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Abstract: The relevance of experimentally gained information represents a long-term debating issue
in the field of molecular biology research. The loss of original conditions in the in vitro environment
affects various biological mechanisms and cellular interactions. Consequently, some biochemical
mechanisms are lost or critically altered. Analyses in these modified conditions could, therefore,
distort the relevancy of experimentally gained information. In some cases, the similarities with
original conditions are so small that utilization of simpler in vitro models seems impossible, or could
occur in a very limited way. To conclude, the study of more complex phenomena places higher
demands on the complexity of the experimental model. The latest information highlights the fact that
the tumor angiogenesis mechanism has very complex features. This complexity can be associated
with a wide range of angiogenic factors expressed by a variety of malignant and non-malignant
cells. Our article summarizes the results from various experimental models that were utilized to
analyze a photodynamic therapy effect on tumor angiogenic mechanisms. Additionally, based on the
latest information, we present the most important attributes and limitations of utilized experimental
models. We also evaluate the essential problems associated with angiogenic mechanism induction
after photodynamic therapy application.

Keywords: tumor angiogenesis; photodynamic therapy; hypericin; photosensitizer; cell culture;
spheroids; chorioallantoic membrane; in vivo

1. Introduction

The era of modern photodynamic therapy (PDT) was begun by Lipson and Baldez in the 1960s,
when fluorescence of neoplastic lesions after injection of hematoporphyrin (Hem) was observed [1].
PDT is considered a promising and very quickly developing area in the field of cancer research [2].
In the last fifty years, a lot of essential questions focused on PDT mechanisms, its utilization in
treatment of malignant and non-malignant diseases, and potential limitations of this therapy have been
answered [3–6]. However, the increasing number of novel findings makes us pose novel questions.
Nowadays, the effect of photosensitizers (PS) alone or in a combination with PDT has been analyzed
from different aspects [7–14]. In this context, the effect on angiogenesis represents one of the most
studied issues (see Tables 1–3). One of the most preferred advantages of PDT is a higher selectivity
for malignant cells, minimal or ideally no accumulation in non-malignant tissues, and reduced or
no toxicity of the photosensitizer in dark conditions. These attributes of PDT are in contrast to the
massively utilized chemotherapy and radiotherapy, mainly in relation to a strong targeting aspect of
PDT and side effects minimization [2].
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Despite a general effort to minimize side effects occurrence, there is evidence of its constant presence.
The results of a huge amount of analyses showed that side effects evoked by PDT utilization belong to
the major reasons not only for lowering therapeutic efficiency, but, moreover, they are associated with
some pathological conditions’ development in PDT-affected areas. A wide range of analyses point to a
tumor angiogenic mechanism induction as one of the most serious pathological conditions evoked
specifically by PDT treatment (see Table 1). Moreover, the latest data emphasize angiogenic mechanism
complexity and point to the fact that this mechanism directly depends on tumor environment presence
and reciprocal interaction of malignant and non-malignant cells. However, there is much evidence that
non-malignant cells affected by PDT may represent consequential angiogenesis promoting components
after a treatment incidence [15–20].

Based on these facts, we assume that the targeting potential of PDT represents a fundamental
condition for the extension of applied potential for a wide range of tumors of different histological
origins. Simultaneously, the development of novel experimental models convenient for angiogenic
research now represents a very interesting and examined area in the field of tumor angiogenesis
research [14,21,22]. Moreover, an appreciable effort has been dedicated to a PDT study as a combined
therapeutic approach with multiple antiangiogenic agents utilized [15,17,20,23–29]. Furthermore,
a considerable effort has been focused on novel carriers, such as liposomes [30,31], dipolar solvents,
e.g., N-methyl-pyrrolidone [32,33], polyether compounds, e.g., polyethylene glycol (PEG) [34],
cyclodextrins [35], or nanoparticles [31]. We assumed that all these novel approaches could represent a
potential solution for a PDT improvement in relation to tumor angiogenic mechanism inhibition.
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Table 1. In vivo experimental models utilized for photodynamic therapy (PDT) in relation to angiogenesis, focused on analyses of angiogenic factors.

Experimental Model; Type of Tumor
(Cell Line) PS PS

Administration
PS Doses and

Accumulation Time Light Dose; Fluence Rate Effect on Angiogenesis References

2D in vitro, male BALB/c nude mice;
human nasopharyngeal carcinoma

(CNE2)
HY i.v. 2 mg/kg; 2 h 42.4 J/cm2; 56 mW/cm2

* PDGF-B detected in hypoxic conditions
in vitro and non-detected in vivo (24 h) * ↓

COX-2 (6–24 h) and HIF-1α (24 h) * ↓ COX-2,
HIF-1α, VEGF in combined treatment with

Celebrex (24 days)

[23]

Balb/c nude mice; human
nasopharyngeal carcinoma (HK1) HY i.v. 2 or 5 mg/kg; 1 h or 6 h 30 J/cm2; 25 mW/cm2 * after 6 h accumulation time ↓ serum VEGF in

comparison to 1 h accumulation (24 h) [36]

male BALB/c athimic (nu+/nu+) mice;
human nasopharyngeal carcinoma

(CNE2)
HY i.v. 2 mg/kg; 2 h 47.7 J/cm2; 6 mW/cm2 * ↑ VEGF, COX-2, HIF-1α, FGF-2, PDGF-β (24 h) [37]

Balb/c nude mice; human
nasopharyngeal carcinoma (HK1) HY i.v. 5 mg/kg; 6 h 120 J/cm2; 50 mW/cm2 * ↓ human VEGF in serum and tumor (24 h) and

↑ (72 h) [15]

male Balb/c nude mice; human bladder
carcinoma (MGH) HY i.v. 5 mg/kg−1; 6 h 50–150 J cm−2;

42–125 mW cm−2
↓ FGF-2, EGF, PlGF, TIMP1,2, VEGF, IL6 and IL8
in combined treatment with Avastin (30 days) [38]

Balb/c nude mice; human bladder
carcinoma (MGH) HY i.v.

5 mg/kg; 0.5 h (short
drug-light interval), 6 h

(long drug light interval)
120 J/cm2; 100 mW/cm2

* ↑ VEGF after long drug light interval and ↑
FGF-2 after short drug light interval protein

expression (24 h)
[39]

2D, 3D, quail CAM; human colon cancer
(HT-29, HCT 116), mice colon cancer

(CT26.WT)
HY t.a. 25 nM–1 µM; 16 h 3.15 J·cm2; —

* differences of HY accumulation between 2D
and 3D cell model (16 h) * proved HY

penetration into the micro-tumors * mainly ↑ of
growth factors gene expression in 2D and micro

tumors (24 h) * ↓ PD-ECGF, FGF-2 protein
expression in 2D cell model (24 h) * in

micro-tumors unaltered protein expression of
growth factors (24 h)

[14]

CC57 Bl/6 mice; mouse Lewis lung
carcinoma (LLC and LLC/R9,

respectively)
Hem i.p.

Dose of Hem in the
conjugate with antiVEGF:
0.04–0.05 mg per animal;

24 h

initial capacity: 25 mW;
radiation dose: 50 W s/cm2

* ↑ tumor growth inhibition and survival of
experimental animals if HEM was conjugated

with antiVEGF antibodies
[40]

C57B1/6 mice; mouse Lewis lung
carcinoma (3LL) ALA p.o. 500 mg/kg; — —; 150 mW/cm2 *↓ VEGF in serum (10–11 days) [41]

male Wistar rats; grafted with small
fragment of Walker tumor in the

right thigh
ALA i.p. 250 mg/kg; 3 h 50 J/cm2; 25 W

* ↓ activity of MMP-2 in combined treatment
with chitosan (1 h and 24 h) [24]

female BALB/c athymic (nu+/nu+) mice;
human colon carcinoma (HT-29) mTHPC i.v. 0.3 mg/kg; 24 h 10 J/cm2; 100 mW/cm2 * ↓ VEGF and microvessel density, in combined

treatment with bevacizumab (1 week) [26]
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Table 1. Cont.

Experimental Model; Type of Tumor
(Cell Line) PS PS

Administration
PS Doses and

Accumulation Time Light Dose; Fluence Rate Effect on Angiogenesis References

2D, female C3H/HeJ mice; mouse
mammary carcinoma (BA) PT i.v. 5 mg/kg; 24 h 200 J/cm2; 75 mW/cm2

* ↑ HIF-1α and VEGF in tumors (24 h) * ↑ VEGF
in vitro only in chemically induced hypoxia

(CoCl2) conditions (2–24 h)
[42]

2D, C3H/HeJ mice; mouse fibrosarcoma
(RIF), mouse mammary carcinoma (BA),

mouse Lewis lung carcinoma (LLC)

PT and
NPe6 i.v. 5 mg/kg; 24 h 200 J/cm2 and 300 J/cm2;

75 mW/cm2

* ↑ COX-2 in RIF cells after PT-PDT (1.5 h and
3 h) * ↑ COX-2 after NPe6-PDT (24 h) and after
PT-PDT (24 h -192 h) * ↑ VEGF in RIF tumors
(24 h) * ↓ VEGF in RIF tumors after PT-PDT

with NS-398 utilization

[27]

Normal rat brain PT i.p. 12.5 mg/kg; 24 h 140 J/cm2; 100 mW/cm2 * ↑ VEGF immunoreactivity (1–6 weeks) and
vessel branching (3–6 weeks) [18]

female C3H/HeJ mice; mouse mammary
carcinoma (BA), mouse brain ECs,
mouse macrophages (RAW 264.7)

PT i.v. in vitro: 25 µg/mL; 16 h;
in vivo: 5 mg/kg; 24 h

in vitro: —; 0.35 mW/cm2;
in vivo: 0 to 200 J/cm2;

75 mW/cm2

* ↑MMP-9 expression (24 h) and gelatinase
activity in BA tumors (24–48 h) * BA cells
in vitro secreted only detectable levels of

MMP-2 * ↑ pro-MMP-2 and pro- and activated
MMP-9 in medium of ECs (24 h) * ↓MMP in

macrophages in vitro (24 h)

[43]

Athymic mice; Normal mice brain PT i.p. 2 mg/kg; 24 h 2 J/cm2 or 4 J/cm2; —
* ↑ ECs proliferation (1–2 weeks) * ↑ VEGF

immunoreactivity (4 J/cm2; 1 week) [19]

C3H/HeJ mice; mouse mammary
carcinoma (BA) PT i.v. 5 mg/kg; 24 h 0–200 J/cm2; 75 mW/cm2 * ↓ of VEGF and PGE2 in combined treatment

with celecoxib or NS-398 (24 h) [44]

athymic nude mice; rat gliosarcoma (9L) PT i.p. 2 mg/kg; 24 h 40, 80 or 120 J/cm2; —
* unaltered VEGF in tumors (1 week) * ↑ VEGF
in brain adjacent to tumor (120 J/cm2; 1 week) [45]

athymic nude mice; human glioblastoma
(U87) PT i.p. 2 mg/kg−1; 24 h 80 J/cm-2; —

* ↑ of VEGF and von Willebrand factor (vWF)
positive vessels (2 weeks) * ↓ VEGF and vWF
positive vessels if VEGFRs antibodies were

utilized (2 weeks)

[20]

male severe combined immunodeficient
(SCID) mice; human prostate carcinoma

cells (LNCaP)
BPD-MA i.v. 0.25 mg/kg; 1 h 100 J/cm2; — ↑ VEGF (24 h) [46]

male severe combined immunodeficient
mice; human prostate carcinoma

(LNCaP)
BPD-MA i.v. in vitro: 140 nM/l; 1 h;

in vivo: 0.25 mg/kg; 1 h
in vitro: 690 nm; in vivo:
50 J/cm2; 100 mW/cm2 ↑ VEGF in cancer cells and tumors (24 h) [47]

nude mice; human lung carcinoma
(H460) VT i.v. 1 mg/kg; 3 h —; 75 mW/cm2

↓ human and murine VEGF in combined
treatment with anti-mouse antibody and

bevacizumab (24 h)
[17]

i.v., intravenous; t.a., topical application; i.p., intraperitoneal; p.o, per os; *, particular information related to angiogenesis; —, the parameter was not provided by the authors.
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Table 2. In vivo experimental models utilized for PDT in relation to angiogenesis.

Experimental Model; Type of Tumor
(Cell Line) PS Ps

Administration
Ps Doses and

Accumulation Time Light Dose; Fluence Rate Effect on Angiogenesis References

female C3H/Km mice; mouse
fibrosarcoma (RIF-1) HY i.v. 5 mg/kg; 0.5 h, 6 h, 24 h 120 J/cm2; 100 mW/cm2

* 100% cured animals after 0.5 h accumulation
time, but massive skin necrosis was detected

*delayed tumor growth after 6 h
accumulation time

[48]

female DBA/2 mice; mouse lymphoma
(P388) HY i.v. 1 mg/kg; 1 h, 5 or

20 mg/kg; 24 h 120 J/cm2; 100 mW/cm2
*the best therapeutic effect was observed if 0.5 h

accumulation time was utilized, but massive
skin necrosis was detected

[49]

female C3H/Km mice; mouse
fibrosarcoma (RIF-1) HY i.v. 5 mg/kg; 0.5 h, 6 h, 24 h 120 J/cm2; 100 mW/cm2

* 6 h accumulation time induced 30% direct cell
death of tumor cells * after 0.5 h accumulation

time no direct cell death was observed, but skin
necrosis was detected

[50]

female Balb/c mice; mouse colon
carcinoma (CT26) HY i.v.

low-power PDT:
2.5 mg/mL; 0.5 h, high
power PDT: 10 mg/mL;

1 or 4 h

low-power PDT: 14 J/cm2;
27 mW/cm2; high power

PDT: 60 J/cm2; 50 mW/cm2

* after low-power PDT all tumors completely
disappeared, and necrosis formation started *

after high power PDT with 4 h incubation time
tumor growth reduction was observed * in high
power PDT after 1 h incubation time mice died

[51]

quail CAM HY t.a. 2 µg/g; 1 h or 5 h 16.8 J/cm2; 140 mW/cm2 * massive vasculature damage after 1 h and 5 h
incubation time [34]

CC57 Bl/6 mice; mouse Lewis lung
carcinoma (LLC and LLC/R9,

respectively)
HT i.p.

HT in the conjugate with
antiVEGF: 0.04–0.05 mg

per animal; 24 h

initial capacity: 25 mW;
radiation dose: 50 W s/cm2

* ↑ tumor growth inhibition and survival of
experimental animals if HT was conjugated

with antiVEGF antibodies
[40]

male athymic BALB/cA Jc 1-nu nude
mice; human bladder carcinoma

(253 J B-V)
ALA i.p. 50 mg/kg; 1.5 h 100 J/cm2; 100 mW/cm2 * ↓ CD31 positive vessels in combined treatment

with deferoxamine [25]

female Wistar rats; chemically Induced
premalignant lesion on the tongue ALA cream composed

of 5% 5-ALA —; 2 h 90 J/cm2; 40 mW

* ↓ CD34 positive vessels in comparison to other
experimental groups * in comparison to

non-treated control group the number of CD34
positive vessels ↑

[52]

athymic nude mice; Ewing’s sarcoma
(A673) PT i.v. 10 mg/kg; 24 h 150 J/cm2; 250 mW/cm2

blood flow ↓ and progressive disruption of
blood vessels endothelial layer in affected

tumors
[53]

athymic nude mice; human glioblastoma
(U87) PT — 10 mg/kg; 48 h 10 Gy radiation * unchanged microvessel density after PDT [54]

Balb/c male mice; mouse fibrosarcoma
(Meth A) BPD-MA i.v. 0.5–2 mg/kg; 15 min-3 h 150 J/cm2; 0.25 W

* ↓ tumor growth observed in both
accumulation times * after 0.5 h accumulation

time body weight lost was observed and 30% of
animals died * if 0.5 mg/mL of photosensitizer

was applied better therapeutic effect was
observed

[55]
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Table 2. Cont.

Experimental Model; Type of Tumor
(Cell Line) PS Ps

Administration
Ps Doses and

Accumulation Time Light Dose; Fluence Rate Effect on Angiogenesis References

Balb/c male mice; mouse fibrosarcoma
(Meth A) BPD-MA i.v. 0.25 mg/kg; 15 min 150 J/cm2; 0.25 W

* remarkable vasculature damage after PDT
with utilization of polycation liposomes [56]

female normal BALB/c mice; mouse
breast carcinoma (4T1) BPD-MA i.v. 1 mg/kg; 24 h 120 J/cm2; —

* ↓microvessel density in PDT alone or in
combined treatment with adriamycin [57]

male BALB/c mice; mouse fibrosarcoma
(Meth A), human ECs (ECV304) VT i.v. 0.25 mg/kg; 15 min or 3 h 150 J/cm2; 0.25 W

* vasculature photodamage was observed after
15 min accumulation time

Ichikawa
[58]

i.v., intravenous; t.a., topical application; i.p., intraperitoneal; *, particular information related to angiogenesis; —, the parameter was not provided by the authors.

Table 3. In vitro experimental models utilized for PDT in relation to angiogenesis.

Type of Tumor (Cell Line) PS PS Doses and
Administration Light Dose/Fluence Rate Effect on Angiogenesis References

human cervical adenocarcinoma (HeLa),
human urinary bladder carcinoma (T24) HY 125 or 150 nM; 16 h 4 J/cm2; 4.5 mW/cm2 * ↑ COX-2 (3–24 h) [59]

human ECs (HUVEC), human likely
glioblastoma (U-87 MG), human

glioblastoma (U-373 MG)
HY 5 × 10−9–5 × 10−7 mol/L;

3 h 5 J/cm2; 3.22 mW/cm2
* ↓MMP-9 in HUVEC and MMP-2 in HUVEC and

U-87 cells * tubulogenesis inhibition by HUVEC cells
(24 h)

[60]

human colorectal adenocarcinoma
(SW480, SW620) ALA 1000 mM; 4 h 10 J/cm2; 0.3–1.5 mW/cm2

* ↓ FGF in SW620 cells in normoxic or simulated
hypoxic (by CoCl2) conditions and ↓ VEGF in SW620

cells (24 h)
[61–63]

human oral squamous cell carcinoma
(H376, VB6 and UP) mTHPC 0.25–4 µg/mL; 24 h 0.25–4 J/cm2; 25 mW/cm2

* ↓MMP-9 and MMP-13 in H376 cells * ↓MMP-2 and
↑MMP-13 in VB6 cells * ↓MMP-2 and VEGF in H376

(24–48 h)
[64]

human epidermoid carcinoma (A431) mTHPC 0.1 µg/mL−1; 18 h —; 1.6 mW cm-2 * ↑ VEGF and IL1A (4–24 h) [65]

C-26 cells PT 10 µg/mL; 24 h 4.5 kJ/m2; — * ↑ COX-2 (2–24 h) [28]

human glioblastoma (U87, U-118 MG) PT 10-50 mg/mL; 4 h 1 J/cm2; —
* ↓ invasion and angiogenesis network potential after

PDT (72 h) * ↓ VEGF, FGF-2, EGFR, MMP-2 and
MMP-9 and also Akt and NF-κB (24 h)

[66]

human ECs (HUVEC) VT 1–2 µM; 90 min 36 J/cm2; 0–300 mW/cm2
* PDT with fVII factor killed almost 90% of

VEGF-stimulated HUVECs but had no effect on
unstimulated HUVECs.

[67]

human urinary bladder carcinoma (T24),
human cervical adenocarcinoma (HeLa) PPME 5 µM; 3 h 3.2 J/cm2; 160 W/m2 * ↑ COX-2 in both cell lines 3 h after PDT * 9–12 h after

treatment ↓ COX-2 in HeLa cells to basic level [68]

*, define concrete finding related to angiogenesis; —, the parameter was not provided by the authors.
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2. Experimental Models and Their Potential, Limitations, and Relevancy Evaluation in Relation
to PDT and Angiogenesis: Retrospective Summarization and Future Perspectives

Biological experiments focused on the analysis of a huge spectrum of molecular mechanisms
are possible due to the use of experimental models, such as culture systems and animal models
(see Figure 1) [69]. So far, it has been more than one hundred years since the first note of cell culture
cultivation [70]. Since then, the cell cultivating protocol quality has improved extensively, and we can
observe a persisting effort in the development of new protocols and cultivation techniques [14,71,72].
Now, established malignant and non-malignant experimental cell lines are extensively utilized in a wide
range of biological analyses. Currently, cell cultures are utilized for the research of various biological
processes [73]. However, the importance of appropriate cell culture method selection in cancer research
represents the key condition for a better understanding of biological processes observed [74].

Figure 1. Major advantages and disadvantages of convenient experimental models for tumor
angiogenesis research utilized. Picture (A) represents the 2D experimental model, (B) represents
the 3D experimental model known as a spheroid, (C) represents the micro-tumor created on the quail
(Coturnix japonica) avian embryo, and (D) represents the tumor-bearing mice.
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2.1. In Vitro Experimental Models Utilization

2.1.1. Monolayer Cell Culturing—2D Cell Experimental Model

Original cell phenotype maintenance in cells utilized for laboratory experiments represents the
key effort in the field of cellular biology analyses [75,76]. Nowadays, the utilization of 3D cell models
is becoming more popular. Nevertheless, the 2D cell model is dominantly used in a huge amount of
molecular analyses [77]. Deficiencies and limitations of this experimental model are relatively well
described, but we must define some possible limitations of this model concerning specific biological
mechanisms focused on a problem complexity consideration. On the other hand, it is important to
mention that the investigation in the field of PDT in relation to a tumor angiogenic mechanism was
performed primarily with animal experimental models (see Tables 1 and 2). However, the utilization
of less relevant 2D cell models also occurred [28,60–65] (see Table 3).

The surviving cell fraction represents one of the most serious problems after PDT observation.
Chen assumed that PDT with hypericin (HY) could probably induce immediate cell death only in
30% of fibrosarcoma tumor mass [50]. On the contrary, Kamuhabwa et al. [78] documented only
a small fraction of surviving cells, estimated from 2–5%, in a bladder carcinoma with the same PS
utilization. Nevertheless, the existence of this fraction was associated with tumor regrowth mechanism
induction [78] and angiogenic factors upregulation [15].

The observed surviving cell fraction after PDT could be connected with fundamental components
for PDT realization, which means light, oxygen, and PS presentation in tumor tissue [79]. In this
context, the toxicity of the PS prevalently depends on light of the appropriate wavelength and oxygen
presence. In a subsequent cascade, the production of reactive oxygen species (ROS) leading to
destruction of targeted cells or tissues is utilized [80,81]. It is obvious that the tumor’s distribution
of the mentioned components does not have homogenous properties, and is directly associated with
the spatial characteristics of solid tumors. Tissue light penetration is limited by light wavelength
characteristics, whereas in some range of radiation, the longer wavelengths can penetrate deeper than
shorter wavelengths. Specifically, the red light with higher wavelength characteristics has maximum
penetration depth, approximated to 5 mm [82], and only tumor cells within 70–150 µm of tumor
vasculature [83,84] can consume oxygen. Oxygen insufficiency, known as hypoxia, is a common feature
of solid tumors. The development of hypoxic regions is associated with lowered therapeutic response
and tumor progression. The cells inhabiting hypoxic regions of tumors have a higher resistance to
chemotherapy and radiotherapy, in comparison to the cells localized in normoxic tumor regions. Since
PDT directly depends on oxygen presence, tumor hypoxia represents one of the most restricting aspects
of PDT effectiveness [81]. Moreover, tumor vascular permeability is very heterogeneous and could
decrease the accessibility of PS in targeted tumor cells [85]. In this context, Khan et al. [81] recently
summarized the effect of the enhanced permeability and retention (EPR), defined as a tumor’s ability
to accumulate particles in the size range of 380–720 nm. The authors also concluded that oxygen
containing microbubbles and nanobubbles (MNBs) may enhance the therapeutic efficiency of PDT.

The spatial characteristics of the 2D cell model represent a major restriction for its utilization, as this
model could not consider any of the above-mentioned factors. In 2D cell models, light and oxygen
have relatively homogenous distribution through a total cell population. Moreover, the impossibility
of mimicking the tumor vasculature effect on PS permeability into the tumor leads to its inadequate
accessibility associated with a significantly higher cell accumulation. Finally, comparative analyses in
relation to PDT showed that the same treatment regimens cause significant differences in cytotoxic
effects. Within the given frame of references, the cells cultivated in the 2D cell model exhibit higher
sensitivity to PDT, and therefore, the rate of surviving cells fraction in equal treatment conditions is
minimalized. As was mentioned, a PS accumulation level is associated with a total cytotoxic effect,
subsequently affecting angiogenic factor expression. Therefore, the consideration of the third dimension
seems to be a very convenient approach for mimicking spatial tumor characteristics [14,86–90]. It is
important to state that prevalently decreased proangiogenic growth factors, like PD-ECGF and FGF-2
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protein expression after PDT with hypericin (HY-PDT) in HCT 116 cells [14], VEGF after PDT with
aminolevulinic acid (ALA-PDT) in SW620 [61,62], and PDT with meta-tetra(hydroxyphenyl)chlorin
(mTHPC-PDT) in VB6 and H376 cells [64], were observed if a 2D cell experimental model was
utilized. This could be associated with the above-mentioned aspects of sufficient PS penetration
in the whole targeted cell population [14]. However, there are also opposite findings documented
when prostaglandin COX-2 upregulation as another type of angiogenic factor after PDT with HY [59]
photofrin (PT) [28,29] and piropheophorbide-a methyl ester (PPME) [68] were detected with the
utilization of 2D cell models. This evident discrepancy might point to the fact that only spatial
characteristics consideration is not a sufficient condition guaranteeing experimental model relevancy in
a tumor angiogenesis research, and that there must be some other important aspects to be considered.
Angiogenic factors represent a wide spectrum of molecules potentiating vascularity creation. However,
their synthesis has been described in a wide range of malignant and non-malignant cell types. Some
angiogenic factors, such as growth factors, are expressed in a broad variety of cell types [91–93].
Synthesis of other angiogenic factors, e.g., prostaglandins like COX-2, are more specific for cancer
cells in tumors [94–99]. The expression of other angiogenesis-promoting factors, like MMP-2 or
MMP-9 [43,100] has been prevalently detected in tumor stroma. As it was mentioned above, the PDT
effect on cells cultivated in the 2D cell model is more frequently associated with a lowering of angiogenic
growth factor protein expression in cancer cells [14,61–64]. On the contrary, with in vivo conditions,
some drastic lowering of growth factors synthesis after PDT was not observed, and their inhibition
was prevalently associated with the utilization of some antiangiogenic agents (see Table 1). Moreover,
the effect of the mentioned therapy in vivo is predominantly associated with a progressive increase
in angiogenic factor expression. Furthermore, the possibility for long-lasting analyses with in vivo
experimental model utilization, in comparison to the 2D cell model, can reflect the secretion potential
of the total tumor cell population. In the context of this information, it seems to be evident that a
monoculture 2D cell model has very limited application in analyzing angiogenic factor expression
after PDT. Its utilization could be potentially considered for some preliminary analyses in relation
to factors expressed more specifically in a particular cell type, as it was detected in COX-2 [94–99],
but it is evident that a majority of angiogenic factors, with less specific cell expression characteristics,
could not be analyzed with the utilization of a monoculture 2D cell model, as this model does not have
potential to offer a holistic view of the angiogenic factor expression, reflecting the reaction of whole
tumor mass affected.

2.1.2. Spheroids: 3D Cell Experimental Model and Preservation of Tissue-Like Characteristics

The history of 3D cell cultures started in the 1970s [101]. Until now, a lot of methods for spheroid
creation have been developed, but they are not going to be discussed, as it is not the goal of this article,
and there is still growing evidence of review papers dealing with this topic [102–104].

In the context of the above-mentioned information, there is no doubt that the presence of spatial
characteristics in the experimental model utilized for PDT concerning tumor angiogenesis mechanism
research is fundamentally needed. The geometry of the experimental model is sufficient enough for
alternative splicing angiogenic factor alterations, like vascular endothelial growth factor (VEGF) in
malignant cells [105]. Nonetheless, only the presence of spatial characteristics in experimental models
utilized for PDT effects analyzed in connection with tumor angiogenic mechanism is still insufficient.

Concerning novel methods and experimental model utilization in cancer research, we must
abandon a simplistic description of solid tumors as complex structures of genetically modified cells
with high clonogenic capabilities [106,107].

The last decade is characteristic of the growing interest in tumor environment study, as there have
been many potential antitumor targets identified [108]. Finally, it is very important to emphasize that
non-malignant cell fractions gain some specific characteristics if they are placed in a tumor environment,
known as a tumor-associated process. Currently, there is a huge scale of tumor-associated cell types,
such as cancer-associated fibroblasts, endothelial cells (ECs), pericytes, adipocytes, and other types of
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immune cells [109–112]. With the objective of the interaction of tumor stroma with cancer cells rate in
multicultural in vitro 3D cell models, Del Bufalo et al. [21] analyzed a novel 3D modeling PEG-fibrin
hydrogel system, and described higher similarity with in vivo conditions in relation to morphological
features and treatment response. Besides that, there was a more aggressive phenotype inducted, and
higher proliferative and metastatic status observed, if cancer cells were co-cultivated with fibroblasts
and ECs. Moreover, it was shown that fibroblasts alone, or in combination with ECs, stimulate tumor
growth and metastatic potential [21].

The above-mentioned facts are important not only for our better understanding of tumor stroma
effect on tumor phenotype characteristics, but they also show that, in 3D cell models, these interactions
are developed [21,113,114]. Furthermore, Amann showed that in multicultural spheroids composited
of cancer cells, fibroblasts, and ECs, alpha smooth muscle cell (ASMA) expression is induced in all cell
types [22]. Its presence in fibroblasts is associated with tumor-associated phenotype gains, while in
cancer cells, it is defined as epithelial to mesenchymal transition (EMT) [115,116]. Contrarily, ASMA
was not expressed if the cells were cultivated in monocultural spheroids [22].

Besides that, it was shown that the tumor angiogenic mechanism is directly modulated by
the presence of the tumor microenvironment. This mechanism is associated with complexity and
reciprocal interaction of multiple tumors, creating cell types significantly influencing the angiogenic
expression profile of tumors, as was proven by multicultural spheroids utilization. Data showed that
tumor-associated fibroblasts were not just the major producer of mentioned growth factors. However,
if they were co-cultivated with cancer cells, a significant increase of VEGF and FGF-2 secretion by
analyzed spheroids was observed. The mentioned information means that a non-malignant section
of tumor mass has a key impact on the level of expression of angiogenic factors in malignant cells.
Consequently, a significant upregulation of the expression of angiogenic factors in malignant cells was
induced [22]. Nevertheless, the elevated level of expression of growth factors by tumor-associated
fibroblasts is only one aspect of the problem [117–119]. It was also demonstrated that biomechanical
activity of tumor-associated fibroblasts could regulate vascular growth, and might potentiate the
formation of blood vessels in the tumor microenvironment. Mechanotransductive pathways like
Rho/Rho-Associated Coiled-Coil Forming Kinase Pathway (ROCK), The Hippo/yes-associated protein
signaling pathway (YAP), and Snail1 were also shown to be associated with vessel growth [120]. All the
mentioned information gained from 3D cell models highlights the fact that a tumor angiogenesis
process is very complex, and if only one aspect is taken into consideration, the results do not have to be
favorable, as was observed with antiangiogenic therapies targeted on a particular growth factor [121].

Although the fact that there is a massive effort to develop novel 3D in vitro experimental models
and that novel information proved its possible utilization in a huge range of cancer types, its optimization
has occurred mainly with lung adenocarcinoma [22]. Based on the information mentioned, we assume
that the optimization and preparation of that model for other types of cancer are also necessary. Finally,
based on findings gained from 3D multicultural experimental models [21,113,114,120] in connection to
the tumor angiogenesis research associated with PDT, we have to re-evaluate the utilization of not
only the 2D monocultural cell models, but also all of the models, that cannot reflect the interaction of
tumors microenvironment [122,123].

3. Chorioallantoic Membrane of Avian Embryo (CAM)

The CAM of an avian embryo is a structurally simple, highly vascularized extraembryonic
membrane. Except for a respiration function, allantois also serves as a reservoir of waste products of the
embryo. The CAM also functionally participates in sodium and chloride transport from the allantois
cavity and calcium transports from the egg shell to start the bone mineralization [124]. For research
purposes, CAM vasculature is most interesting. Besides the vascular system, the CAM also has a fully
developed lymphatic system, very similar to mammalian lymphatics [125].

Structurally, the CAM consists of two epithelial sheets. The upper epithelium is of ectodermal
origin, while the stroma and the lower epithelium are of mesodermal and endodermal origin,
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respectively. Blood and lymphatic vasculature are located in a stromal part, so every compound
delivered on the CAM surface has to pass across the surface epithelial layer, and reach vessels in the
stroma [126].

Moreover, the CAM is simple to handle, its utilization is low-cost, and ethics committee approval
is free to obtain, as an avian embryo is not considered as a living animal until day 17 of its development
in most countries [127]. The CAM could be also utilized for transplantation analyses without any
immune response, as it is immunodeficient. The immune system deficiency enables the utilization of
avian embryos for the cultivation of a wide range of biological materials, such as tumor xenografts [128]
and 3D cell models [129]. Furthermore, the latest data shows that a cell suspension of the appropriate
density could be topically applied on the CAM surface for the creation of micro-tumors [14]. Moreover,
the CAM maintains many cancer characteristics, such as growth, invasiveness, and angiogenic potential.
Furthermore, the remodeling of the tumor microenvironment is also possible. In addition, genetic
analyses have shown that the chicken genome has approximately the same number of genes as a
human genome, with a high level of sequence conservation [127].

However, quick rearrangement of the vascular system limits the precision of the detection of
novel vessels [130]. Moreover, the CAM is also very sensitive to many environmental factors, such as
oxygen tension, pH, etc. [131]. However, possibly the most obligatory limitation in CAM utilization is
its low compatibility with a wide range of reagents, such as antibodies, cytokines, and primers [127].

The extensive vascular potential of the CAM makes it possible to analyze the effect of a wide
spectrum of substances on an angiogenic mechanism. The analyzed substances are topically applied
on the CAM surface [132], and the effect can be observed 72 h after its application. The angiogenic
properties of analyzed materials are displayed in vascular density changes in the surrounding
environment of the analyzed material. A higher vascular density is associated with proangiogenic
potential, while a lower vascular density is observed if the antiangiogenic potential is proven [127].

The CAM vasculature provides extensive possibilities for PDT analyses. PDT induces reactive
oxygen species production that subsequently activates a cascade of chemical and physiological processes,
initiating the creation of occlusions on the CAM [133]. The PS could be applied intraperitoneally [134],
topically [135], or intravascularly [133,134,136–139]. As many PSs are hydrophobic, quickly
accessible vascularity enables us to analyze novel carriers, such as liposomes [30,139], solvents,
e.g., N-methyl pyrrolidone [32], polyether compounds, such as polyethylene glycol [34], or liposomal
nanoparticles [139]. The effects of PDT on normal vasculature of avian embryo with the utilization of
different PSs, such as VT [140,141], BPD-MA, and mTHPP [142] or HY [34], have also been analyzed.
However, in connection with tumor angiogenesis research, we assume that a healthy vascular system of
an avian embryo individually could not represent a convenient experimental model, as it does not have
the potential to mimic the pathological changes observed in tumor vasculature. Regardless, the latest
information has shown that micro-tumors created on aviary embryos are structurally interconnected
with the CAM. They have a proliferative active status and could be utilized for tumor angiogenesis
research associated with molecular analyses focused on the angiogenic mechanism after PDT. Besides
the fact that spatial features directly affect the total HY-PDT cytotoxic effect, some differences in
angiogenic factor expression between the 2D cell model and experimental micro-tumors were also
observed. While a gene expression upregulation was predominantly detected in both analyzed
experimental models, at the protein level, no effect on experimental micro-tumors was observed.
Contrarily, in the 2D cell model, downregulation of PD-ECGF and 24-kDa isoform of FGF-2 in HCT 116
cells was also observed. The mentioned effects were most likely connected with different accumulation
status of HY in targeted intracellular organelles between analyzed experimental models. As the HY
also accumulates in a significant manner in protein synthesizing cellular organelles, their massive
destruction could represent a dominant reason for the observed discrepancy between gene and protein
expression in 2D cell models affected by HY-PDT. Moreover, the observed downregulation of protein
expression could be only temporary, and long term analyses have to be realized. On the other hand,
a micro-tumor’s utilization does not make a long-term effect after PDT observation possible [14].
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As the long-term effect analysis in relation to angiogenesis after PDT incidence represents a very
important part of the research, supplementary analyses on other experimental in vivo models are
needed [15,19,20,23,37–41,48].

4. In Vivo Mammalian Experimental Models

As mentioned above, the majority of experimental analyses focused on PDT concerning tumor
angiogenesis were performed with in vivo mice or rat experimental model utilization. In this context, the
fundamental requirements, such as the multicultural character of experimental tumors, the possibility
of vascular application of PS, and the long-term effect observation, could be considered as the major
advantages of these experimental models for tumor angiogenesis research after PDT. The therapeutic
effect of PDT with a wide range of PSs utilized was associated mainly with the induction of the tumor
angiogenesis mechanism (see Table 1). Ferrario et al. [42], in some initial hypotheses, proclaimed
that VEGF upregulation in PT-PDT treated tumors is predominantly induced because of hypoxia
development after treatment. Currently, we know that hypoxia represents one of the key mechanisms
triggering angiogenesis by the HIF-1α factor, which is involved in VEGF transcription [143], which is
in correlation with Ferrario’s observations [42]. The importance of hypoxia in VEGF stimulation in
PDT-treated tumors with other PSs, such as HY, was also confirmed [36]. On the other hand, the later
analyses showed that angiogenesis is not only indirectly supported by hypoxia, but also that PDT with
the utilization of different PSs could stimulate the expression of proangiogenic factors in cancer cells.
The results from analyses of growth factors, such as VEGF after ALA-PDT [61,62] or mTHPC-PDT [64]
or FGF after ALA-PDT [63], obtained from 2D cell experimental models did not generally point out the
proangiogenic PDT potential as a consequence of protein expression not increasing. Contrarily, some
gene expression analyses showed a significant VEGF upregulation after HY-PDT [14] and mTHPC-PDT,
where the upregulated extracellular secretion level of VEGF was also detected [65].

As a possible solution for the expression of angiogenic factor lowering in cancer cells, PDT targeted
mainly on tumor vasculature with HY [48–50] or BPD-MA utilization was analyzed [55,56]. Besides the
fact that there were totally cured experimental animals after HY-PDT described [48,51], the extensive
side effects associated with massive destruction of non-malignant tissues were detected [48–51,55].
Based on that, it is possible to assume that the side effects associated with vascular-targeted PDT could
represent a major limiting factor for its future utilization in cancer treatment. Moreover, there are many
pieces of evidence pointing out that non-malignant cells or tissues affected by PDT could also represent
a rich source of angiogenic factors.

In this context, Bhuvaneswari et al. [15] observed a modest, but statistically significant, mouse
VEGF increase in tumor 48–72 h after PDT with HY utilization on the murine model of human
nasopharyngeal carcinoma. Similar results were described, concerning Kaposi’s sarcoma after
PT-PDT [16]. Interestingly, Gallagher-Colombo [17] noted approximately ten times higher VEGF
upregulation already by host mice cells 24 h after VT-PDT application on non-small cell lung carcinoma.
Moreover, Jiang detected upregulated VEGF in PDT-affected normal brain tissue, even six weeks after
PT-PDT. Furthermore, a neovascular expansion four weeks after treatment in affected brain tissue was
observed [18]. As a possible solution for the elimination of massive vascular expansion, Zhang et al. [19]
subsequently pointed to the application of lower PDT doses (2 J/cm2). Nevertheless, significantly
increased ECs proliferation and VEGF upregulation were also detected, in comparison to the untreated
contralateral brain region. Subsequently, immunohistochemical analyses with PT-PDT utilization
showed that the brain adjacent to tumor tissue also represents a rich source of VEGF, and neither
vascular endothelial growth factor receptor-1 (VEGFR-1), MF1, nor vascular endothelial growth factor
receptor 2 (VEGFR-2), DC101 antibody application could decrease VEGF expression to non-treated
control levels [20]. Similar findings with PT-PDT utilization were observed for fibrosarcoma with
NS-398 COX-2 inhibitor [27], and in vitro after p38 mitogen-activated protein kinase (MAPK), SB203580,
and SB202190 inhibitor application [29].
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In addition, combination treatment analyses with ALA-PDT were also performed on Walker
carcinosarcoma with chitosan [24] and bladder carcinoma with deferoxamine [25] utilization.
Interestingly, the authors of both mentioned studies pointed to a higher PS accumulation when
a combined treatment regime was applied, in what could be considered as a very important benefit
in connection to fundamental components of PDT. Moreover, Inoue noted a significantly reduced
intratumoral vasculature 24 h after PDT [25]. Nevertheless, after combined treatment with chitosan
utilization, there were not any alterations in MMP-2 expression observed. On the other hand, only in
comparison to the ALA-PDT experimental group, an already decreased level of pro-enzyme form of
MMP-2 1 h after a combined treatment application was described [24].

Humanized anti-VEGF monoclonal antibody bevacizumab, in combination with mTHPC-PDT,
decreased VEGF expression in correlation to the mTHPC-PDT group, but on the contrary to chitosan
and deferoxamine utilization in ALA-PDT [24,25] the reduction mTHPC intratumoral accumulation
was also detected [26].

A combined therapy utilized in relation to HY-PDT seems to be very promising for angiogenesis
inhibition. In comparison to non-treated tumors, a significant downregulation of VEGF expression on
mRNA [23] and protein [15,23] levels was observed even 24 days after treatment application. However,
the mentioned analyses were performed only concerning nasopharyngeal carcinoma [15,23].

The above-mentioned information has shown that PDT, with the huge scale of PS utilized,
induces an angiogenic mechanism in a wide range of tumor types (see Table 1). In addition,
non-malignant tissues also represent very important producers of angiogenesis-promoting molecules,
as was predominantly showed in PT-PDT on the brain adjacent to the tumor [20] or normal brain
tissue [18]. One of the possible solutions could be the utilization of multiple angiogenesis inhibitors
targeted on host and tumor cells, as it was with VT-PDT and mouse anti-VEGF antibody and
Bevacizumab utilization [17]. Contrarily for HY utilization, there are some pieces of evidence
describing very specific accumulation in tumor mass [48], therefore a lowered expression of angiogenic
factors after HY-PDT, in combination with antiangiogenic therapy utilization even 24 days after
treatment, could be also associated with this fact. Moreover, it could be supposed that HY was
predominantly accumulated in cancer cells of a tumor. Regardless, the additional analyses must be
performed to verify this assumption.

Concerning that, a higher level of cancer cell-specific accumulation of PS is fundamental because
non-malignant cells could potentiate tumor growth by angiogenic factor expression after PDT [15–20].
Nonetheless, as the data showed, the application of angiogenesis-inhibiting factors in PDT seems to be
necessary. Based on that, both angiogenic factor inhibition and the maintenance of PS accumulation in
cancer cells are essential for a sufficient therapeutic effect. Simultaneously, a development and analysis
of convenient PS carriers enhancing PS accumulation could significantly improve the therapeutic effect
of PDT, mainly concerning angiogenic mechanism.

5. Conclusions

Induction of angiogenic mechanism after PDT represents a serious problem associated with a
tumor regrowth development in affected tumors. Besides that, the analyses have shown that there are
many factors regulating tumor angiogenesis, and the tumor stroma represents the key regulator of this
mechanism in many aspects. The tumor stroma fundamentally affects the behavior and phenotypical
characteristics of malignant and non-malignant cells. Additionally, there is evidence that angiogenesis
stimulation in cancer is not only associated with malignant cells, but also that the non-malignant
cell fraction represents an important source of angiogenesis stimulating factors. Moreover, PDT
could also induce angiogenic mechanism in these normal cells. Therefore, the preservation of tumor
microenvironment conditions and multicultural characteristics in experimental models represents
an essential requirement for PDT research about angiogenesis. Simultaneously, the improvement of
PS accumulation in targeted tumor cells associated with novel carriers and angiogenesis inhibitors
development represents a cardinal challenge in the field of angiogenesis research about PDT.



Cancers 2020, 12, 2118 14 of 21

Author Contributions: Conceptualization: M.M., R.J., and P.F.; literature review, writing—original draft
preparation, and summary: M.M.; concept discussion, revision, and final approval: R.J. and P.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency (under the contact no.
APVV-18-0125) and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (under the
contact no. VEGA 1/0022/19).

Acknowledgments: The authors are very grateful to Jana Vargová and Karel Souček for providing the
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