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Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regu-
lator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the 
prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through 
a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed 
chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes 
to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, 
ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. 
Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to 
poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number 
of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses 
gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, 
including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances 
of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
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SCC  Squamous cell carcinoma
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hESCs  Human embryonic stem cells

KLF4  Kruppel-like factor 4
eRNAs  Enhancer RNAs
EpSCs  Epidermal stem cells
ChIP  Chromatin immunoprecipitation
PRC  Polycomb repressive complex 1
PC  Pancreatic cancer
PDA  Pancreatic ductal adenocarcinoma
SE  Super enhancer
COMPASS  Complex of proteins associated with set1-

like complex
CBP  CAMP response element-binding protein
GCN5  General control nonrepressed protein 5
SWI/SNF  Switch/sucrose nonfermentable
EDC  Epidermal differentiation complex
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ing protein 1
Dnmt3a  DNA methyltransferase 3A
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LSH  Lymphoid-specific helicase
METTL3  Methyltransferase-like 3
NUP62  Nucleoporin 62
APC/C  Anaphase-promoting complex/cyclosome
RACK1  Receptor for protein kinase C1
WWP1  WW domain containing E3 ubiquitin protein 

ligase 1

Introduction

Squamous cell carcinomas (SCCs) are a series of aggressive 
malignancies from various tissue origins, including the skin, 
head and neck, lung, and esophagus [1, 2]. Squamous sub-
type cancers can also be identified in subsets of pancreatic 
[3–5], urothelial [6], and prostate cancer [7]. SCCs from 
various organs share some similar features, including their 
genomic landscapes, morphological characteristics, and 
molecular alterations [2, 8]. Human papillomavirus infection 
and consumption of alcohol and tobacco are defined etiology 
factors for SCCs [9]. To date, SCCs are highly aggressive 
and current therapeutics have limited effect, and do not pro-
vide a satisfactory clinical outcome [2].

Lineage dependency occurs where cancer cells depend 
on survival and self-renewal mechanisms co-opted from the 
original healthy tissues from where they arose [10]. Tran-
scription factor (TF) TP63 is a p53 family member which 
plays a crucial role in epidermal development. Alternative 

usage of different promoters of TP63 gene results in two 
major isoforms, TAp63 and NH2-terminal truncated ΔNp63, 
which lacks the canonical transactivating domain (TA1) 
(Fig. 1a) [11]. However, it is proposed that ∆Np63 has an 
intrinsic transcription transactivation ability, which is con-
ferred by a second transactivation domain (TA2) located 
between exons 11 and 12 [12]. Alternative splicing at the 
COOH terminal further generates variants of each isoform 
(α, β, γ) [11]. The δ variant is generated by the skipping of 
exons 12 and 13, whereas the ε variant arises from a prema-
ture transcriptional termination in intron 10 [13] (Fig. 1b). 
All p63 isoforms contain a central DNA-binding domain 
(DBD) and an oligomerization domain (OD). The α proteins 
are the longest isoforms, containing a COOH-terminal ster-
ile alpha motif (SAM) domain, which mediates protein–pro-
tein interaction. SAM domain is followed by an inhibitory 
domain (ID), which auto-inhibits the transcriptional activity 
of the TA1 domain [14]. The β isoforms contain the TA2 
domain, but lack both SAM and ID domains. The γ vari-
ants contain an OD domain, followed by a unique sequence 
derived from intron 10 (Fig. 1b) [13].

The TAp63 and ∆Np63 isoforms regulate distinct target 
gene sets and often exert opposing regulatory functions [15, 
16]. Heterozygosity of p63 prevents spontaneous and chem-
ical-induced SCC formation [17, 18], indicating that TP63 
acts as a lineage-survival oncogene in SCCs. ΔNp63α is the 
prominent isoform of the TP63 gene expressed in keratino-
cytes and basal cells of diverse epithelia [19–21] and various 

Fig. 1  The p63 gene and protein 
structures. a Genomic structure 
of human TP63 gene. Alterna-
tive promoters (P1 and P2) are 
indicated. Alternative splicing 
events at the COOH terminus 
generate variants α, β, and γ. 
Exons skipping or premature 
transcription termination pro-
duces variants δ and ε, respec-
tively. b Schematic diagrams of 
p63 protein isoforms structures. 
TA1 transactivating domain, 
TA* truncated transactivat-
ing domain of ΔN isoforms, 
DBD DNA-binding domain, 
OD oligomerization domain, 
TA2 secondary transactivat-
ing domain, SAM sterile alpha 
motif, ID inhibitory domain
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SCCs [2]. ΔNp63α promotes SCC development through 
regulating different target genes, including cell growth and 
proliferation [22, 23], extracellular matrix (ECM)–receptor 
interaction [24], cell adhesion [25–27], glucose metabolism 
[28, 29], anti-oxidant defense [30, 31], DNA damage repair 
[32, 33], terminal differentiation [34, 35], and inflamma-
tion and angiogenesis [36–41] (Fig. 2). Sustained expression 
of ∆Np63α tends to promote the well-differentiated SCC 
phenotype and restricts epithelial–mesenchymal transition 
induced by TGF-β [42]. However, both suppressive [43–45] 
and promotive roles [46] of ∆Np63α in cell invasion and 
metastasis have been demonstrated in various cell contexts, 
suggesting a cell context-specific role in cancer metastasis. 
Growing evidence demonstrates that ΔNp63 exerts both a 
suppressive and promotive role on target genes expression 
[47–49]. Recent studies established the master regulator role 
of p63 in controlling chromatin accessibility and enhancer 
reprogramming in keratinocytes [50, 51]. Various epigenetic 
modulators, including chromatin-remodeling complexes and 
epigenetic enzymes, are implicated in p63-mediated epig-
enomic reprogramming during keratinocyte differentiation 

and SCC development [52]. In this review, we focus on the 
role and mechanisms of p63 in chromatin remodeling and 
enhancer reprogramming during epidermal differentiation 
and SCC development.

TP63 in epidermal commitment 
and differentiation

TP63 plays essential roles in lineage commitment during 
epidermal development through a variety of epigenetic 
mechanisms (Table 1). Mutations of TP63 are associated 
with various developmental disorders, including ectrodac-
tyly–ectodermal dysplasia–cleftlip/palate (EEC) syndrome 
[53], ankyloblepharon–ectodermal defects–cleft lip/palate 
(AEC) syndrome and split-hand/foot malformation-IV syn-
drome. Ablation of all p63 isoforms in mice results in the 
absence of stratified epithelia and their derivatives [54–56], 
and specific ablation of ΔNp63 isoform leads to severe 
developmental anomalies similar to that existing in p63-null 
mice. These abnormalities include truncated forelimbs and 

Fig. 2  Diverse functions of ΔNp63α in SCCs. ΔNp63α promotes the 
development of malignant features of SCC through multiple mecha-
nisms, including stimulation of cell growth and survival, inhibition of 
terminal differentiation, reprogramming of glucose metabolism and 
maintaining anti-oxidative homeostasis, promotion of DNA damage 

repair and triggering of inflammation and angiogenesis. ΔNp63α is 
also understood to regulate cell adhesion and remodeling of the ECM 
in tumor microenvironments. Representative target genes of ΔNp63α 
in SCC are shown. Red or green represents positively or negatively 
regulated target gene

Table 1  Function of p63 in keratinocyte differentiation

Biological processes p63 functions References

Epidermal commitment p63 plays a prominent role in maturation, rather than the initiation stage [59, 60]
Chromatin accessibility p63 acts as epidermal pioneer factor to open chromatin architecture [65–67]
Enhancer reprogramming p63 establishes keratinocyte-specific enhancer landscape [64, 66, 77]
Nonepidermal lineage commitment p63 represses neural genes enhancers at early stage of embryonic development [79]
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the absence of hind limbs [57], indicating that the TP63 gene 
is required for skin and epithelial development. However, 
both p63- and ΔNp63-deficient epidermis expresses the ter-
minal differentiation markers loricrin, filaggrin, and involu-
crin [54–56], although there is a premature expression pat-
tern of terminal differentiation markers at E15.5 in ΔNp63 
isoform-specifically ablated mice [57]. This suggests that 
TP63 or ΔNp63 is dispensable for epidermal lineage com-
mitment. Intriguingly, introducing p63 mutants from EEC 
patients into induced pluripotent stem cells (iPSCs) dramati-
cally impairs the induction of epidermal marker K14 in an 
epidermal commitment model [58] induced by retinoic acid 
(RA) and bone morphogenetic protein 4 (BMP4) [59], argu-
ing that TP63 is essential for epidermal commitment. These 
opposite interpretations may indicate that other lineage-
determining factors could compensate for p63 function in 
a p63-null context, whereas mutant p63 in iPSCs abrogates 
the function of the normal p63. Although p63 is dispensable 
to drive human embryonic stem cells (hESCs) to differenti-
ate to surface ectoderm progenitor cells, it is required for 
further differentiation toward functional keratinocytes upon 
RA/BMP4 treatment [60]. It has been shown that genes 
expressed at an early differentiation stage are not under the 
control of p63. The p63 protein predominantly regulates 
genes during the specification switch from the multipotent 
state to the epidermal fate [59]. Thus, these studies suggest 
that p63 plays a prominent role in maturation, rather than the 
initiation stage of skin differentiation triggered by inductive 
morphogens (Table 1).

TP63 acts as an epidermal pioneer factor 
to open chromatin regions

It has been speculated that TP53 family members may 
exert intrinsic pioneer factor activity to specify epithelial 
lineage-specific chromatin landscape [61], and this may 
be the case with p63. The p63 protein preferentially binds 
nucleosome-enriched regions marked with active histone 
modifications in epidermal keratinocytes, which are inac-
cessible in other lineages without p63 expression [51, 62, 
63], implying that p63 is required for establishing an epider-
mal-specific chromatin architecture at its binding regions. 
The primary keratinocytes from EEC syndrome patients 
harboring heterozygous mutations in the p63 DNA-binding 
domain display a dramatic reduction of chromatin accessibil-
ity at p63-binding sites compared to normal cells [64]. By 
using single-cell transcriptomic and epigenomic profiling 
techniques, Fan et al. demonstrated that ΔNp63α binding 
generates open chromatin regions near or within the genes 
involved in epidermal fate specification of skin [65]. Fur-
thermore, Lin-Shiao et al. used p63 mutants, lacking DNA-
binding activity, to demonstrate that ΔNp63α DNA binding 

is required to establish keratinocyte-specific enhancers [66]. 
During zebrafish embryo development, p63 binding occurs 
prior to chromatin opening at p63-binding sites (Table 1). 
Remarkably, the pioneered p63-binding sites are preferen-
tially associated with epidermal-expressing genes, as is the 
case of lama5. The chromatin accessibility of the pioneered 
p63-binding sites is significantly reduced in  tp63−/− mutants. 
Consequently, the levels of expression of these epidermal 
genes are significantly decreased in the  tp63−/− mutant, such 
as col18a1a [67].

Loss of p63 reduces the chromatin accessibility of 
keratinocyte-specific genes, such as KRT5. Furthermore, 
depletion of p63 reduces the chromatin accessibility and 
occupancy probability of other maturation-associated TFs, 
including p53, RFX, and Kruppel-like factor 4 (KLF4) [68], 
indicating that p63 exerts intrinsic pioneer factor activity to 
allow other lineage-specific TFs to bind (Fig. 3). Interest-
ingly, ΔNp63 (−/−) epidermal cells express a number of 
transcripts associated with embryonic stem cells (ESCs) and 
induced pluripotent stem cells (iPSCs) and display compro-
mised epithelial identity [69], suggesting that ΔNp63 exerts 
repressive role on genes expressed at the early differentiation 
stage once surface ectoderm progenitor cells enter matura-
tion stage. Mechanistically, p63 reduces chromatin acces-
sibility at morphogen-dependent accessible sites through 
promoting deposition of H3K27me3 at these sites during 
the maturation stage [60]. These studies consistently high-
light that p63 exerts intrinsic pioneer factor activity, to open 
inaccessible chromatin, and it cooperates with specific TFs 
during keratinocyte maturation.

TP63 establishes epidermal enhancer 
landscape

Enhancers are cis-regulatory elements defined by H3K4me1 
modification. Enhancers can be categorized as poised or 
active depending on the co-occupancy of H3K27me3 or 
H3K27ac, respectively [70, 71]. The specific spatiotempo-
ral regulation of developmental gene transcription is mainly 
determined by dynamic alterations in enhancer activity [70, 
72, 73]. Active enhancers produce bidirectional enhancer 
RNAs (eRNAs), which can interact with various TFs and 
stabilize enhancer–promoter loops [74]. Remarkably, the 
chromatin state of enhancer regions changes more promi-
nently than the promoter regions, as iPSCs gradually dif-
ferentiate to keratinocytes [68]. Enhancers associated with 
genes that determine the ectoderm lineage specification, 
including ITGA6, KRT5, and KRT14, are dramatically 
decommissioned as epidermal stem cells (EpSCs) differ-
entiate to keratinocytes, whereas enhancers driving the 
expression of epidermal differentiation genes such as IVL 
and SPRR1A are activated de novo, which is accompanied by 
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a shift of Dnmt3a genomic binding from the former enhanc-
ers cluster to the latter [75].

Chromatin immunoprecipitation-sequencing (ChIP-seq) 
has revealed that, while the majority of p63-bound regu-
latory elements and p63-bound open chromatin regions in 
epidermal keratinocytes are active enhancers, and only a 
small number of p63-bound regions belong to the promoter 
[50, 51, 63, 64, 76], suggesting a predominant p63 role in 
enhancer-mediated transactivation. The p63-bound enhanc-
ers are dynamically changed during epidermal commitment. 
It has been demonstrated that p63 and KLF4 gain accessibil-
ity to their target enhancers as surface ectoderm progenitor 
differentiate to mature keratinocytes [68]. Furthermore, by 
using an inducible transdifferentiation model, Lin-Shiao 
et al. demonstrated that inducible expression of ΔNp63α 
in fibroblasts leads to de novo H3K27ac and an increase in 

chromatin accessibility at p63-bound sites, as well as expres-
sion of genes important for epithelial lineage specification 
[66]. Co-expression of ΔNp63α and KLF4 in fibroblasts is 
sufficient to activate transcription of keratin 14 and convert 
fibroblasts into keratinocyte-like cells. Interestingly, either 
ΔNp63α or KLF4 alone could not induce expression of ker-
atin 14 [66], suggesting the interaction between ΔNp63α 
and KLF4 is required for full epidermal commitment. EEC 
syndrome patients display keratinocytes harboring p63 
mutations, which lack DNA-binding ability, and display a 
loss of enhancers at epidermal-expressing genes, indicating 
that ΔNp63α binding of DNA is necessary to establish the 
epidermal enhancer landscape and epidermal commitment 
[64, 77]. Furthermore, the majority of p63-bound epidermal 
enhancers lose their accessibility in p63 knockout ESC dur-
ing in vitro differentiation [59]. Taken together, these studies 

Fig. 3  p63 acts as an epidermal 
pioneer factor. P63 binds to 
compacted chromatin regions 
and recruits multiple epigenetic 
regulators, including COM-
PASS complex, histone acetyl-
transferases p300/CBP, SNF/
SWF chromatin remodeling 
complex, DNMT3 and TETs 
family members, leading to an 
increase in chromatin acces-
sibility and formation of active 
enhancers at epidermal genes
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indicate that the formation and maintenance of epidermal 
enhancers at p63-binding sites are heavily dependent on p63 
expression and its binding to DNA (Table 1).

TP63 represses nonepithelial genes

It has been demonstrated that embryonic epithelia from p63-
null mice display compromised epithelial fate, concomitant 
with the activation of mesodermal-specific genes [78], sug-
gesting that p63 represses the nonepithelial transcriptional 
program. Introducing p63 mutants from EEC patients into 
iPSCs impairs the acquisition of epithelial identity, but also 
activates mesodermal genes expression. In contrast, inhi-
bition of mesodermal induction by suramin enhances epi-
dermal differentiation of iPSCs carrying the p63 mutation 
[59]. Cbx4, a component of polycomb repressive complex 
1 (PRC1), is a target of p63 and contributes to repression of 
nonepithelial genes during epidermal differentiation [79]. 
In the early stages of embryonic development, p63 prevents 
Sox3 binding to pre-established neural genes enhancers 
and represses neural gene expression, demonstrating that 
p63 restricts neural lineage determination during the early 
stages of embryonic development [67] (Table 1). Thus, p63 
safeguards epithelial lineage commitment, not only directly 
activating epidermal genes, but also indirectly repressing 
nonepithelial genes.

TP63 establishes a squamous 
subtype‑specific enhancer landscape in SCCs

Chromatin states are closely associated with tumorigenesis 
and tumor phenotypes in SCCs [42]. There are dramatic 
epigenetic changes between SCC and its healthy counter-
part, with gain or loss of H3K27ac occupancy at various 
chromatin regions [80]. As a lineage-survival oncogene 
in SCCs, ΔNp63α is exploited by tumor cells to establish 
squamous-specific chromatin architecture, which favors the 
development of SCC [81, 82]. ΔNp63α is highly expressed 
and predicts unfavorable overall prognosis in squamous sub-
type of pancreatic cancer (PC) or pancreatic ductal adeno-
carcinoma (PDA) [81, 83]. ΔNp63α selectively exerts an 
oncogenic role in squamous-like PC [81, 82]. H3K27ac pro-
filing demonstrates that ΔNp63α-expressing PDAs display 
a distinct enhancer landscape resembling the squamous cell 
lineage, whereas ΔNp63α occupancy in squamous-like PC 
cells mainly distributes on active enhancers marked with 
H3K27ac and open chromatin regions, rather than tran-
scriptional start sites. Loss of ΔNp63α in squamous-like 
BxPC3 PDA cells selectively reduces H3K27ac at p63-
bound squamous elements, whereas it exerts no effect on 
H3K27ac at the control regions [81]. Remarkably, a large 

set of ΔNp63α-occupied regions are characterized as super 
enhancers (SE) [82], which are believed to drive oncogene 
expression in multiple cancers [84, 85]. H3K27ac occupancy 
at SEs associated with FAT2 and NECTIN1 is significantly 
reduced upon depletion of ΔNp63α in squamous-like PC 
cells, as well as downregulation of FAT2 and NECTIN1 [82]. 
This indicates that SE regions are associated with the squa-
mous subtype and display a high dependence on ΔNp63α. 
Nasopharyngeal carcinoma (NPC) is a unique subtype of 
head and neck cancer [86, 87]. ΔNp63α is the primary 
isoform of TP63 expressed in NPC cells [21, 88, 89]. Our 
works recognized that ΔNp63α is enriched in SEs associated 
with oncogenes in NPC, including EGFR, CD44, etc.[90, 
91]. Overexpression of ΔNp63α led to preferential expres-
sion of basal cell-specific proteins, including basal-type 
keratins, in NPC, through establishing basal-specific SEs 
[90]. In addition to protein-coding genes, ΔNp63α also acti-
vates transcription of a number of long non-coding RNAs, 
including CCAT1 [92] and LINC01503 [93], through estab-
lishment of squamous-specific SEs in SCCs. Consequently, 
overexpression of CCAT1 or LINC01503 promotes progres-
sion of SCCs [92–94]. New findings suggest that phase-
separated condensates of TFs and coactivators play a role 
in the formation of SE [95, 96]. It has been demonstrated 
that activation domains of diverse TFs facilitate formation 
of phase-separated condensates with coactivators to drive 
gene transcription [97]. SEs are sensitive to chemical dis-
ruption of phase separation by 1,6-hexanediol (1,6-HD) [96, 
98]. It is proposed that phase separation could be a target 
of next-generation drugs for chromatin biology [99]. Thus, 
enrichment of ΔNp63α in SEs associated with oncogenes 
provides an opportunity to target SCC cells by disrupting 
phase separation.

It has been demonstrated that ΔNp63α physically inter-
acts with SOX2 in SCC cells [100], which is a lineage-sur-
vival oncogene frequently amplified in SCC from various 
organ sites [101–104]. Notably, ChIP-seq analysis revealed 
that SOX2 and p63 co-ordinate to occupy a large set of dis-
tal enhancers in SCC cells, but co-occupancy of SOX2 and 
p63 is rare in embryonic stem (ES) cells, which is in line 
with the absence of p63 in ES cells. Depletion p63 attenu-
ates SOX2 enrichment at the enhancer of target genes, such 
as ETV4, which is an oncogene co-regulated by these two 
proteins. However, loss of p63 exerts little effect on other 
SOX2-occupied regions without p63 binding [100]. Thus, 
this study indicates that p63 might act as a pioneer factor 
to establish open chromatin architecture to facilitate access 
by other lineage-survival factors, such as SOX2, to bind 
and activate target gene transcription during SCC develop-
ment. Recently, it has been demonstrated that p63 cooperates 
with SOX2 to activate intronic enhancer cluster of GLUT1 
(SLC2A1), which in turn facilitates GLUT1-mediated glu-
cose influx and generation of NADPH and GSH in SCCs 
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[28]. The p63 protein also binds to the enhancer region of 
ZNF185 and promotes its expression in keratinocyte during 
epithelial differentiation. However, ZNF185 is downregu-
lated in HNSCC, esophageal and cervical SCC even though 
p63 is commonly amplified in these cancers [27]. It is not 
clear why ZNF185 is decreased in SCC, and may be due to 
loss of function mutations on coactivators bound to p63, 
which results in a decrease of enhancer activity of ZNF185 
in SCC cells. In contrast, the upstream enhancer of FANCD2 
is inactive in primary keratinocytes, but aberrantly activated 
by ΔNp63α in SCC [32].

Mechanisms of ΔNp63α mediated chromatin 
remodeling and enhancer formation

There are multiple epigenetic modulators implicated in reg-
ulating enhancer and spatiotemporal transcription of line-
age-specific genes, including enzymatic regulators histone 
methylases, histone acetyltransferases, histone deacetylases, 
polycomb repressive complex (PRC), DNA methylase and a 
number of chromatin remodelers. The p63 activates enhanc-
ers and increases chromatin accessibility through interaction 
with these various epigenetic modulators, which will be dis-
cussed in the section below.

Complex of proteins associated 
with set1‑like complex (COMPASS)

COMPASS is a multiple-protein complex, which exerts his-
tone H3K4 methylase activity. In mammalian cells, incorpo-
ration of H3K4me1 at enhancers is mainly accomplished by 
histone lysine methyltransferase 2C (KMT2C/MLL3) and 2D 
(KMT2D/MLL4) COMPASS-related complexes [105]. UTX 
is a putative demethylase within the MLL3/4 COMPASS-like 
complex, which erases H3K27me2/3 and facilitates CBP/
p300-mediated H3K27ac deposition at poised enhancers 
[106]. It has been demonstrated that KMT2D interacts with 
p63 on chromatin and occupies p63-bound enhancers (Fig. 3). 
Specifically, KMT2D physically interacts with the α, β, and γ 
isoforms of ΔNp63, indicating that the C-terminal SAM or the 
TA domain is not necessary for this interaction. Depletion of 
KMT2D in keratinocytes reduces H3K4me1 and H3K27ac at 
p63-binding enhancers, as well as repressing p63 target genes. 
Bioinformatic analysis demonstrates that KMT2D-dependent 
p63 target genes that lose enhancer histone modifications are 
enriched for development and differentiation [107]. Function-
ally, keratinocytes with a KMT2D deficiency display prema-
ture and highly disorganized morphologies [107]. Although a 
high level of protein expression was achieved, overexpression 
of p63 in KMT2D-depleted keratinocytes was unable to reca-
pitulate differentiation gene expression patterns [107]. This 

study indicates that recruitment of KMT2D by p63 is a pre-
requisite to establish the active enhancer of its target genes. 
Given that KMT2D is broadly implicated in enhancer forma-
tion and transcription regulation, it is proposed that KMT2D 
might affect epidermal differentiation through multiple TFs, 
rather than solely through p63. KMT2D is frequently mutated 
in human cancers, including SCC from various organ origins 
[108–110], but it is not clear whether p63-KMT2D interaction 
occurs in cancer cells, or whether this might be the case for 
other histone lysine methyltransferase members.

Histone acetyltransferases p300

Deposition of H3K27ac at the H3K4me1-defined enhancer 
is proposed to be catalyzed by the cAMP response element-
binding protein (CBP) or p300 histone acetyltransferases 
[111]. Transcriptional co-activator p300 interacts with the 
N-terminal domain of p63γ and stimulates p63γ transcrip-
tional activity in an acetylase-dependent manner [112]. The 
p300 also physically interacts with ΔNp63α and catalyzes 
its acetylation on lysine 193 (K193), leading to enhanced 
ΔNp63α protein stability [113]. A new finding demonstrated 
that the C-terminal domain of p63α interacts with p300 to 
activate β-catenin [114]. Inhibition of p300 activity sup-
presses HNSCC tumor growth [115, 116]. Thus, we propose 
that ΔNp63α might recruit p300/CBP to its bound regions 
to deposit H3K27ac at H3K4me1-defined enhancer (Fig. 3). 
Paradoxically, loss of function mutations of CBP/p300 are 
frequent in cutaneous SCC, suggesting a tumor-suppressor 
role. Loss of CBP/p300 in mouse keratinocytes exacerbates 
 HrasS35-induced skin tumorigenesis [117]. Thus, it cannot be 
ruled out that other histone acetyltransferase members medi-
ate ΔNp63α-dependent enhancer formation in SCC; this 
may be the case with general control nonrepressed protein 5 
(GCN5), which is a histone acetyltransferase upregulated in 
ESCC [118]. It has been demonstrated that GCN5 cooper-
ates with chromatin remodeler Switch/sucrose nonferment-
able (SWI/SNF) to activate gene transcription [119, 120]. 
Furthermore, recruitment of SWI/SNF by GCN5 plays an 
essential role in the DNA damage response to double-strand 
breaks [121]. This suggests that the interaction between 
histone acetyltransferase members and the SWF/SNF com-
plex may contribute to epigenomic reprogramming in SCC 
development.

SWI/SNF/Baf complex

The mammalian SWI/SNF complex is an ATP-dependent 
chromatin remodeling and histone acetylation complex 
highly expressed in pluripotent stem cells [122]. The mSWI/
SNF or BAF complex contains one catalytic subunit (Brg1 
or Brm) and 14 regulatory subunits [123, 124]. It has been 
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shown that SWI/SNF complexes interact with p300 to 
modulate H3K27ac and are essential for the maintenance 
of lineage-specific enhancers [125]. The BAF complex is 
required to maintain epidermal cell type-specific open chro-
matin sites. BAF complex and p63 protein in keratinocyte 
are physically close to each other (Fig. 3). A large number 
of open chromatin regions in epidermal cells are co-occu-
pied by BAF and p63. BAF depletion selectively reduces 
the chromatin accessibility at p63 motif regions, but not at 
motif regions of other factors, such as CTCF and KLF4, sug-
gesting that BAF is required for maintaining the open status 
of p63-bound chromatin regions. Loss of p63 selectively 
attenuates BAF binding to p63 regulatory elements, without 
affecting BAF binding to the motif of CTCF and KLF4 [51]. 
These data strongly suggest that ΔNp63α recruits the BAF 
complex to p63-bound chromatin regions, which in turn 
establishes an open chromatin landscape in epidermal cells. 
Brg1 is required for nuclear internalization of the epidermal 
differentiation complex (EDC) locus, which is a ~ 3.1 Mb 
gene-rich region of mouse chromosome 3 encoding multiple 
genes essential for epidermal stratification and barrier for-
mation [126]. During development of the epidermis, EDC 
is relocated from the nuclear membrane toward the nuclear 
interior, accompanied by a developmentally linked increase 
in the transcriptional activity of genes within the EDC locus. 
It has been shown that p63 directly activates Brg1 transcrip-
tion. Nuclear internalization of the EDC locus is markedly 
impaired in the skin epithelium of  p63−/− mice and is accom-
panied by insufficient expression of EDC genes in epidermal 
progenitor cells [126]. The specialized adenine and thymine-
rich binding protein 1 (Satb1) is another direct target of p63 
implicated in remodeling chromatin architecture of the EDC 
locus. Satb1 ablation, strikingly, expands the length of the 
whole EDC locus and its central domain, accompanied by 
insufficient expression of epidermis-specific genes and epi-
dermal morphology alterations similar to p63 deficiency 
in skin [127]. Thus, these studies uncover an essential role 
of p63 in nuclear positioning of EDC locus and regulating 
higher-order chromatin structure of EDC through its direct 
target Brg1 [126] and Satb1 [127], respectively.

DNA methyltransferase 3A (Dnmt3a) 
and methylcytosine dioxygenase TET2

In addition to histone modifications, the status of DNA 
methylation also influences the activity of enhancers. 
Early studies suggest that patterns of 5-methylcytosine 
can mark enhancers. It is widely appreciated that line-
age-specific enhancer regions are usually hypomethyl-
ated [128–131]. It has been demonstrated that genomic 
5-hydroxymethylcytosine (5-hmC) signals are distinctly 
enriched at enhancers marked with H3K4me1 in human 

and mouse embryonic stem cells [132, 133], suggest-
ing a potential role in the regulation of enhancer forma-
tion. 5-hmC is enriched at the poised enhancers in mouse 
embryonic stem cells, rather than active enhancers with 
H3K27ac marks [134]. However, another study indicates 
that eRNA-producing enhancers in mouse embryonic stem 
cells are usually marked with H3K27ac, decreased DNA 
methylation, and are enriched in the DNA hydroxylase 
Tet1 [135]. In pancreatic cancer cells, 5-hmC-enriched 
loci specifically overlap with H3K4me1 marked enhanc-
ers and open regions of chromatin. Gain of 5-hmC is cor-
related with upregulation of the cognate transcripts known 
to be important to cancer development [136]. DNA meth-
ylation in the human genome is catalyzed by DNA meth-
yltransferase (DNMT), including Dnmt1, Dnmt3a, and 
Dnmt3b. Dnmt3a and Dnmt3b catalyze de novo methyla-
tion, whereas Dnmt1 is responsible for the maintenance 
of genome methylation patterns [137]. Three Tet proteins 
catalyze DNA hydroxymethylation [138–140] and are 
required for eRNA production [135]. It has been demon-
strated that Dnmt3a and Dnmt3b bind to active enhanc-
ers in a histone H3K36me3-dependent manner in human 
EpSCs. Strikingly, Dnmt3a predominantly locates at the 
center of its target enhancers, whereas Dnmt3b peaks 
broadly distribute at the enhancer center and body. Both 
Dnmt3a and Dnmt3b promote enhancer activity and favor 
binding to SEs rather than typical enhancers. The center of 
enhancers bound by Dnmt3a exhibit high levels of 5-hmC. 
Silencing Dnmt3a reduces the levels of 5-hmC at its target 
enhancers, whereas silencing Tet2 specifically restores the 
level of DNA methylation at Dnmt3a-bound enhancers, 
indicating that Dnmt3a-bound enhancers are sequentially 
methylated by Dnmt3a and then are hydroxymethylated 
by Tet2 to license their active state. Remarkably, Dnmt3a, 
not Dnmt3b, physically interacts with p63 in EpSCs [75]. 
Co-occupancy by p63 was seen in approximately 50% of 
the Dnmt3a-bound enhancers (Fig. 3), which associate 
with the expression of genes implicated in keratinocyte 
proliferation and cellular identity specification. Notably, 
depletion of p63 reduces Dnmt3a localization to its tar-
get enhancers [75]. During epidermal differentiation, the 
genomic localization of Dnmt3a shifts from the enhancers 
closest to genes involved in stem cell proliferation to those 
that regulate genes involved in differentiation [75]. We 
speculate that p63 sequentially recruits Dnmt3a and Tet2 
localization to the center of its target enhancers, establish-
ing high levels of 5-hmC at those sites, which facilitates 
subsequent deposition of H3K4me1 and H3K27ac modifi-
cations and eRNA transcription (Fig. 3). It is worth noting 
that ΔNp63α binds to Dnmt3a, HDAC9, and KDM4C in 
cisplatin-resistant SCC-11 cells, suggesting that ΔNp63α 
may recruit these enzymes to shape the epigenome of SCC 
cells during acquisition of chemoresistance [141].
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Mechanisms underlying ΔNp63α mediated 
transcription repression

Not only does ΔNp63α act as a dominant negative com-
petitor to repress p53-mediated transcription [11], but it 
also exerts a repressive effect on transcription through 
interaction with diverse epigenetic regulators, which have 
been discussed in detail below.

HDAC1 and HDAC2

By using a tandem affinity purification strategy, Ramsey 
et al. observed that ΔNp63α interacts with histone dea-
cetylase (HDAC) 1 and HDAC2 via its transactivation 
inhibitory domain in SCC cells. ΔNp63α recruits HDAC1 
binding to promoter region of PUMA and represses its 
transcription. Treatment with the HDAC inhibitor, trichos-
tatin A (TSA), alleviates repression of PUMA transcrip-
tion by ΔNp63α and induces substantial apoptotic cell 
death in SCC cells. TSA treatment increases H4 acetyla-
tion levels at the p63-binding site within the PUMA pro-
moter, whereas silencing ΔNp63α promotes deposition 
of H4 acetylation level at PUMA promoter and induces 
PUMA expression, indicating that ΔNp63α represses gene 
transcription through HDAC1-mediated histone deacetyla-
tion (Fig. 4a) [142]. An earlier study showed that deletion 
of ectodermal Hdac1 and Hdac2 leads to severe defects 
in hair follicle specification and epidermal prolifera-
tion and stratification, which is similar to phenotypes of 
p63-deficient mice [143]. Ectodermal Hdac1/2 deficiency 
activates the expression of targets of p63-mediated repres-
sion, rather than affecting expression of p63 positively 
regulated basal cell targets [143]. HDAC complexes can 
bind both promoter and enhancer regions of target genes 
[144]. While there are no studies demonstrating co-occu-
pancy of p63 and HDAC1/2 complex on enhancers, we 
speculate that removal of H3K27ac by HDAC1/2 might 
be implicated in ΔNp63α-mediated repression of specific 
enhancers (Fig. 4a), since loss of ΔNp63α also results in 
unexpected gain of enhancer activity at RUNX1-enriched 
regions [77]. It has been demonstrated that the balance of 
EP300 and HDAC1 activities controls nucleosome evic-
tion by the BRG1-containing SWI/SNF complex, which 
in turn affects transcription of DNA repair enzymes in 
macrophages [145]. Furthermore, recruitment of BRG1 by 
HDAC2 contributes to the transcriptional repression func-
tion of the SWF/SNF complex [146, 147]. Thus, it is pro-
posed that the interaction between HDACs and the chro-
matin-remodeling SWF/SNF complex may be involved in 
ΔNp63α-mediated transcription repression.

ACTL6A/Baf53a

ACTL6A/BAF53a is a regulatory subunit of the SWI/SNF 
complex implicated in embryonic stem cells pluripotency 
and epidermal progenitor cells state [148–150]. An early 
study shows Baf53 forms a distinct histone acetyltransferase 
complex and acts as a cofactor for c-myc in oncogenic trans-
formation [151]. High expression of BAF53a blocks myo-
genic differentiation and promotes cell proliferation in rhab-
domyosarcoma [152], suggesting that ACTL6A/BAF53a is 
implicated in cancer development. The p63 and ACTL6A 
proteins are rarely co-expressed in normal epidermis, but 
are co-amplified in a subset of HNSCC (~ 19%) [153]. 
ACTL6A and p63 physically interact, cooperatively con-
trolling a transcriptional program that promotes proliferation 
and suppresses differentiation, in part through activation of 
the Hippo–YAP pathway via regulators including WWC1 
(Fig. 4b). Thus, ACTL6A and p63 collaborate as oncogenic 
drivers in HNSCC [153]. ACTL6a suppresses epidermal 
differentiation of adult stem cells by preventing the SWI/
SNF complex from binding to genes controlling differentia-
tion [148]. Given that more than 20% of human malignan-
cies carry mutations in the mSWI/SNF complex [154, 155], 
overexpression of ACTL6A in SCCs may severely disrupt 
the epidermal differentiation program controlled by the p63-
mSWI/SNF complex.

Polycomb repressive complex 1 component 
Cbx4

Cbx4 belongs to PRC1, which is one of the two complexes 
formed by polycomb chromatin-remodeling proteins that 
exert a repressive role on gene transcription via compacting 
chromatin [156]. It has been shown that Cbx4 physically 
interacts with p63 in thymic epithelial cells and plays an 
essential role in in thymic organogenesis [157]. Cbx4 is a 
direct target of p63 and is upregulated in keratinocytes dur-
ing epithelial stratification. Ablation impairs epidermal pro-
genitor cell proliferation and terminal differentiation [79]. 
Mechanistically, Cbx4 represses nonepidermal lineage gene 
expression via interacting with H3K27me3 that is deposited 
by EZH2 from the PRC1 complex and promoting ubiquit-
ination of H2AK119 at these sites [79]. As a consequence, 
ubiquitination of H2AK119 is required for efficient repres-
sion of target genes by the PRC1 complex [158]. Restora-
tion of Cbx4 partially rescues the epidermal phenotype in 
embryonic skin explants upon p63 ablation [79]. Thus, p63 
represses the nonepidermal lineage transcription program 
during keratinocyte development via PRC1-mediated tran-
scriptional repression (Fig. 4c). Cbx4 is frequently ampli-
fied and plays an oncogenic role in esophageal SCC [159], 
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suggesting that an interaction between p63 and Cbx4 might 
also contribute to SCC development. A new study highlights 
the cooperation between mSWI/SNF and PRC1 that ensures 
meiotic progression in spermatocytes [160]. Furthermore, 
the SWI/SNF complex has been demonstrated to mediate 
eviction of PRC1 and PRC2 from the INK4b-ARF-INK4a 
locus [161]. Thus, the close interconnectivity of diverse 
chromatin modulators may be involved in ΔNp63α-regulated 
dynamics of chromatin in cancer cells.

SRCAP chromatin regulatory complex

H2A.Z is a histone variant usually incorporated into chroma-
tin associated with gene promoters and enhancers. SRCAP 
(SWR1) is the major chromatin-remodeling complex respon-
sible for catalyzing the incorporation of H2AZ-H2B dimers 
into nucleosomes [162, 163]. Study revealed that ΔNp63α 

physically interacts with and recruits SRCAP chromatin-
remodeling complex subunits, including DMAP1, RUVBL1, 
and RUVBL2 [164]. Recruitment of the SRCAP complex 
by ΔNp63α facilitates H2A.Z deposition at ΔNp63α tar-
get loci and represses its transcription (Fig. 4d). Silencing 
SRCAP subunits or H2A.Z specifically induces expression 
of ΔNp63α-repressed genes. Among those repressive tar-
get genes, SAMD9L was identified as a crucial prolifera-
tion-suppressive gene for SCC development, whose deple-
tion alleviating proliferation arrest was caused by loss of 
ΔNp63α [164].

Lymphoid‑specific helicase (LSH)

Lsh is an ATPase that belongs to the SNF2/helicases fam-
ily involved in chromatin remodeling [165]. Bypassing 
oncogene-induced senescence (OIS) is a prerequisite step 

Fig. 4  Epigenetic mechanisms underlying p63 mediated transcription 
repression. a ΔNp63α physically interacts with HDAC1/2 to remove 
H3K27ac at enhancer and promoter of target genes, resulting in chro-
matin compaction and transcriptional repression. b ΔNp63α normally 
cooperates with the SNF/SWF complex to activate gene transcription, 
whereas the interaction between ΔNp63α and ACTL6A prevents the 
SNF/SWF complex from binding to target genes, leading to repres-

sion of growth inhibitory gene WWC1. c ΔNp63α physically inter-
acts with Cbx4, a component of the PRC1 complex, to repress the 
transcription of nonepidermal lineage genes. d ΔNp63α promotes 
incorporation of histone variant HA2.Z through recruiting SRCAP to 
p63-binding sites at tumor-suppressor genes. e ΔNp63α activates Lsh 
expression and cooperates with Ras to bypass OIS through repressing 
p21WAF1/Cip1
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for malignant transformation [166]. A pilot study found 
that inducible p63 deficiency in the adult epidermis leads 
to cellular senescence and accelerated aging [167]. It has 
been shown that ΔNp63α expression in primary keratino-
cytes is downregulated in OIS induced by oncogenic 
H-Ras-V12. Forced expression of wild-type ΔNp63α, 
rather than TAp63a or ΔNp63αR279H mutant causing EEC 
syndrome, is sufficient to bypass OIS in Ras-expressing 
primary keratinocytes, indicating downregulation of 
ΔNp63α is required for OIS. Mechanistically, ΔNp63α 
cooperates with Ras to promote proliferation and survival 
of keratin 15-expressing stem cells. Lsh was identified 
as a direct target of ΔNp63α, which initiates senescence 
bypass, as silencing of the gene leads to a stronger senes-
cent-like morphology [168]. Both p63 and Lsh are robustly 
detected in proliferating cells in DMBA-induced premalig-
nant papillomas and HNSCC samples [168]. In addition to 
previously known functions regulating DNA methylation 
level at repeat elements and transcriptional silencing [169, 
170], Lsh was recently recognized to regulate accessibility 
and H3 occupancy at a subset of putative enhancers associ-
ated with cellular identity, independent of DNA methyla-
tion [171, 172]. Lsh is highly expressed in various human 
cancers and drives cancer development [173–175]. It is 
proposed that Lsh may physically interact with ΔNp63α 

to regulate nucleosome positioning and H3 occupancy at 
cancer-associated genes (Fig. 4e).

Regulation of p63 in SCC

The N6-methyladenosine (m6A) modification, which is 
added by methyltransferase-like 3 (METTL3), promotes 
the increased expression of ΔNp63α mRNA and acceler-
ates proliferation of cutaneous SCC [176]. There are data to 
support the hypothesis that it does so via stabilization of the 
ΔNp63α mRNA transcript [177]. Along with transcriptional 
and post-transcriptional control, TP63 is post-translationally 
regulated (Table 2). Nucleoporin 62 (NUP62), a component 
of nuclear pore complex, interacts with ΔNp63α and pro-
motes ΔNp63α nuclear import and ΔNp63α-dependent tar-
get gene expression. In contrast, activated ROCK1 abolishes 
NUP62–ΔNp63α interaction and ΔNp63α nuclear accumu-
lates in SCC cells through phosphorylating the FG domain 
of NUP62 [178]. Ubiquitin–proteasome system regulated 
p63 protein stability is intensively studied. To date, at least 
three E3 ligases, including anaphase-promoting complex/
cyclosome (APC/C) complex, Itch (HECT, homologous 
E6-AP carboxyl terminus), and WWP1, have been recog-
nized as mediators of p63 degradation in different contexts 

Table 2  Post-translational regulation of ΔNp63α protein

Regulators Biochemical features Biological effects and mechanisms References

Nucleoporin 62 (NUP62) Subunit of nuclear pore complex NUP62 physically interacts with ΔNp63α protein and 
promotes ΔNp63α nuclear import and ΔNp63α-dependent 
target gene expression

[178]

ROCK1 Protein kinase ROCK1 phosphorylates NUP62 and abolishes ΔNp63α–
NUP62 interaction, facilitating ΔNp63α nuclear export 
into the cytoplasm

[178]

Cdc20-APC/C complex E3 ligase Cdc20 physically associates with ΔNp63α, leading to its 
degradation by APC/C complex in proliferating keratino-
cytes

[180]

Cdh1-APC/C complex E3 ligase Cdh1-APC/C complex promotes ubiquitination and degrada-
tion of ΔNp63α protein in differentiating keratinocytes

[180]

Itch E3 ligase Itch associates with ΔNp63α and induces its ubiquitination 
and degradation

[185]

WWP1 E3 ligase WWP1 physically associates with both TAp63α and 
ΔNp63α, leading to ubiquitination and degradation of 
TAp63α and ΔNp63α proteins

[188]

RACK1 WD-40 repeat-containing scaffold protein RACK1 binds ΔNp63α and promotes its degradation [181, 191]
Stxbp4 PDZ domain containing adapter protein Stxbp4 physically associates with ΔNp63α and prevents 

its degradation by the Cdc20-APC/C complex, Itch, and 
RACK1

[180–182]

Pin 1 Peptidyl-prolyl isomerase Pin1 stabilizes ΔNp63α through preventing ΔNp63α-Itch 
association. Pin1 also inhibits ΔNp63α degradation by 
WWP1

[186, 189]

Stratifin/14-3-3σ Cell cycle checkpoint protein Stratifin promotes ΔNp63α nuclear export into the cyto-
plasm, and then facilitates degradation of ΔNp63α by 
RACK1

[191]
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[179]. The ΔNp63α protein is preferentially degraded dur-
ing early mitosis by the APC/C complex. ΔNp63α physi-
cally associates with the 29 amino acids at the C-terminal 
of Cdc20, which is an important subunit for APC/C acti-
vation. Ablation of Cdc20 substantially increases the half-
life of the ΔNp63α protein in proliferating keratinocytes. 
However, in differentiating keratinocytes, Cdh1-APC/C is 
required for degradation of ΔNp63α protein and maintain-
ing terminal differentiation capacity [180]. Syntaxin bind-
ing protein 4 (Stxbp4) is a PDZ domain containing adapter 
protein that associates with ΔNp63α [181, 182]. It has been 
demonstrated that Stxbp4 prevents degradation of ΔNp63α 
by the Cdc20-APC/C complex and suppresses epidermis dif-
ferentiation [180]. High expression of Stxbp4 protein cor-
relates with ΔNp63α protein accumulation in both skin SCC 
[180] and lung SCC [182], and predicts unfavorable overall 
survival (OS) and progression-free survival (PFS). Itch is 
a Nedd4-like ubiquitin protein E3 ligase belonging to the 
C2-WW-HECT type E3 family, which includes the mem-
bers NEDD4, WWP1, SMURF1, and SMURF2 [183, 184]. 
Itch associates with both TAp63α and ΔNp63α via its WW2 
domain, but preferentially to the latter [185]. Co-expression 
of Itch together with either TAp63α or ΔNp63α leads to 
increase of p63 ubiquitination, whereas a catalytically inac-
tive Itch mutant (C830A mutant) still binds to TAp63α or 
ΔNp63α but fails to induce its ubiquitination. The ΔNp63α 
protein level increases in Itch knockout (KO) primary 
keratinocytes, whereas reintroduction of wild-type Itch in 
Itch KO cells leads to reduction of endogenous ΔNp63α 
protein level. The conserved threonine (T538) phosphoryla-
tion of a (T/S)P motif near the PY motif of p63 stabilizes 
the binding of PPPPY motif with the WW2 domain of Itch, 
facilitating subsequent ubiquitination and degradation [185]. 
However, a post-phosphorylation conformation switch from 
trans to cis catalyzed by Pin1, a peptidyl-prolyl isomerase, 
prevents the binding of p63 with Itch, thus stabilizing p63 
protein [186]. These studies suggested the binding of p63 
with WW domain containing E3 ligases is regulated by a 
Pin1-mediated cis/trans conformation switch, since E3 
ligases favor the trans conformation [187]. Stxbp4 also 
inhibits Itch-mediated ΔNp63α degradation. However, 
silencing endogenous Itch fails to stabilize ΔNp63α protein 
upon loss of Stxbp4 in keratinocytes, whereas silencing of 
the receptor for protein kinase C1 (RACK1) partially rescues 
ΔNp63α degradation triggered by Stxbp4 deficiency [181]. 
This suggests that different E3 ligases control p63 protein 
turnover in a context-dependent manner.

The WW domain containing E3 ubiquitin protein ligase 
1 (WWP1) is a member of HECT type E3 family. WWP1 
physically associates with both TAp63α and ΔNp63α via 
PY/WW motif interaction, leading to ubiquitination and 
degradation of TAp63α and ΔNp63α proteins [188]. Phos-
phorylation of the conserved threonine (T538) close to the 

PxY motif of p63α is critical for Itch-p63α binding [186], 
but is not required for WWP1 mediated p63α degradation, 
as T538A substitution fails to affect WWP1-mediated pro-
teasomal degradation [189]. Pin1 directly binds to p63α, 
but not the γ isotypes, and prevents p63α degradation by E3 
ligase WWP1 [189]. A recent study revealed that WWP1 
contributes to metformin-induced ΔNp63α degradation in 
HNSCC FaDu cells [190].

RACK1 is a WD-40 repeat-containing scaffold protein 
binding to p63α [181, 191]. Upon DNA damage, ΔNp63α 
protein is exported from the nucleus and into the cyto-
plasm, where it is recognized by RACK1. RACK1 binds 
the C-terminal SAM of p63 via its two WD40 repeats in 
C-terminus and promotes p63 proteasomal degradation 
[181, 191]. RACK1-dependent degradation of the ΔNp63α 
protein can be inhibited by Stxbp4 [181]. Upon DNA dam-
age, stratifin physically interacts with ΔNp63α at its SAM 
motif and facilitates its nuclear export into the cytoplasm, 
and then facilitates degradation of ΔNp63α, mediated by 
RACK1 [191].

Conclusions and perspectives

Squamous cell carcinoma remains a great challenge to 
human health due to its highly aggressive and limited thera-
peutic options. SCC from various organs is highly dependent 
on ΔNp63α, which is recently highlighted for its pioneer 
activity and ability to establishing active enhancers through 
interaction with epigenetic regulators. The existence of p63 
in chromatin-remodeling complexes provides an opportunity 
to target p63-positive SCCs via epigenetic therapy. How-
ever, many of the interaction partners of p63 in keratino-
cytes, including KMT2D and SWI/SNF components, are 
frequently mutated in SCC, implying that the p63-mediated 
differentiation transcriptional program is disturbed during 
SCC. It remains unclear how ΔNp63α cooperates with epi-
genetic regulators to activate enhancer activity of oncogenes 
in SCC. Additional efforts are necessary to fully understand 
the complexity of the interactions between ΔNp63α and epi-
genetic regulators in the control of SCC development. Char-
acterization of ΔNp63α-binding partners in SCCs may ena-
ble the development novel strategies to indirectly interfere 
with ΔNp63α activity. Disruption of the interaction between 
ΔNp63α and diverse coactivators in SCC cells will broadly 
affect ΔNp63α-dependent transcription and may provide a 
novel therapeutic approach for SCC. ΔNp63α expression 
is sufficient to establish a squamous subtype-specific SE 
to drive oncogene expression in SCC. Thus, another area 
worthy of attention is the mechanisms underlying phase 
separation of ΔNp63α-dependent SE in SCC cells. It has 
been shown that ΔNp63α interacts with the c-Rel subunit 
of nuclear factor-kappa B (NF-κB) in keratinocytes and 
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HNSCC cells [192]. Given the central role of NF-κB in 
the immune system and cancer development, the coopera-
tion between ΔNp63α and c-Rel may influence the tumor 
microenvironment [193]. Immunosuppressive tumor micro-
environment facilitates SCC development, progression, and 
therapeutic resistance [194, 195]. A substantial proportion 
of SCC patients do not respond to immune checkpoint block-
ade therapy, including PD-1/PD-L1 mAb treatment [2, 196, 
197]. To overcome barriers to effective immunotherapy, we 
believe that clarification is needed concerning how ΔNp63α 
cooperates with NF-κB and other immune-regulatory factors 
to alter the immune environment of SCC.
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