
receptor signaling pathway, lipid and atherosclerosis, legionellosis, Epstein-Barr virus infection, and apoptosis 
(Fig. S1B, Table S3).

For m6A-target DEGs, significant BP included the intrinsic apoptotic signaling pathway, viral process, and 
cytokine-mediated signaling pathway. Predominant CC were cytoplasmic stress granule, mitochondrial outer 
membrane, and organelle outer membrane.

However, there was no significant enrichment observed in MF (Fig. S1C, Table S4). The principal KEGG 
pathways were Epstein-Barr virus infection, PD-L1 expression and PD-1 checkpoint pathway in cancer, and 
apoptosis (Fig. S1D, Table S5).

Overlapping pathways between cuproptosis-related and m6A-target DEGs included intrinsic apoptotic 
signaling pathway, cytokine-mediated signaling pathway, cellular response to biotic stimulus, and extrinsic 
apoptotic signaling pathway. Furthermore, shared KEGG pathways encompassed C-type lectin receptor signaling 
pathway, lipid and atherosclerosis, apoptosis, NF-kappa B signaling pathway, and HIF-1 signaling pathway. 
These data indicate that genes associated with cuproptosis and m6A modifications display differential expression 
and potential intersections in specific biological pathways tied to immune responses, lipid metabolism, and 
apoptosis.

Construction of cuproptosis and m6A scoring models
To identify feature genes for predictive scoring models for PCOS, we employed LASSO regression analysis 
(Fig. 3A, B and D, and 3E). Among the cuproptosis-related DEGs, genes of significance were CASK, AGMAT, 
NEDD4, and PTGES3. Additionally, CLDN1, ACLY, and DDX3X were highlighted in the m6A-target DEGs. Risk 
score models, represented as cuproptosis risk score and m6A risk score, were derived using weight coefficients 
and gene expression levels from the LASSO models. The risk scores were calculated by multiplying each gene’s 
normalized expression level by its corresponding LASSO coefficient:

cuproptosis risk score = (–0.845) × expression level of CASK + (–0.015) × expression level of AGMAT + 
(–0.294) × expression level of NEDD4 + (–0.146) × expression level of PTGES3 .

m6A risk score = (–0.297) × expression level of CLDN1 + (–0.257) × expression level of ACLY + (0.182) × 
expression level of DDX3X.

ROC analysis revealed notable AUC values of 0.869 for cuproptosis risk score (Fig. 3C) and 0.810 for m6A 
risk score (Fig. 3F) within the merged datasets. Furthermore, in the validation dataset GSE168404, the AUC 
values were even more impressive at 0.920 for cuproptosis risk score and 0.960 for m6A risk score (Fig. 3G and 
H). The results suggest that these models possess significant predictive potential for PCOS.

Collaborative implications of cuproptosis and m6A risk scores in PCOS
To investigate the potential functional interactions between cuproptosis and m6A risk scores in PCOS, we 
divided the patients into high and low-risk groups using the median value of each risk score. The GSEA results 
indicated identical enrichment outcomes for both models (Fig. 4A and B), suggesting a collaborative functional 
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Fig. 2. Identification and characterization of differentially expressed genes (DEGs) between PCOS and 
control groups. (A, B) Box plots and Principal Component Analysis (PCA) before batch effect removal show 
significant heterogeneity among the five discovery datasets (GSE34526, GSE137684, GSE80432, GSE114419, 
GSE102293). (C, D) Box plots and PCA after ComBat batch effect removal demonstrate consistent expression 
patterns across the merged dataset (28 PCOS, 22 control samples). (E) Volcano plot illustrates 1179 DEGs (p < 
0.05) between PCOS and control groups in the merged dataset (520 upregulated in red, 659 downregulated 
in blue). (F) Heatmap displays the expression of the top 20 DEGs (ranked by p-value). (G, H) Venn diagrams 
illustrate the intersection of total DEGs with cuproptosis-related genes to identify cuproptosis-related DEGs 
(G) and with m6A-target genes to identify m6A-target DEGs (H).
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interaction between the two risk scores in PCOS patients. Furthermore, in both merged and external datasets, 
cuproptosis and m6A risk scores were significantly elevated in the PCOS group compared to the control group 
(Fig. 4C and D). A positive correlation between the risk scores further underscored their consistent associations 
(Fig. 4E and F), suggesting a collaborative role in characterizing PCOS.

Integrating risk-scoring models based on the intersection and expression correlation 
between cuproptosis-related DEGs and m6A-target DEGs
Recognizing the collaborative role of cuproptosis and m6A risk scores in predicting PCOS, we developed 
comprehensive risk-scoring models through two different approaches: one based on the intersection of 
cuproptosis-related and m6A-target DEGs, and the other founded on their expression correlation. Among the 
genes common to both cuproptosis-related DEGs and m6A-target DEGs, a set of 27 genes were identified (Fig. 
S2A-B). Utilizing the expression profiles of these common genes, a LASSO regression model revealed 7 key genes: 
BNIP3, BCL2, MDM2, DDX3X, PIK3R1, COX5 A, and VIM. The intersection-based risk score was computed 
as follows: (−0.224) × Expression(BNIP3) + 0.131 × Expression(BCL2) + (−0.099) × Expression(MDM2) 
+ 0.558 × Expression(DDX3X) + 0.110 × Expression(PIK3R1) + (−1.003) × Expression(COX5 A) + 0.005 × 
Expression(VIM). The intersection-based score demonstrated strong diagnostic performance with an AUC 
value of 0.812 in the merged dataset and 1.000 in the external dataset (Fig. S2E-F).

Additionally, using Pearson correlation analysis for cuproptosis-related DEGs and m6A-target DEGs with 
criteria p < 0.001 and |correlation efficient| > 0.8, we identified 168 significantly correlated genes (Fig. S2C-D). 
Utilizing their expression profiles, we established another LASSO regression model and identified two critical 
genes, CASK and SORL1, both linked to cuproptosis. These two genes were selected based on having non-zero 
coefficients after applying LASSO regression to the expression data of the 168 correlated genes. The correlation-
based risk score was calculated as (−1.314) × Expression(CASK) + 0.001 × Expression(SORL1), yielding a 
diagnostic AUC value of 0.843 in the merged dataset and 0.920 in the external dataset (Fig. S2G-H). These 
integrated risk-scoring models provide valuable insights into the potential predictive power of the analyzed gene 
sets.

Diagnostic performance of risk scores in PCOS
To assess the diagnostic performance of cuproptosis risk score and m6A risk score in PCOS, we constructed a 
diagnostic nomogram. In the nomogram, the patient was scored according to the proportion of the regression 
coefficient for each risk score. By summing the corresponding scores (−1.54), we were able to predict a PCOS 
probability of 26.9% (Fig. 5A, S5). Calibration curves demonstrated the agreements between predicted probability 
and observed probability, suggesting the high predictive accuracy of the nomogram for PCOS (Fig. 5B). The DCA 
curve showed that the composite model provided greater clinical benefit than individual risk scores, highlighting 
its improved predictive performance and potential for enhanced clinical decision-making (Fig. 5C).

Fig. 3. Construction of cuproptosis and m6A risk-scoring models. (A, D) LASSO coefficient profiles for 
cuproptosis-related DEGs (A) and m6A-target DEGs (D). Coefficients are plotted against the log(λ) penalty 
parameter. (B, E) LASSO λ selection using minimum criteria. Vertical dotted lines indicate the optimal λ 
values chosen for the cuproptosis risk score model (B) and m6A risk score model (E). (C, F) ROC curves 
evaluating the diagnostic performance of cuproptosis risk score (C) and m6A risk score (F) for PCOS diagnosis 
in the merged discovery dataset. (G, H) ROC curves evaluating the diagnostic performance of cuproptosis risk 
score (G) and m6A risk score (H) in the independent validation dataset GSE168404. AUC values are indicated.
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Fig. 4. Collaborative implications of cuproptosis risk score and m6A risk score in PCOS. (A, B) Gene Set 
Enrichment Analysis (GSEA) results showing representative enriched pathways for high-risk groups defined by 
median cuproptosis risk score (A) and m6A risk score (B). (C, D) [Revised] Box plots comparing cuproptosis 
risk score (C) and m6A risk score (D) between PCOS and control groups. These will be presented as separate 
plots due to different scales. Comparisons are shown for both the merged discovery dataset and the validation 
dataset GSE168404. Significance levels indicated (*p < 0.05, **p < 0.01). (E, F) Scatter plots showing the Pearson 
correlation between cuproptosis risk score and m6A risk score in the merged discovery dataset (E) and the 
validation dataset GSE168404 (F). Correlation coefficients (R) and p-values are shown.
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Immune infiltration analysis
To understand the potential immunological associations and mechanisms underlying PCOS, we employed 
ssGSEA to analyze the differences in immune infiltration between PCOS and normal controls. A heatmap revealed 
a global trend toward heightened immune activity in PCOS, indicating a pro-inflammatory microenvironment 
(Fig. 6A). Although differences in individual cell types were observed (Fig. 6B), the overall pattern suggests broad 
immune dysregulation rather than changes confined to specific cell subsets. Notably, both the cuproptosis and 
m6A risk scores exhibited consistently positive correlations with multiple immune cell populations (Fig. 6C), 
supporting a shared link between these molecular signatures and enhanced immune activation in PCOS.

Correlation between feature genes and drug responses
To understand the connection between feature genes (genes included in cuproptosis risk score, m6A risk score, 
intersection-based risk score, correlation-based risk score) and drug responses, we acquired gene expression and 
drug sensitivity (IC50) data from the CellMiner database using the NCI-60 cell line panel. Clinical laboratory-
tested and FDA standard-certified drugs underwent Pearson correlation analysis to establish associations between 
feature gene expression and drug sensitivity data. We selected gene-drug pairs with significant correlations based 
on criteria of p < 0.05 and |correlation coefficient| > 0.4 (Fig. 7, S6).

Remarkably, ACLY and CLDN1 exhibited the strongest negative and positive correlations with Vinblastine, 
respectively, while CLDN1 also demonstrated the most robust positive correlation with XAV-939. AGMAT 
displayed its most pronounced negative correlation with MTX-211 and a positive correlation with Barasertib, 
while CASK exhibited its strongest negative correlation with Dolastatin 10 and a positive correlation with XAV-
939. Additionally, DDX3X displayed the strongest positive correlation with Methylprednisolone, and PTGES3 
demonstrated the most substantial negative correlation with AZD-3147 and a positive correlation with ST-3595. 
We also examined the correlation between intersection-based and correlation-based model genes and drug 
responses (Fig. S3, S6). The findings shed light on the potential role of these genes in guiding personalized 
treatment strategies for PCOS.

Validation of model gene alterations in clinical samples
To validate model gene dysregulation in clinical samples, we isolated human luteinized granulosa cells from 5 
PCOS patients and 5 controls. Immunofluorescence analysis of FSHR demonstrated the successful isolation of 
the target cells (Fig. S4). The results of qRT-PCR showed that, compared to the control group, the expression 
of AGMAT, CASK, CLDN1, and VIM was significantly reduced in the PCOS group (all p < 0.05). Conversely, 
the expression of BNIP3, DDX3X, ACLY, PIK3RI, and BCL2 was significantly increased in the PCOS group 
(all p < 0.05) (Fig. 8). These data were generally consistent with the bioinformatics analysis, suggesting that the 
dysregulation of these genes play a significant role in the pathogenesis of PCOS.

Discussion
In this study, we comprehensively analyzed cuproptosis-related DEGs and m6A-target DEGs for PCOS 
diagnosis. We developed and validated novel risk-scoring models based on these signatures, demonstrating 
robust diagnostic potential (AUC up to 0.960 in validation). Importantly, our study is among the first to integrate 
both cuproptosis and m6A modification pathways in PCOS diagnostics, revealing their synergistic potential34,35. 
Our findings align with previous studies showing correlations between these pathways in other diseases like 
hepatocellular carcinoma and breast cancer36,37, highlighting the novelty of applying this combined approach 
to PCOS.

Fig. 5. Diagnostic performance of integrated risk scores in PCOS. (A) Nomogram integrating cuproptosis 
risk score and m6A risk score for predicting PCOS probability. Instructions: Locate patient scores on each 
risk score axis, draw lines upwards to the ‘Points’ axis, sum the points, and draw a line down from the ‘Total 
Points’ axis to the ‘Probability of PCOS’ axis. The example is shown (−1.54 total points corresponds to 
~ 26.9% probability). (B) Calibration curve for the nomogram. The x-axis is the nomogram-predicted PCOS 
probability, the y-axis is the actual observed PCOS frequency. The diagonal dotted line represents perfect 
calibration. (C) Decision Curve Analysis (DCA) comparing the net benefit of using cuproptosis risk score 
alone, m6A risk score alone, or the combined nomogram model across a range of threshold probabilities for 
clinical decision-making.
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Fig. 6. Immune infiltration analysis. (A) Heatmap illustrating the ssGSEA enrichment scores for 28 immune 
cell types across PCOS and control samples in the merged dataset. (B) Box plots comparing the enrichment 
scores of significantly different immune cell types between PCOS and control groups (Wilcoxon test, *p < 0.05, 
**p < 0.01). (C) Correlation plot showing Pearson correlation coefficients between immune cell enrichment 
scores and the cuproptosis and m6A risk scores. The intensity of the red color is proportional to the positive 
correlation coefficient value. The size of the circle indicates statistical significance (larger circles denote greater 
significance/smaller P-values). Non-significant correlations are marked with ‘×’.
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The individual genes identified in our primary signatures (cuproptosis risk model: CASK, AGMAT, NEDD4, 
PTGES3; m6A risk model: CLDN1, ACLY, DDX3X) and integrated models (e.g., intersection-based risk model: 
BNIP3, BCL2, MDM2, DDX3X, PIK3R1, COX5 A, VIM; correlation-based risk model: CASK, SORL1) have 
known roles in relevant biological processes. For instance, NEDD4’s stability is affected by m6A38, PTGES3 is 
linked to immune responses39, and ACLY is part of a cuproptosis-related signature in cancer40. The inclusion 
of CASK and DDX3X in our integrated models underscores their potential importance. CASK’s link to insulin 
signaling41 is highly relevant given insulin resistance in PCOS, while DDX3X interacts with lncRNA H1942, 
which is dysregulated in PCOS granulosa cells43. Further mechanistic studies exploring how these genes 
contribute to granulosa cell dysfunction and the overall PCOS phenotype are warranted. Our findings regarding 
granulosa cell gene expression (Fig. 7, S6) partially overlap but also extend those reported by Kõks et al.., who 
characterized transcriptomic differences between floating and cumulus granulosa cells44. While both studies 
implicate immune signaling and cell-cell interaction pathways, our analysis further integrates m6A methylation 
and cuproptosis-related signatures, providing additional mechanistic insights into granulosa cell dysfunction in 
PCOS that were not addressed in the earlier study.

The observed similar GSEA enrichment outcomes and positive correlation between cuproptosis risk score 
and m6A risk score suggest shared downstream pathways impacted by both cuproptosis and m6A dysregulation 

Fig. 7. Correlation between feature genes and drug responses. Orange indicates feature genes, and green 
indicates drugs significantly correlated with the feature genes.
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in PCOS. This supports the rationale for developing integrated models. PCOS is increasingly recognized as a 
condition involving chronic low-grade inflammation and immune dysregulation, affecting not only the ovaries 
but also systemic health18–20. Our ssGSEA results align with this, revealing significant differences in immune 
cell infiltration (e.g., dendritic cells, T cells, MDSCs) between PCOS and control granulosa cell environments 
(Fig. 5A and B, S5). The correlation of our risk scores with these immune cell populations (Fig. 6C) suggests 
that cuproptosis and m6A pathways are intertwined with the local immune landscape in PCOS. This resonates 
with findings by Su et al.. on cuproptosis clusters and immunity in PCOS34 and Chen et al.. on m6A subtypes 
and immune infiltration45. Our work adds a layer by integrating both pathways and linking them via diagnostic 
signatures to these immune features.

Growing evidence across diseases supports the role of immune composition in driving microenvironmental 
remodeling. Ye et al.. have demonstrated that plasma cell-enriched tumors exhibited more active immune 
landscapes and superior immunotherapy outcomes, highlighting how specific immune cell subsets can restructure 
tissue homeostasis and responsiveness46. Similarly, the iMLGAM framework revealed that immune-infiltrated 
tumors with low composite risk scores show enhanced cytotoxicity and antigen presentation signatures, defining 
distinct microenvironmental states that influence therapeutic responsiveness47. In addition, elevated systemic 
immune-inflammation indices (SII) have been associated with shifts toward pro-inflammatory dominance and 
impaired resolution in mucinous adenocarcinoma, suggesting broader relevance of immune cell composition 
in remodeling dynamics48. Mechanistically, cuproptosis may contribute to microenvironment remodeling 
by inducing mitochondrial stress, iron-sulfur cluster depletion, and proteotoxic cell death, which can release 
damage-associated molecular patterns and modulate immune recruitment. m6A RNA methylation, on the 
other hand, regulates transcriptome plasticity by affecting the stability and translation of immune-modulatory 
genes, thereby influencing cytokine production, antigen presentation, and stromal interactions. Together, these 
findings suggest that immune infiltration characteristics, cuproptosis activity, and m6A modifications converge 
to orchestrate dynamic changes in the PCOS ovarian microenvironment.

Our analysis also revealed intriguing correlations between feature genes and drug sensitivities (Fig. 7, S3, 
S6). For instance, the link between ACLY/CLDN1 and Vinblastine sensitivity, and the reported association of 
high cuproptosis scores with Vinblastine resistance in bladder cancer49, suggests complex interactions relevant 
beyond PCOS. The correlation of CASK and CLDN1 with the Wnt inhibitor XAV-939 is particularly interesting. 
Wnt signaling plays roles in ovarian function and metabolic aspects of PCOS50. Given that high m6A risk scores 
correlate with potential benefits from XAV-939 in renal cancer51, our finding suggests that XAV-939 warrants 
investigation in specific PCOS subtypes characterized by alterations in these pathways.

Furthermore, the observed correlations involving PTGES3 and FDX1 with AZD-314752 hint at synergistic 
pathway interactions. However, the ABVD chemotherapy regimen containing Vinblastine raises concerns 
due to its potential impact on ovarian reserve53,54, especially critical for PCOS patients already facing fertility 
challenges. These gene-drug correlations, primarily based on cancer cell line data (NCI-60), require cautious 
interpretation and validation in PCOS-relevant models before clinical translation.

Limitations: While our study offers valuable insights, limitations must be acknowledged. First, the initial 
DEG analysis relied on merged microarray datasets with relatively small sample sizes for each individual dataset, 
although merging and batch correction aimed to mitigate this. Second, our findings, particularly the risk 
scores, require validation in larger, independent, and prospectively collected PCOS cohorts. Third, the immune 
infiltration analysis is correlative and lacks mechanistic depth; functional studies are needed to elucidate how 
these pathways modulate immune cells in PCOS. Fourth, the risk prediction models, including their coefficients, 

Fig. 8. Comparison of model gene expression levels between the control and PCOS groups via qRT-PCR. 
Human luteinized granulosa cells were isolated from 5 PCOS patients and 5 controls. Relative mRNA 
expression levels of selected genes (AGMAT, CASK, CLDN1, VIM, BNIP3, DDX3X, ACLY, PIK3R1, BCL2) 
normalized to GAPDH were compared between groups using the Wilcoxon rank-sum test. Data are expressed 
as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant. (n = 5 biological replicates per group, 
each measured in technical triplicate).

 

Scientific Reports |        (2025) 15:19996 12| https://doi.org/10.1038/s41598-025-03396-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


are inherently dependent on the gene expression platform used (primarily microarrays in the discovery phase). 
Applying these specific coefficients directly to data from other platforms like RNA-seq or qRT-PCR may not be 
appropriate without recalibration or platform-specific model development. Fifth, the identification of granulosa 
cells relied heavily on FSHR staining. While standard, confirmation with additional markers could strengthen 
the findings. Finally, translating these findings into clinically applicable biomarkers, particularly those detectable 
in peripheral blood, presents both opportunities and challenges. Granulosa cells are not routinely accessible, 
necessitating the identification of surrogate markers. Prior studies have demonstrated that immune-related genes 
such as IL18R1, IL7R, and S100A8 are detectable in peripheral blood and can serve as biomarkers in systemic 
inflammation and pregnancy complications 44,55. This supports the potential for blood-based transcriptional 
surrogates of ovarian pathophysiology. However, it remains unclear to what extent the gene expression changes 
observed in granulosa cells are reflected systemically. Future studies using matched granulosa cell and peripheral 
blood samples from PCOS patients are essential to assess the diagnostic or prognostic utility of such biomarkers.

Conclusions
In conclusion, our study sheds light on potential synergistic interactions between the m6A modification and 
cuproptosis pathways in PCOS pathogenesis. We developed integrated diagnostic signatures with high accuracy, 
linked them to immune microenvironment alterations, and suggested potential avenues for personalized 
treatment. Despite limitations, these findings provide novel insights and a foundation for future research aimed 
at improving PCOS diagnosis and management.

Data availability
All data generated or analysed during this study are included in this published article.
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