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Visceral pain is a global term used to describe pain originating from the internal organs,
which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders
such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting vis-
ceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack
of detailed knowledge of the underlying mechanisms. Stress has long been implicated
in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we
discuss the complex etiology of visceral pain reviewing our current understanding in the
context of the role of stress, gender, gut microbiota alterations, and immune functioning.
Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as pos-
sible therapeutic strategies for the treatment of visceral pain for which there is an unmet
medical need. Moreover, we discuss the most widely described rodent models used to
model visceral pain in the preclinical setting. The theory behind, and application of, animal
models is key for both the understanding of underlying mechanisms and design of future
therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain
and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover,
treatment strategies still lag far behind when compared to other pain modalities.The devel-
opment of novel, effective, and specific therapeutics for the treatment of visceral pain has
never been more pertinent.

Keywords: visceral pain, stress, psychological, animal models, irritable-bowel syndrome, colorectal distension,
microbiota–gut–brain axis

INTRODUCTION
Visceral pain is a severe form of pain that can be debilitating for the
patient. Moreover, it affects a significant proportion of the pop-
ulation with up to 25% of people reporting visceral pain at any
one time. Development of novel therapeutics is hindered by a lack
of detailed knowledge of the underlying mechanisms, however
progress is being made in this regard. The use of animal models
has proved crucial in the advancement of our knowledge of what
really is going on in visceral pain. This review aims to highlight the
current state of play in the context of both preclinical and clinical
research in the area of visceral pain. This review covers a broad
range of research and as such in-depth details of studies is not
included but is cited appropriately throughout. This review will
summarize what is already known in the field and elude to future
avenues yet to be explored in visceral pain research.

VISCERAL PAIN
Visceral pain is by definition, pain sensed as arising from the inter-
nal organs of the body (1). The pain may be described as sickening,
deep, squeezing, and dull. Moreover, some organs are more sensi-
tive to visceral pain than others (2). Diseases or disorders effecting
certain organs such as the liver, lungs, or kidneys are commonly
not associated with any overt symptoms of pain per se but mainly
symptoms that are due to altered functioning of the organ itself.

Conversely, other organs are far more sensitive to damage and can
elicit excruciating pain. These organs include the stomach, bladder,
and ureters (2, 3).

There are multiple etiologies for pain sensed in the internal
organs, including: inflammation (acute and chronic), disruption
of normal mechanical processes, neoplasms (benign or malig-
nant), alterations in neurotransmission from the viscera, and
ischemia (4–8).

Interestingly, visceral pain is intriguing in that pain is com-
monly felt in sites distant from the location of the organ itself.
This referred pain, as it is known, is a key feature of visceral pain
and is used by many clinicians in the diagnosis of certain diseases
(1, 3). The pattern of pain sensation in referred pain can be similar
across multiple organs and disease types, i.e., disorders of the gut,
bladder, and other viscera are sensed as global abdominal pain,
pelvic pain, or back pain, with specific localization very difficult to
identify (3, 9, 10).

Visceral pain is the most common form of pain reported in
the clinic and is the most common form of pain produced by
disease (1). Although visceral pain is experienced by 25% of the
population at any one time (11), in many cases it is insufficiently
treated as it still remains to be considered as just a symptom of
an underlying disease and not a disease in its own right. Over the
last decades, the unsatisfactory treatment of visceral pain has led
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to an immense economic and personal cost, with patients experi-
encing a reduced quality of life and increased work absenteeism
with escalating healthcare costs (12, 13). However, more recent
literature suggests that novel pharmaco-therapeutic targets such
as linaclotide (14) and µ-opioid receptor agonists and antag-
onists, selective κ-opioid receptor agonists, anti-inflammatory
drugs, serotonergic agents, bile acid modulators, and intestinal
bile acid transporters are performing well in clinical trials (15).
To build momentum on these advances in clinical treatments,
we must strive to enhance our understanding of the underly-
ing mechanisms of visceral pain to aid future development of
novel therapeutics. To fully appreciate the complexity of visceral
pain processing, we must first understand the characteristics and
neurobiology of this pain modality.

CHARACTERISTICS OF VISCERAL PAIN
As mentioned earlier, visceral pain perception and psychological
processing is divergent to that of somatic pain (1). Importantly,
there are clear distinctions which set visceral pain aside from all
other pain modalities. These clinical features are crucial for the
understanding of this complex physiological process. The charac-
teristics of visceral pain were first outlined by Cervero and Laird (1)
and have advanced our appreciation of this complex phenomenon.
These characteristics are summarized in Table 1.

TYPES OF VISCERAL PAIN
Visceral pain is the pain associated with a wide variety of disorders
including gallstones, acute pancreatitis, acute appendicitis, diverti-
culitis, painful functional bowel syndromes such as irritable-bowel
syndrome (IBS) and functional dyspepsia (FD), inflammatory
bowel disease (IBD), gastroesophageal reflux disease (GERD),
interstitial cystitis/bladder pain syndrome (IC/BPS), male chronic
pelvic pain syndrome, and gynecological pain [endometriosis,
vulvodynia, menstrual pain, polycystic ovary syndrome (PCOS)]
(16–20). Moreover, and less commonly known is that visceral pain
also encompasses chronic chest pain and colic (21, 22).

Appreciating this wide array of disorders has allowed us to
understand the complex nature of the pathophysiology of vis-
ceral pain but have also induced considerable hurdles when aim-
ing to fully understand the distinct subset of molecular mech-
anisms which underpin this phenomenon. For the remainder
of this review, we will specifically discuss gastrointestinal (GI)
visceral pain.

NEUROANATOMY OF VISCERAL PAIN
Knowing that the clinical characteristics of visceral pain are dis-
tinct from that of somatic pain, it implies that the neurobiology
must also be distinct between these modalities. Indeed this appears
to be the case with numerous groups reporting both anatomical
and physiological differences (23–26).

Pathways for visceral sensation are diffusely organized both
peripherally and centrally. Communication of sensory informa-
tion from the GI tract to the central nervous system (CNS) occurs
via vagal, pelvic, and splanchnic nerve pathways (27–29). Vagal
afferents innervate the GI tract from the esophagus to the trans-
verse colon (8). Pelvic nerves innervate the remaining parts of
the colon and rectum (8). A smaller group of afferents called the

Table 1 | Characteristics of visceral pain [adapted from Cervero and

Laird (1)].

Characteristics of visceral pain

1. Not all viscera have sensory innervation

2. It is not linked to visceral injury

3. It is referred to other locations

4. It is diffuse and poorly localized

5. It is accompanied by motor and autonomic reflexes

FIGURE 1 | Spinal innervation of the gastrointestinal tract. The upper GI
tract (including esophagus and stomach) is innervated with thoracic and
lumbar afferents. The mid GI tract composed of the small intestine is
innervated by both thoracic and lumbar afferents. The mid to lower GI tract
including the large intestine is innervated by lower lumbar afferents and
upper sacral afferents. The pelvic region is innervated by sacral afferents.

splanchnic afferents whose cell bodies arise from the thoracolum-
bar region of the spinal cord innervate the whole GI tract (27),
Figure 1.

More specifically, primary afferent nerve fibers innervating the
viscera, project into the CNS via three pathways: (1) the vagus
nerve and its branches; (2) sympathetic pathways; and (3) the
pelvic nerve (parasympathetic pathways) and its branches (26).
Primary afferents signaling to the CNS reside primarily in the
vagal nodose ganglion, which project to the nucleus tractus soli-
tarius (NTS) located within the medulla of the brainstem (8), and
in the T2–L2 and S1–5 dorsal root ganglia (30).

Visceral primary afferents have been demonstrated to enter the
spinal cord and form synapses with dorsal horn neurons ipsilateral
and contralateral to the site of entry. The result is extensive, diffuse
CNS activation (31, 32). These axons form the postsynaptic dor-
sal column pathway. Interestingly, the dorsal column in itself has
been shown to relay visceral nociceptive information and is now
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thought of as a visceral pain pathway in its own right. Numer-
ous clinical studies have shown that lesioning the fibers of the
dorsal columns significantly relieves pain and decreases analgesic
requirements in patients suffering from cancer originating in the
visceral organs (33, 34).

Visceral afferents terminate in laminae I, II(outer), V–VII and X
in the spinal cord. Laminae I and V form part of the spinothala-
mic tract, laminae VII and X constitute part of the dorsal column
pathway (35, 36).

Second-order processing of visceral stimuli occurs at spinal
segments and brainstem sites receiving primary afferent input.
Figure 2 depicts the principal visceral afferent pathways project-
ing to the spinal cord, and then ascending to the thalamus and
midbrain. These are the spinothalamic, spinoreticular, and spin-
omesencephalic tracts (37, 38). The spinothalamic tract transmits
sensory information from the spinal cord to the reticular forma-
tion in the brainstem and terminates in the thalamus (medial
and posterior) at which point the thalamocortical fibers project
to the primary somatosensory cortex (38). This tract is responsi-
ble for sensory discrimination and localization of painful stimuli
and thus the reflexive, affective, and motivational properties of
noxious stimulation (38, 39).

The brain regions innervated by these pathways, more com-
monly known as the pain matrix, which are activated in response to

colorectal stimulation include the prefrontal cortex (dorsolateral),
the insula, the thalamus, the amygdala, and the anterior cingu-
late cortex (ACC) (38). The ACC is a critical component in the
pain matrix and is functionally divided into two discrete regions,
the perigenual ACC and the midcingulate cortex (MCC), with the
former involved in affect and the latter in behavioral response
modification (38, 40). Moreover, the amygdala, in particular, the
central nucleus of the amygdala (CeA), is a critical region in the
limbic system and the pain matrix. The CeA integrates many
signals for the processing of painful stimuli. It receives input
from the brainstem, as well as more complex information from
the thalamus and the cerebral cortex. Moreover, it has also been
shown to have direct synaptic interactions with locus coeruleus
(LC) neurons (41), highlighting a clear role of stress pathways
in the development of visceral pain. Furthermore, the amygdala
is also known to receive afferents from the spinal cord through
the spino-(trigemino-)parabrachio-amygdaloid pathway (42). It
is also involved in the descending pain pathway and is involved in
the emotional, affective, and cognitive functions of pain process-
ing. Numerous preclinical studies have shown the important role
of the amygdala in pain processing (43–52).

This multicomponent integration of nociceptive information
explains the variability in the experience and reporting of vis-
ceral pain (37, 53) and thus the difficulty in development of

FIGURE 2 | Ascending and descending pathways mediating visceral pain
sensation. The ascending pathway for visceral pain perception from the
periphery through the dorsal root ganglia via the dorsal reticular nucleus to
the primary somatosensory cortex, insula, pregenual anterior cingulate cortex

(pACC), and the midcingulate cortex (MCC). The descending pathway is
mediated via signals from the ACC, thalamus, and amygdala to the
periaqueductal gray (PAG), locus coeruleus, and raphe nucleus, returning via
the rostral ventral medulla to the colon.
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effective pharmacological treatments. Interestingly, diffuse nox-
ious inhibitory controls (DNIC) are a phenomenon more com-
monly referred to as “pain inhibiting pain” whereby a painful
stimulus is applied to a part of the body, distant from the actual
site of pain, thus inhibiting neurones within the dorsal horn of the
spinal cord that are actively responding to chronic (unexplained)
pain as seen in visceral hypersensitivity (54). DNIC is frequently
used to quantify the central pain sensitization in chronic pain
patients such as in the case of IBS (55–58). IBS patients consistently
show a deficit in DNIC which correlates with symptom severity.
These findings elude to the hypothesis that chronic pain patients
are not only hyper-sensitive to pain but they also demonstrate
reduced DNIC, possibly because of dysfunction of endogenous
pain inhibition systems (55).

BIOCHEMICAL MEDIATORS OF VISCERAL PAIN
Neurotransmitters, cytokines, and other mediators such as pep-
tides and neuropeptides are thought to mediate visceral nocicep-
tive signals from the periphery to the central pathways. Indeed,
mediators released during peripheral inflammation and injury,
are thought to influence spinal nociceptors resulting in increased
nociceptive activity and central sensitization (27). For example, the
inflammation and irritation associated with bladder infections is
believed to cause the release of glutamate that sensitizes visceral
primary afferents (59). Moreover, glutamatergic signaling in par-
ticular, metabotropic glutamate (mGlu) receptors and glutamate
reuptake are fast becoming attractive areas of research in the con-
text of visceral pain (60, 61). However, there are a whole host of
other mediators and receptors that are involved in visceral pain
processing including; neurotransmitter receptors [acetylcholine
nicotinic receptors (62), cannabinoid receptors (63), opioid recep-
tors (64, 65), GABAA, GABAB, and GABAC receptors (66, 67),
glutamate (ionotropic) receptors (68), glutamate (metabotropic)
receptors (69, 70), glucocorticoid receptors (47, 71)], inflam-
matory receptors (bradykinin receptors, cholecystokinin recep-
tors, cytokine receptors, leukotriene receptors, prostanoid recep-
tors, tachykinin receptors, nitric oxide signaling, cyclooxygenase,
lipoxygenase) (72, 73) and ion channel receptors [transient recep-
tor potential vanilloid (TRPV) (74), purinergic (P2X) receptors
(75), voltage-gated calcium channels (CaV), voltage-gated potas-
sium (KV) channels, voltage-gated sodium (NaV) channels] (76).
Due to the vast array of mediators and pathways, a clear patho-
physiology of visceral pain remains to be elucidated thus hindering
drug development.

TREATMENT OF VISCERAL PAIN
Although most visceral pain disorders are not life-threatening
(non-cancer pain), they have a considerable negative impact on the
quality of lives of patients with increased psychological distress,
increased work absenteeism and both sleep and sexual dysfunc-
tion (77, 78). There are currently no pharmacological treatments
on the market specifically for visceral pain. This leads to persis-
tent bouts of discomfort and possible debilitation for the patient
but also results in recurring visits to clinicians, associated with a
significant economic burden on both the patient and healthcare
services (12). Many patients are treated with multiple drug combi-
nations to no avail. This void of effective analgesics in the context

of visceral pain is frustrating for all parties involved. The drive to
develop new analgesics has started right back to the basic mol-
ecular mechanisms of which very little is known (60, 79). Basic
science and animal models have proved crucial in this effort for
future developments of novel visceral analgesics.

In the clinical setting, treatment of visceral pain is extremely
difficult. This is due to its complex nature, in that individuals
can have many different triggering factors of their visceral pain
and with no known cause, effective treatment strategies are dif-
ficult to identify. Treatment can differ from patient to patient
and indeed treatment of the same patient over time may also
change. As a result of this, a wide variety of pharmacological
tools are used including a variety of analgesics [opioids (80),
non-steroidal anti-inflammatory drugs (NSAIDS) (81), benzodi-
azepines (82)] and others (antibiotics, laxatives, serotonin mod-
ulators) (83, 84). Moreover, patients may also be treated with
antispasmodics, particularly in the case of GI visceral pain and
anti-depressants as well as others (84). Due to this heteroge-
neous pharmacological treatment profile, there are numerous and
serious side effects including constipation, sedation, vomiting, tol-
erance, dependence, and addiction. However, none of the above
are specific for the treatment of visceral pain per se, and mainly
target some other features associated with chronic pain in general.
However, in recent years, promising findings are emerging from
both preclinical and clinical research which are nicely reviewed in
Ref. (15, 83, 85, 86).

As with all chronic/severe pain disorders, opioids form the
core of pain management for visceral pain conditions. However,
as mentioned earlier, this class of analgesics are associated with
the most serious side effects particularly over chronic use ranging
from constipation (87) to analgesic tolerance (88–90) and noci-
ceptive sensitization (91). More worryingly is the development
of opioid-induced hyperalgesia after periods of prolonged opioid
use (92–94).

Over the counter analgesics are routinely used by patients suf-
fering with visceral pain. These include NSAIDS (aspirin, ibupro-
fen) and paracetamol. Again as with the case of most pharmaco-
logical agents used in the treatment of visceral pain, these agents
do not specifically target visceral pain and only provide mild pain
relief. Moreover, as these compounds are available over the counter
they can be abused by consumers and carry a host of side effects
not least GI bleeding, increased stomach acid, liver disease, liver
failure, and even death in some cases (95).

Serotonergic compounds such as tegaserod (5-HT4 agonist)
and alosetron (5-HT3 antagonist) (96–102) have been the main
route of treatment for a range of visceral pain conditions, in par-
ticular IBS. However, tegaserod has since been removed from
the market due to significant cardiovascular effects as outlined
by the FDA. Alosetron was also withdrawn from the market in
2000 due to life-threatening adverse GI effects, however, in 2002,
it was reintroduced but its availability and use were dramatically
restricted.

Recent evidence from preclinical studies has pointed to a role
of the transient receptor potential (TRP) channel family in the
pathophysiology of visceral pain, which may lead to future devel-
opment of novel therapeutics (103, 104). Moreover, both preclin-
ical and clinical data have shown analgesic efficacy of pregabalin

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research February 2015 | Volume 6 | Article 15 | 4

http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research
http://www.frontiersin.org/Affective_Disorders_and_Psychosomatic_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moloney et al. Animal models of stress-induced visceral pain

and gabapentin in acute and chronic visceral pain conditions, act-
ing both at spinal and supra-spinal levels in particular at the level
of the rostral ventromedial medulla (RVM) (60, 105–108). Fur-
thermore, the efficacy of mGlu receptors and also glial glutamate
transporters have revealed themselves to be very promising targets
(59, 61, 70, 109–115).

As mentioned previously, there is an unmet need for effective
pharmacological therapeutics in the context of visceral pain. How-
ever, there are still major challenges to be met, not least in the fact
that we still lack a clear understanding of the etiopathogenesis of
visceral pain disorders.

COMORBIDITIES OF VISCERAL PAIN
Psychiatric disturbances are the most frequent comorbidity of
visceral pain (116–125). In particular, anxiety and depression
are the most commonly reported comorbidities. This complex
link between visceral sensation and psychological perceptions are
mediated via the brain–gut axis.

Moreover, stress-related changes in bowel habit can attest to the
fact that the brain can influence gut function and sensation (126).
Several clinical studies have suggested that psychosocial comor-
bidity is a major contributor to the severity and impact on quality
of life of visceral pain disorders such as IBS and somatic pain disor-
ders such as fibromyalgia (127–131). These findings are reinforced
by a considerable volume of experimental research that links stress,
anxiety, and depression to altered GI sensory and motor function
as well as altered pain processing (8, 132–138). Indeed, successful
management of patients with visceral pain disorders requires care-
ful attention to these psychosocial factors, often in consultation
with mental health professionals.

PATHOPHYSIOLOGY OF VISCERAL PAIN
The etiology of visceral pain is most likely multi-factorial involv-
ing biological, psychological, and social factors leading many to
describe visceral pain as a biopsychosocial disorder. Due to the
array of comorbidities associated with visceral pain, it is clear
that both the brain and viscera play significant roles through the
brain–gut axis (139–142). Moreover, the emerging role of the gut
microbiota on brain signaling has now led to the concept of the
microbiota–brain–gut axis (143–145). Numerous other pathways
and systems feed into this complex network of communication,
including the stress axis and immune system. The role of the
amygdala in IBS has been extensively reviewed in the context of
brain–gut axis communication (146) and numerous clinical and
preclinical trials have also highlighted an important contribution
of the amygdala to visceral pain processing and IBS (52, 147, 148).
Here, we discuss the pathophysiology of visceral pain in terms of
signaling along the microbiota–brain–gut axis, the hypothalamic–
pituitary–adrenal (HPA) axis, and the immune system. Many other
factors such as gender, genetics, and epigenetics are implicated in
these pathways which not only exacerbate visceral hyperalgesia but
may also be predisposing factors for the development of visceral
hypersensitivity in later life. Furthermore, we also discuss possi-
ble future targets for visceral analgesia including the modulation
of mGlu receptors in addition to glial glutamate transporters and
histone deacetylation.

STRESS
Stress was first described by Hans Selye almost 80 years ago, and
is defined as an acute threat to the homeostasis of an organism
(149). Stressors can be in the form of physical threats such as an
adverse event, or psychological stressor, such as anticipation of a
threat. Exposure to these stressors will elicit a sequence of phys-
iological, emotional, and behavioral reactions that allow one to
cope adequately with the situation (150–152). Behavioral effects of
the stress response include increased awareness, improved cogni-
tion, and altered pain sensitivity. Physiological adaptations include
increased cardiovascular function, enhanced respiratory rate, and
altered metabolism, along with inhibition of feeding, digestion,
growth, reproduction, and immunity (153, 154).

The complexity of the sequence of responses to stress involves
a range of systems including endocrine, nervous, and immune
systems. The efficiency of this response ensures that the correct
behavioral and physiological changes occur so that the individual
responds appropriately to the stressor presented and improves the
individual’s chance of survival (155, 156). Understandably, due
to the considerable complexity of the stress response, a host of
regulatory mechanisms are at play to ensure the stress response
is tightly regulated and does not become pathogenic to the host.
These regulatory mechanisms are present at all levels of the stress
response but particularly so at the neuronal and endocrine level
which function to tightly regulate this adaptive process (157).
However, the body can also elicit maladaptive changes in brain
structure and function in response to chronic and uncontrollable
stressors, thus, leaving long-lasting signatures on global wellbeing
(158–160).

Dysregulation of the stress response has been associated with
a plethora of disorders and diseases including chronic and vis-
ceral pain, autoimmune diseases, hypertension, affective disor-
ders, and major depression (8, 161). Deciphering the pathogen-
esis of such disorders and their aberrant regulatory mechanisms
will aid future therapeutic strategies for treatment and prophy-
laxis of stress-related disorders including stress-induced visceral
hypersensitivity (154).

THE HYPOTHALAMIC–PITUITARY–ADRENAL AXIS
The HPA axis is the main stress axis in mammals and its anatomical
structures are located both in the CNS and in the periphery. The
major components of the stress axis are localized in the paraven-
tricular nucleus (PVN) of the hypothalamus, the pituitary gland
(anterior lobe), and the adrenal gland (154). In response to stress,
corticotrophin-releasing hormone (CRH) is released and travels
to the anterior pituitary gland where binding of CRH to CRH
receptors (CRHR1 and CRHR2) leads to the release of adreno-
corticotropic hormone (ACTH) into systemic circulation. ACTH
targets the adrenal cortex to produce and secrete glucocorticoids
(154). Glucocorticoids are the main effector molecules of the stress
response and regulate the physiological adaptations through bind-
ing to their intracellular receptors (162, 163). Dysregulation of the
HPA axis via inadequate or excessive activation, is thought to con-
tribute to the development of a wide array of pathologies (154,
162, 164). Indeed CRH and its receptors have been extensively
investigated in the context of stress and visceral pain (165–177).
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Taken together, it is apparent that stringent regulation of the HPA
axis is essential to a normal adaptive and efficient stress response.

STRESS AND IRRITABLE-BOWEL SYNDROME
The association between stress and psychiatric disorders, is well
known, however, what exact molecular changes occur to under-
pin this increased vulnerability to disease is on-going (145, 178).
Psychiatric disorders in addition to stressful life events are predis-
posing factors for the development of functional gastrointestinal
disorders (FGIDs) such as IBS. IBS is one of the most common
FGIDs with an estimated prevalence of 10–20% (179). Symp-
toms include abdominal pain, altered stool consistency and fre-
quency, bloating, and distension. The pathophysiology of IBS has
implicated stress as one the most significant risk factors for the
development of the disorder (180–183). Stress at different stages
throughout life, and especially early in life, can have deleterious
effects on both psychological wellbeing and GI function of the
host (Figure 5). Figure 5 depicts the roles of stress (vulnerabil-
ity, trigger, perpetuating) in IBS pathophysiology at critical points
throughout life.

Over the last decade, there has been an abundance of reports
implicating stress in the onset or exacerbation of symptoms of IBS

(182, 184–186). Moreover, in a preclinical setting, animal models
of IBS are predominantly stress-based models (187) aimed at elu-
cidating biomarkers of this complex biopsychosocial disorder. If
we look at stress throughout our life, some critical developmen-
tal windows such as early life and adolescence are associated with
the development of a wide variety of disorders, not least visceral
pain disorders such as IBS. Stress, particularly during early life can
manifest in many different forms including physical trauma, loss
of a parent, abuse (physical/sexual), all of which have been associ-
ated with an increased risk of developing FGIDs later in life (188,
189). Furthermore, acute stressors such as sexual abuse, rape, trau-
matic event (near fatal event), and warfare are also risk factors for
the development of IBS (122). Individuals responses to stress vary,
a phenomenon thought to be based both on genetic and epige-
netic mechanisms (180). The area of stress susceptibility and stress
resilience is of interest across all areas of psychiatry (190, 191) and
also in the context of comorbidities such as chronic pain disorders
(192). Chronic stress may alter individual’s responses and play a
strong role in symptom exacerbation. For example, psychosocial
stressors in the form of sustained, threatening life events have been
associated with onset and symptom exacerbation in IBS (181, 182,
193–195). Moreover, chronic stress has also been shown to induce

FIGURE 3 | Routes of communication along the microbiota–
brain–gut axis. Several pathways have been proposed to understand
the communication between the intestinal microbiota and brain
function, some of which have been summarized in this figure. These
include neuroendocrine (hypothalamic–pituitary–adrenal axis), immune
system (neuromodulating cytokines), enteric nervous system,
autonomic nervous systems (vagus nerve), and spinal afferents.
5-hydroxytryptamine (5-HT) is produced by enterochromaffin cells in the

GI tract. Gut microbes produce tryptophan-related metabolites, gut
hormones, short chain fatty acids (SCFAs), and neurometabolites GABA,
noradrenaline, and dopamine potentially modulating CNS function.
Stress can influence the microbial composition of the intestine through
the release of stress hormones (corticosterone/cortisol) or sympathetic
neurotransmitters that in turn can influence gut physiology and alter the
microflora balance. DC, dendritic cell; EC, enteroendocrine cells; ECC,
enterochromaffin cells.
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adaptive changes in neuronal circuitry at the level of the CRH
receptor 1 expression in the PVN of the rat hypothalamus, with
reduced CRHR1 expression in comparison to acutely stressed rats
after repeated homotypic stress exposures (196).

Differing coping strategies employed by patients, have also been
shown to have a profound effect on symptom severity due in
part to adaptation to stress (197–200). These studies highlight
the high degree of catastrophizing or maladaptive coping within
IBS groups. Indeed, positive coping strategies were shown to have
positive effects on perceived stress levels and symptoms, however
biomarkers such as cortisol remained unchanged. Furthermore,
other functional somatic syndromes such as fibromyalgia are also
known to exacerbate IBS symptoms (201, 202).

Psychological stressors are not the only risk factor for the
development of IBS, but also physical stressors such as infec-
tion. Recent evidence from a systematic review and meta-analysis
demonstrated that there was a sixfold increase in the risk of
developing IBS after GI infection. Moreover, this enhanced risk
remained elevated for at least 2–3 years post-infection (203, 204).
The vicious cycle that stress plays in terms of vulnerability,
trigger and perpetuation is most notable in patients who have
developed IBS and associate particular situations, surroundings,
or scenarios as provoking factors. This type of fear condition-
ing plays a key role in triggering stress responses to situations
and contexts that by themselves are not threatening or stress-
ful (205). In the context of IBS patients, this forward drive of
conditioned fear-responses to both physical stimuli (infection)
or contextual stimuli (location of stressful event) may be a sig-
nificant factor in symptom chronicity (182). Using this knowl-
edge and applying it to animal models will be discussed in later
sections (206).

MICROBIOTA AND VISCERAL PAIN
THE MICROBIOTA–BRAIN–GUT AXIS
The bidirectional signaling network that exists between the GI
tract and the brain is vital for maintaining homeostasis and is reg-
ulated at the neural [both central and enteric nervous systems
(ENS)], hormonal, and immunological levels. Perturbation of
these systems results in alterations in the stress response and over-
all behavior (143, 207). The high rate of psychiatric comorbidities
with GI disorders and vice versa (208–210) are further evidence of
the importance of this network of communication. The brain–gut
axis is by no means a new discovery however its role in many dis-
orders outside of gastroenterology has become an area of intense
research. Moreover, advances in biomedical research have allowed
us to elucidate the role of the gut microbiota community in sig-
naling along this axis, which is now more commonly referred
to as the microbiota–brain–gut axis (Figure 3). The impact of
the microbiota–brain–gut axis has become a rapidly advanc-
ing research topic encompassing broad domains of biomedical
research including neuroscience, psychiatry, gastroenterology, and
microbiology.

The classical construct of the brain–gut axis, describes the
way in which complex bidirectional signals can transmit between
the CNS and the GI tract. This axis is critical for preserv-
ing gut homeostasis, dysregulation of which has been impli-
cated in an array of disorders and disease states including gut

inflammation, chronic abdominal pain syndromes, and eating dis-
orders (143–145, 210–217). The brain–gut axis is responsible for
some of our most basic functions such as facilitating the central
regulation of digestive function. Indeed, the role of this axis is a
well-developed concept in the area of food intake and satiety (218,
219) and more recently obesity (220, 221).

Moreover, the role of the microbiota–brain–gut axis in the stress
response via modulation of the HPA axis has been investigated by
numerous independent research groups (222–228). Furthermore,
many forms of psychological stress have been shown to alter the gut
microbiota fingerprint with many prebiotics and probiotics show-
ing beneficial effects against the negative impact of stress. Thus, it is
now acknowledged that the gut microbiota themselves are critical
mediators of information along this bidirectional communication
network (145, 207, 211, 213, 229, 230).

Indeed, in IBS patient cohorts, numerous independent research
groups have shown distinct gut microbiota populations when
compared to healthy controls (231–236). This was recently
reviewed by Mayer and colleagues (237). Moreover, probiotic
interventions appear to be beneficial to IBS patients (238).

Manipulation of the gut microbiota through the use of pro-
biotic and prebiotics treatments have shown that by augmenting
so-called “good bacteria” such as Bifidobacteria and Lactobacil-
lus, in the gut, visceral hypersensitivity can be reversed in pre-
clinical models. A mixture of eight probiotic bacteria strains
(VSL#3) was shown to have protective effects against development
of visceral hypersensitivity in the neonatal maternal separation
model. Moreover, TPH1, tryptophan hydroxylase 1, the gene for
the enzyme responsible for synthesizing serotonin, a key neuro-
transmitter involved in IBS treatment, was markedly up-regulated
by neonatal maternal separation and this effect was reversed by
VSL#3 intervention (239). Moreover, the same cocktail of probi-
otics was shown to prevent visceral hypersensitivity induced by
inflammation via intra-colonic instillation of 4% acetic acid when
given prophylactically (240). Bifidobacterium species particularly,
Bifidobacterium infantis 35624 has been shown to be particu-
larly effective at ameliorating visceral hyperalgesia in both stress-
induced visceral hypersensitivity and colitis (241–243). Moreover,
Lactobacillus species have also displayed efficacy in visceral pain
models (244–247).

Furthermore,antibiotic-induced visceral hypersensitivity again
underpins a role of the gut microbiota in the pathophysiology of
visceral pain (244, 248). Interestingly, rifaximin, a semisynthetic,
non-absorbable antibiotic that demonstrates no clinically relevant
bacterial resistance has also shown positive effects in the treatment
of IBS (249–257). These findings may seem contradictory, how-
ever, rifaximin is particularly efficacious in cases of small bowel
bacterial overgrowth found in IBS patients. These findings add to
the growing literature that microbiota dysfunction may be a key
player in the pathophysiology of IBS and may lead to future novel
therapeutic interventions.

IMMUNE SYSTEM AND VISCERAL PAIN
The immune system and thus inflammation have long been asso-
ciated with psychiatric disorders, in particular, depression (258–
260) and chronic pain disorders (261). Depression is a common
comorbidity of visceral pain, as discussed earlier, so it is not
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surprising that a common mechanism such as neuroinflamma-
tion may be at play. The immune system is a critical component of
the microbiota–brain–gut axis and plays vital roles in maintaining
homeostasis in the nervous systems and GI tract (262). Moreover,
direct communication occurs between the immune system and
the HPA axis, autonomic nervous system (ANS) and ENS (263–
267). These integrated pathways are all known to be involved in
the pathophysiology of visceral pain, and thus it is not unforeseen
that the immune system plays a key role in the development of
visceral hypersensitivity.

MICROGLIA AND VISCERAL PAIN
Microglia represent the first line of defense for the CNS, acting as a
sensor for pathological events (268). The process of central sensi-
tization and the subsequent changes in synaptic plasticity has long
been thought to play a major role in nociceptive processes both in
the context of chronic pain as well as acute, in both somatic and vis-
ceral modalities (269, 270). In the last decade, the role of microglia,
both spinal and supra-spinal, has become an area of interest in
the context of nociception (271–273). In animal models of both
inflammatory and neuropathic pain, activation of microglia is a
key step in the onset and maintenance of hypersensitivity and
allodynia (274–279).

The role of spinal microglia in visceral pain has only recently
been addressed and reviewed nicely by Lu (269). Saab and col-
leagues were first to report increased activated microglia in a
rat model of chronic visceral hyperalgesia, namely the neonatal
colon irritation model (280). Moreover, minocycline, a second-
generation tetracycline compound known to interrupt microglia
activation and its associated pro-inflammatory response, reversed
the visceral hypersensitivity in adulthood (269, 280).

Furthermore, enhanced microglia activation was reported in
the hippocampus, in a model of trinitrobenzene sulfonic acid
(TNBS)-induced colitis, concomitant with increased tumor necro-
sis factor-α (281). However, this study did not assess nociceptive
behavior, but one could predict visceral hyperalgesia as observed
by others in the TNBS-model (282). More recently, it was shown
that the activation of spinal microglia plays a critical role in the ini-
tiation and maintenance of visceral hypersensitivity in the TNBS-
induced chronic pancreatitis (CP) rat model (283). Intrathecal
injection of minocycline attenuated visceral hypersensitivity and
phospho-p38 levels in CP rats.

In other non-inflammatory models of visceral hyperalgesia,
it has also been shown that chronic psychological stress leads
to microglia activation in the lumbar spinal cord (284). More-
over, this stress-induced increase in activated microglia could be
blocked by SB203580, a p38 inhibitor or minocycline. Other com-
pounds known to alter the microglia phenotype such as FKN, a
microglia activator, was shown to induce visceral hypersensitiv-
ity in naïve rats when administered spinally, an effect which was
blocked by minocycline (269), thus adding further evidence to
support the role of spinal microglia in mediating stress-induced
visceral hypersensitivity (269). Taken together, these studies sug-
gest that microglia may play an important role in the pathogenesis
of visceral pain.

However, it is also pertinent to note that exact role of inflamma-
tion and indeed micro-inflammation still remains controversial in

the context of IBS. Indeed, no effect of anti-inflammatory drugs
has been shown in IBS such as prednisolone (285).

TOLL-LIKE RECEPTORS AS NOVEL THERAPEUTIC TARGETS FOR
VISCERAL ANALGESIA
Toll-like receptors (TLRs) are a family of pattern-recognition
receptors of the innate immune system (Figure 4). There are 10
human TLRs and 12 mouse TLRs (286). TLR signaling consists
of at least two distinct pathways: (1) the MyD88-dependent path-
way, which leads to a pro-inflammatory phenotype, and (2) the
MyD88-independent pathway, which leads to the production of
interferon-β and the maturation of dendritic cells. The MyD88-
dependent pathway is common to all TLRs, except TLR3 (287).
TLRs are important players in the maintenance of mucosal and
commensal homeostasis within the gut via innate host defense
mechanisms. Intestinal dysbiosis and inflammation underlie sev-
eral disease states affecting the GI tract such as IBS and IBD (288,
289). Indeed, reports have shown the involvement of peripheral
TLR4 in patients suffering from IBS (290, 291) and in animal mod-
els of visceral pain (289, 292, 293). Moreover, the presence of TLR4
in the ENS and in the dorsal root ganglia indicate a role for TLR4
in the transmission of sensory information from the GI tract (294,
295). Furthermore, TLR4 is also expressed within the CNS, pre-
dominately in microglia (296), which have been discussed above
and their role in visceral pain. Moreover, it is now emerging as
a possible therapeutic target for neuropathic pain (297). Taken
together, these findings suggest TLR4 as a promising novel target
for the treatment of visceral pain.

Interaction of TLRs and Opioid Receptors
In recent years, it has been shown using in vivo, in vitro, and in sil-
ico techniques that members of each structural class of opioids
(µ, κ, δ) activate TLR4 (298). Moreover, opioid antagonists such
as naloxone and naltrexone non-stereoselectively block TLR4 sig-
naling (299, 300). Modulation of TLR4 expression/function by
acute blockade of TLR4, genetic knockout of TLR4, or blockade
of TLR4 downstream signaling each lead to a potentiation of the
magnitude and duration of opioid analgesia (301). These effects
are thought to be mediated at both spinal and supra-spinal sites
(299). Given the breadth of opioids now documented to interact
with TLR4, many off-target opioid effects previously attributed
to unilateral opioid action at classical neuronal opioid receptors
might in fact result, at least in part, from the duality of opioid
actions at TLR4 (301).

GENDER AND VISCERAL PAIN
Sex differences in pain sensitivity has been a topic of debate
for many years and was recently reviewed by Mogil (302). More
recently, gender differences in visceral pain and in particular IBS
have been reviewed in Ref. (303) and indeed the contribution
of sex hormones (304). Moreover, we can now appreciate that
gender differences are also apparent in analgesic response (305).
Many forms of visceral pain due to their nature are especially
prevalent in women, i.e., pain associated with reproductive func-
tion (menstruation pains, pain of child birth, or postmenopausal
pelvic pain). IBS is a disorder predominated by females (female to
male ratio ~ 2:1) which is in parallel with women also being more
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FIGURE 4 | Schematic of the localization of toll-like receptors (TLRs). TLRs are located on the plasma membrane (TLR1, TLR2, TLR4, TLR5, TLR6, TLR10)
with the exception of TLR3, TLR7, TLR8, and TLR9, which are localized in the endosomal compartment.

susceptible to stress-related disorders (306, 307). Indeed, many
studies have reported sex differences in the stress response itself
and stress-induced pain modulation (8, 308). However, in the case
of animal studies, the picture is not as clear. This is due in part to a
bias for using male rodents in most preclinical studies addressing
the role of stress modulation on visceral hypersensitivity (134, 135,
289, 309–311).

Sex/gender can influence the brain–gut axis, at an array of sites
which logically will effect subsequent clinical outcomes includ-
ing response to behavioral and drug therapies in patients suf-
fering with visceral hypersensitivity (312). A plethora of factors
including mood, stress, gender role, hormones, as well as inflam-
matory mediators modulate the brain–gut axis (313). As a result,
the explanation for gender-related differences in visceral pain is
likely multi-factorial involving environmental, psychological, and
biological (sex) influences (312, 314, 315).

Studying gender differences in any context comes with signifi-
cant difficulties, not least in the context of visceral pain disorders.
Due to the greater number of women who are diagnosed with
these disorders, there is often insufficient power to detect differ-
ences in the etiologic factors and treatment response by gender
or sex. For example, several studies examining the effectiveness of
cognitive behavioral therapy in reducing symptom distress have
included only women (316, 317) or were disproportionately com-
posed of women (318). In particular, the smaller number of men in
drug trials leaves many studies underpowered to examine gender
differences (313).

The variability in reproductive hormones such as estrogen and
progesterone, across the menstrual cycle as well as significantly
reduced ovarian function during and after menopause may explain
changes in GI motility and visceral sensitivity (319). This has been
reported in several studies documenting the impact of menstrual
cycle on GI symptom reporting including visceral pain (320–323).

The most consistent finding is that, many women with and without
FGIDs experience an increase in GI symptoms including visceral
pain during the late luteal and menses phases of the cycle relative
to other cycle phases (313, 323–325). To add to the complexity,
is the addition of pharmacological agents known to impact on
the menstrual cycle and associated functions, such as oral con-
traceptive use and hormone replacement therapy. Moreover, the
presence of other reproductive organ problems unique to women
such as dysmenorrhea can also confound such studies.

It has been well established that adult females have higher basal
and stress levels of ACTH and corticosterone than do males (326–
330). Moreover, there is convergent lines of evidence reporting
that gonadal hormones, specifically the estrogens, are important
regulators of the HPA axis. Indeed, estrogen receptors α and β

themselves have been shown to increase CRH expression (8, 331,
332). Females have higher CRH, ACTH, and corticosterone levels
during proestrus (333), the phase of the cycle in which estra-
diol levels are highest, than during other phases of the estrous
cycle (334–336). Fluctuations in gonadal hormones specifically,
estradiol, during the menstrual cycle can also lead to changes in
the neurotransmitter systems, in particular, the serotonergic and
glutamatergic systems. Interactions between these systems have
implications in the etiology and treatment of stress-related dis-
orders and pain circuitry (142, 307, 337–340). Moreover, gonadal
hormones have been shown to significantly affect visceral sensitiv-
ity in animal models, however some conflicting results have also
shown no effect again highlighting the complexity of sex differ-
ences in pain processing both in a preclinical and clinical setting
(173, 341–344). Interestingly, the gender of the experimenter was
also shown to have a role in pain responses in preclinical models
(345). Taken together, it is clear that the role of gender and/or
sex in the pathophysiology of visceral pain remains a complex
phenomenon which requires further investigation.
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GLUTAMATE AND VISCERAL PAIN
IONOTROPIC GLUTAMATE RECEPTORS AND VISCERAL PAIN
N-Methyl-D-aspartate (NMDA) receptors are not only known for
their important role in excitatory synaptic transmission but also
for their role in pain (346). Glutamate found in vagal and spinal
afferents contributes to nociceptive signaling via NMDA and non-
NMDA receptors (347). Though evidence for direct links between
glutamate and visceral nociception is lacking, NMDA receptor
antagonists have been shown to reduce the response of vagal
and pelvic afferents in the colon and other viscera to mechanical
stimuli (348). A study by Coutinho and colleagues (349) inves-
tigated the role of glutamate receptors in the RVM in visceral
hyperalgesia using a colonic irritation model. They found that acti-
vation of NMDA receptors by colonic inflammation facilitated vis-
ceral hyperalgesia while non-NMDA receptors mediate inhibitory
effects (349). Moreover, NMDA receptors may also be involved in
the transmission of visceral nociception in the non-inflamed gut
(350). It was observed that activated peripheral NMDA receptors
in the colon caused the release of pro-inflammatory peptides, cal-
citonin gene-related peptide (CGRP) and substance-P, which have
significant roles in the mediation of chronic and severe pain (350).

METABOTROPIC GLUTAMATE RECEPTORS AND VISCERAL PAIN
Metabotropic glutamate receptors with the exception of mGlu6
receptor are expressed in all areas of the pain matrix from the
spinal cord to supra-spinal sites. The action of mGlu receptors can
be pro-nociceptive or anti-nociceptive depending on the subtype
and site of action (351).

In the last decade, the role of mGlu receptors has gained atten-
tion in the realm of visceral pain. To our knowledge, the first
study explicitly investigating the role of these receptors in visceral
nociceptive processes was performed by Chen et al. (352). They
found that antagonism of group 1 mGlu receptors with LY393053
reduced nociceptive behaviors in the mouse acetic acid writhing
test. Furthermore, administration of a group 1 mGlu receptor
agonist (S)-3,5-dihydroxyphenylglycine (DHPG) into the CeA by
microdialysis increased the responses to innocuous visceral stim-
ulation; an effect that was reversed by a reactive oxygen species
(ROS) scavenger phenyl-N-t -butyl nitrone (PBN) and a super-
oxide dismutase mimetic (TEMPOL). In the same study, mGlu
receptor 1 antagonist LY367385 was also found to decrease the
responses to visceral stimulation (353).

Moreover, work by Lindstrom and colleagues investigated
specifically the role of mGlu5 receptor in a rat model of vis-
ceral hypersensitivity (111). Here they found that mGlu5 receptor
antagonism with MPEP [2-Methyl-6-(phenylethynyl)-pyridine]
and MTEP [3-(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine was
sufficient to reduce the visceromotor response (VMR) in conscious
Sprague-Dawley (SD) rats without altering colonic compliance.
Moreover, mGlu5 receptor antagonism reduced colorectal disten-
sion (CRD)-evoked increases in heart rate and blood pressure
(111). In this study, the effects seen could not be conclusively due
to a peripheral or central site of action. Indeed, it has also been
found that noxious colonic stimulation increases the number of
Fos-positive neurons in the dorsal horn of the thoracic and lum-
bar spinal cord. Moreover, pre-treatment with MPEP significantly
attenuated this (354).

Visceral pain originating from the bladder has also been shown
to be mediated via mGlu receptors; specifically mGlu receptor 5
activation in the CeA induces bladder pain sensitization by increas-
ing CeA output, an effect that was reversed by intra-amygdala
MPEP treatment and lentivirus-mediated conditional disruption
of mGlu5 receptor in the CeA (70).

GLUTAMATE TRANSPORTERS AND VISCERAL PAIN
Due to the negative side effects (psychomimetic activity) seen
with modulation of ionotropic receptors, compounds which target
these receptors are not suitable for long-term treatment of pain.
To redress this and in the drive to develop better analgesics, other
mechanisms such as glutamate reuptake may provide more effec-
tive treatments in controlling glutamate neurotransmission and
thereby exert anti-nociceptive effects (109).

One of the first clear demonstrations that glutamate trans-
port [via excitatory amino-acid transporters (EAATs)] may be
implicated in pain processing was performed by Liaw and col-
leagues where they showed that selective inhibition of gluta-
mate transporters with dl-threo-β-benzyloxyaspartate (TBOA)
and dihydrokainate (DHK) produced a dose-dependent sponta-
neous nociceptive behavior response. These behaviors included
licking, shaking, and caudally directed biting (355). Moreover,
TBOA administered intrathecally was also found to induce visceral
nociceptive behaviors in naïve rats (114). To further unravel the
role of glutamate transport in visceral nociception, in particular
stress-induced visceral hypersensitivity, the neuroprotective drug
riluzole known to activate glutamate reuptake, was investigated
to see whether it could attenuate visceral hypersensitivity induced
by maternal separation of rats. It was found that riluzole reduces
visceral hypersensitivity in stressed animals only, having no effect
in non-separated animals. Moreover, EAAT-1 expression was also
found to be reduced in the lumbar region of the spinal cord in
hyper-sensitive animals. As mentioned previously, riluzole does
not affect visceral sensitivity in naïve animals, further emphasizing
the role of glutamate transport in pathological pain (114).

EAAT-2 is the main glial transporter for glutamate reuptake and
its experimental over-expression in animal models has recently
been found to be effective in reducing visceral pain (59, 112, 113).
A study by Lin and colleagues (112) found the over-expression
of EAAT-2 with the use of cephalosporin antibiotic ceftriaxone,
in wildtype mice, attenuated the visceral nociceptive response to
CRD. Moreover, similar effects were seen in the EAAT-2 overex-
pressing transgenic mouse (112). To further support these find-
ings, systemic and intrathecal administration of DHK, a selective
EAAT-2 inhibitor blocks the ceftriaxone-induced attenuation of
visceral pain (112, 113). In subsequent studies performed by
the same group assessing the efficacy of glutamate reuptake in
animal models of colitis, it was shown that adeno-associated virus-
mediated EAAT-2 over-expression was effective to mitigate VMR
to 60 mmHg CRD (113). Interestingly, overexpression of EAAT-
2 has been shown to reduce bladder nociception (59). However,
colon irritation may affect afferents innervating the bladder thus
giving a plausible mechanism for cross-organ sensitization (59).
In the same study, it was also found that enhanced expression of
EAAT-2 by ceftriaxone also reduced the VMR to bladder distension
caused by colonic irritation (59).
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As stated earlier, stress is one of the main predisposing fac-
tors for the development of visceral pain. Interestingly, glutamate
transport has also been shown to be altered due to stress, with
both early-life stress and stress in adulthood both showing sig-
nificant alteration in EAAT expression (114, 115). Taken together,
these findings provide evidence for an important role of glutamate
transport in visceral pain states (271, 356). Moreover, glutamater-
gic signaling is critical to the process of central sensitization. This
term describes the way in which excessive glutamatergic function
within neurons and circuits, in particular pain circuits, leads to
increases in membrane excitability and synaptic efficacy as well as
reduced inhibition. These changes in synaptic function manifest
as altered plasticity within the somatosensory nervous system in
response to activity, inflammation, and neural injury (357).

GABA RECEPTORS AND VISCERAL PAIN
γ-Aminobutyric acid (GABA), the major inhibitory neurotrans-
mitter in the CNS, plays an important role in anti-nociception.
GABA is the key player acting at inhibitory synapses where it
exerts its effect by binding to it respective receptors both pre- and
post-synaptically. This binding causes conformational change and
subsequent opening of the ion channel. The direction of the flow
of ions (in/out) and their charge (+/−) result in a negative change
in the transmembrane potential, causing hyperpolarization. To
date, two classes of GABA receptors are known: (1) GABAA recep-
tors are ligand-gated ion channels, and (2) GABAB receptors are
metabotropic receptors, which are G protein-coupled receptors.

Pharmacological modulation of the GABAA receptor through
the use of agonists and antagonists indicate that modulation
of these circuits within the spinal cord has important implica-
tions for pain processing (358–360). However, these analgesic
effects particularly seen with benzodiazepines may not be purely
anti-nociceptive actions and maybe more non-specific centrally
mediated effects.

GABA’s anti-nociceptive effects are thought to be mediated by
GABAB receptors, which are ideally located in both the brain
and spinal cord with ubiquitous expression. Moreover, GABAB

receptors have also been implicated in a whole host of GI func-
tions, such as altering GI motility and visceral sensation (361).
The mostly widely used GABAB receptor agonist, baclofen has
been shown to produce anti-nociception in numerous rat models
of visceral pain (67, 362–365). Moreover, subcutaneous injection
of baclofen was shown to prevent behavioral responses to blad-
der pain (362). Likewise, intrathecal administration of baclofen
increases the sensitivity threshold to CRD (363). Furthermore,
intravenous administration of baclofen attenuated CRD-evoked
increases in arterial blood pressure and heart rate (67, 364).

Intraperitoneal injection of baclofen was shown to alter the
expression of early immediate genes such as c-fos in the lum-
bosacral spinal cord after intra-colonic mustard oil-induced
inflammation (366, 367). Moreover, it has also been shown via
electrophysiological examination that GABAB receptor agonists
have the ability to modulate responses of vagal mucosal and muscle
afferents innervating particular parts of the GI tract, specifically,
the esophagus and proximal stomach (368–370). More recently,
it has also been shown that baclofen dose-dependently attenuates
responses of mechanosensitive pelvic nerve afferents to noxious

CRD (367, 371). This data provide evidence that GABAB recep-
tor agonists may exert their positive effects by acting at peripheral
sites.

However, it is important to note the effects of GABAB receptor
agonism,other than its anti-nociceptive effect, are undesirable cen-
trally mediated effects, including sedation, respiratory depression,
drug tolerance, and motor deficiency, thus, its potential therapeu-
tic use could be significantly curtailed (367). Interestingly, GABA
receptor pharmacology is complex with dimerization required for
many subunits to form a functional receptor. Moreover, a number
of splice variants of the GABAB1 subunit (GABAB1a, GABAB1b,
GABAB1c, and GABAB1d) have been identified both in rat and
human tissues, and have been found to be differentially expressed
depending on the tissue type (372, 373).

Indeed GABA analogs such as gabapentin and pregabalin have
also shown efficacy in preclinical models of visceral hypersen-
sitivity (105, 106, 108, 374–377) and moreover, pregabalin has
undergone clinical trials for painful CP (107). However, these com-
pounds may exert their effects indirectly in the GABAergic system,
as their main mode of action is on α2δ subunits of CaV (375).
The emergence of positive allosteric modulators of GABAB may
provide a novel therapeutic target for treatment of visceral pain
disorders (66).

GENETIC AND EPIGENETIC REGULATION OF VISCERAL PAIN
Over the last two decades, the field of pain genetics has explored
the influence of genetic make-up on pain perception and process-
ing. Recent work by Camilleri and others has described the role of
genetics in IBS (378–384). Genome-wide association (GWA) stud-
ies amongst others have led to the elucidation of specific genetic
alterations in IBS such as Nav1.5 (385), GPBAR1 (G protein-
coupled bile acid receptor 1) (386), KDELR2 (KDEL endoplasmic
reticulum protein retention receptor-2) and GRID2IP [glutamate
receptor, ionotropic, delta 2 (Grid2) interacting protein] (381),
NXPH1 (neurexophilin 1), and CDC42 (cell division control pro-
tein 42 homolog) (387). These studies are illustrative examples of
how research in the genetic area can contribute to the achievement
of better general knowledge in the visceral pain field.

Strain differences have been shown in many behavioral phe-
notypes including anxiety and depression (388, 389). Moreover,
differences due to background strain have also been shown for
somatic nociception (390–392). However, there is a dearth of
information regarding strain differences in basal visceral sensi-
tivity as opposed to inflammatory-induced visceral sensitivity.
To our knowledge, the Wistar Kyoto (WKY) rat strain and the
Flinders Sensitive Line rat strain are the only well-validated mod-
els of genetic predisposition to visceral hypersensitivity (132, 393,
394). This highlights the need for more comprehensive testing
in particular assessment of visceral pain in animal models and
elucidating the underlying genetic mechanisms. Moreover, the
field of pain epigenetics has progressed our simplistic view of
one gene, one protein, one function, to a more complex view of
gene–environment interactions.

The term epigenetics refers to processes that lead to stable
and/or heritable changes in gene function without any concomi-
tant DNA sequence changes (395). Examples include DNA methy-
lation, histone modification, and chromatin remodeling. The vast
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majority of work investigating epigenetic mechanisms in pain pro-
cessing center around histone acetylation and DNA methylation.
Pharmacological interference with the process of histone acetyla-
tion can affect pain behavior, with both systemic and intrathecal
administration of histone deacetylase (HDAC) inhibitors having
analgesic effects in models of inflammatory pain (396–398). In one
study, this effect was shown to be mediated by expression changes
of the mGlu2 receptor in both dorsal root ganglia (DRG) and
spinal cord (399). Indeed, histone acetylation has been implicated
in stress-induced visceral hypersensitivity and HDAC inhibitors
have also shown efficacy in a model of visceral pain (69, 71,
400–402). The hypothesis that IBS could be transferred to future
generations has recently been investigated (403) and discussed
(404).

Similar influences could be shown in the case of DNA methyla-
tion and its reader molecule MeCP2. The methyl binding protein
MeCP2 has been shown to promote abnormal up-regulation of a
group of genes in inflammatory pain conditions. In rats, its usually
repressive function appears to be curtailed through phosphoryla-
tion after injection of Complete Freund’s adjuvant (CFA) into the
ankle joint (405), an effect thought to be partly dependent on
intact descending serotonergic input into the spinal dorsal horn
(398, 406). Recently, it was shown that chronic stress was asso-
ciated with increased methylation of the Nr3c1 (glucocorticoid
nuclear receptor) promoter and reduced expression of this gene in
L6–S2 region of the spinal cord which was associated with visceral
hypersensitivity in rat model (401).

Finally, recent speculation has implicated that the mecha-
nisms and indeed pathways by which the gut microbiota may
communicate with the CNS may be due in part to epigenetic
processes (407).

EXPERIMENTAL MODELS OF VISCERAL PAIN
COLORECTAL DISTENSION
Colorectal distension is the most widely used method to assess
visceral sensation both preclinically and clinically. This technique
involves insertion of a balloon into the colorectal cavity of the
human subject or animal, and with the aid of a barostat, distend-
ing in a repeated or ascending phasic manner. Although the main
premise of the technique is essentially identical, the way in which
it is performed varies between laboratories and researchers. This
can be due to numerous factors including the model employed;
whether it be human, rat, or mouse, the parameter of interest;
baseline visceral sensation, pain threshold, and tolerance to painful
stimuli. CRD has been characterized in humans, rats, and mice
with the bulk of the work being performed in rats due to ease of
use and robust reproducibility (408).

MONITORING OF VISCERAL PAIN IN RODENTS
In 1988, Ness and Gebhart were the first to describe a technique
used to assess visceral sensitivity in the preclinical setting. The
technique was based on the assessment of pseudoaffective and
behavioral responses to controlled isobaric distensions of the GI
tract. This has now become the mainstay for assessing visceral
pain both clinically and preclinically (409). CRD in rats induces
an array of autonomic and behavioral outputs termed pseudoaf-
fective reflexes. These reflexes include; alterations in blood pressure

and heart rate, passive avoidance behaviors, and contraction of the
abdominal musculature (8), the latter of which is more commonly
referred to as the VMR. VMR is the most widely used parameter
of the visceral pain response (8, 408).

In the last decade, the use of electromyographic (EMG) sig-
nals and its numerous applications have allowed many to assess
visceral sensitivity in conscious animals. This procedure allows
recording from electrodes which are implanted in the muscula-
ture and externalized through the skin, primarily on the abdomen
or neck (410–412). They can also be connected to radiotelemet-
ric implants in the abdominal cavity (413, 414). Moreover, the
development of manometric recordings measuring changes in the
pressure of the balloon inserted into the GI tract, have also allowed
for VMR to be assessed in freely moving animals (134, 175, 311,
408, 415, 416). Other groups have implemented other indirect
approaches such as manual scoring of the abdominal withdrawal
reflex (408, 417), operant behavioral assays (409), and functional
brain imaging tools such as functional MRI (44, 418).

ANIMAL MODELS OF STRESS-INDUCED VISCERAL PAIN
Stressful episodes during critical windows of development can
have long-lasting effects on the host. Stress occurring during the
perinatal period has been linked to the development of psychiatric
disorders such as schizophrenia and autism spectrum disorders
(419, 420). The early postnatal period is a stress hypo-responsive
period during which time there is an intense phase of neuronal
growth and myelination (421). Stress during this critical time point
has been linked to the development of both somatic and psychi-
atric phenotypes in preclinical models, including IBS (135, 422,
423). The adolescent period is also a time of neuronal restructur-
ing and is fundamental to precise development of the CNS (215).
This developmental period is also the peak time for the onset
of numerous psychiatric disorders including schizophrenia, sub-
stance abuse, and mood disorders (424). Stress in adulthood can
have profound effects on its host. Both acute and chronic stressors
can elicit detrimental impacts on physical as well as mental well-
being. Taken together, it is clear that stress at critical points during
our life time can have lifelong effects on the host. Overcoming
the effects of these stressors is based on the individual’s HPA axis
ability to adapt and overcome such insults, however, in the genet-
ically predisposed individual, this feat maybe too high. Aberrant
development of the HPA axis can prove detrimental and exhibit
itself in the form of both psychiatric and somatic disorders. The
importance of animal models in the search for underlying mole-
cular mechanisms and future development of novel therapeutics
has never been more pertinent (8, 425–431). Here, we review the
current stress-based models in the context of IBS (Figure 5).

Experimental models of stress and stressful events have been
developed bearing in mind the critical windows for HPA axis
development and maturation. Animal models have been specifi-
cally developed to target different periods throughout the lifespan
to assess (1) vulnerability, (2) triggering, and (3) perpetuating
influences of stress and future development of IBS (425). Early-
life stressors in the form of maternal neglect (maternal separation
model) or injury (colonic irritation) can increase an individual’s
risk to develop IBS and other disorders in adulthood (425). During
adulthood, life-threatening stressors (rape, warfare), psychological
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FIGURE 5 | Schematic representation of both physical and psychological stressors used in the generation of animal models for stress-induced
visceral hypersensitivity. WAS, water-avoidance stress; PRS, partial restraint stress; TNBS, trinitro benzene sulfonic acid; DSS, dextran sodium sulfate.

stressors (acute and chronic stress), or physical stressors (in the
form of intestinal dysbiosis due to infection, inflammation, antibi-
otic usage, and surgery) have all been described and documented
as triggering factors to the development of an IBS-type pheno-
type in rats and mice (425). Finally, the ever expanding catalog of
rodent strains and transgenic models has allowed us to use specific
strains/knockouts known to exhibit various levels of stress respon-
sivity (Wistar Kyoto and Flinders Sensitive Line) to mimic the
influence of genetic and perpetuating factors on the development,
severity and duration of IBS symptoms (425).

GENETIC STRESS MODELS OF VISCERAL PAIN
Mood disorders are commonly comorbid with IBS (432–434).
Genetic predisposition to such disorders has been implicated in
the development of IBS in later life. These genetic factors may not
lead directly to the development of IBS per se but may indirectly,
through heightened stress responsivity, cause altered GI function
and IBS symptomatology. The availability of a catalog of rodent
strains has led to the advent of genetic studies assessing the exact
contribution of genetic factors to disease presentation and pro-
gression. Moreover, the use of transgenic rodent strains allows
us to specifically investigate single genes implicated in disease
pathology.

Using different rat strains of known levels of baseline anx-
iety: low-anxiety SD and Fisher-344 (F344), and high-anxiety
WKY rats, Gunter and colleagues were able to demonstrate a link
between anxiety and visceral hypersensitivity. Specifically, high-
anxiety WKY animals had increased response to CRD compared

to low-anxiety strains (132). Moreover, WKY rats exhibited an
exaggerated response to acetic acid instillation into the colon,
a peripheral sensitization model, compared with low-anxiety
strains, SD and F344 (132).

The role of the stress response and the development of IBS was
again shown to be intrinsically linked when CRHR1 (CRHR1−/−)
knockout animals were shown to have an altered VMR to CRD.
VMR to CRD was only observed at the highest distension pres-
sure (60 mmHg). Moreover, pharmacological CRHR1 antagonism
decreased the VMR to CRD in CRHR1+/+ mice (167).

Small interfering RNA (siRNA) technologies have now become
one of the most widely used approaches to selectively suppress gene
expression and is a powerful tool to assess gene function. This tech-
nology has been used extensively to suppress stress-related genes
in specific brain areas and models are continuously being devel-
oped (435–440). Whilst genetically modified mice have been the
mainstay of behavioral genetics to date there is a growing utility
for genetically modified rats (441). Moreover, other genetic tools
such as optogenetic and Designer Receptor Exclusively Activated
by Designer Drugs (DREADD)-based manipulations allows for
both species to be used in the future (442).

ANIMAL MODELS OF EARLY-LIFE STRESS-INDUCED VISCERAL PAIN
Maternal separation stress model
Stress in early life is a well-established risk factor for the devel-
opment of psychiatric and somatic disorders in later life. The
biopsychosocial model of IBS pathophysiology implicates adverse
early-life events and childhood traumas such sexual abuse, neglect,
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Maternal 
Separation

Visceral 
hypersensitivity

Altered gut 
microbiota

Immune 
response

Anxiety

Depression

Intestinal barrier 
permeability
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FIGURE 6 | Maternal separation model of brain–gut axis
dysfunction. Adult rodents subjected to maternal separation in early
life develop the characteristic MS phenotype; typified by altered;

visceral sensation, microbiota, immune response, anxiety, depression,
intestinal permeability, stress response, neurochemistry adapted from
Ref. (108).

loss of a family member, or a life-threatening situation. These fac-
tors have been linked to enhanced vulnerability of individuals to
develop stress-related affective disorders such as depression and
anxiety. Moreover, these individuals are also at a higher risk for
developing FGIDs such as IBS and visceral pain (181, 443).

To model these environmental factors in rodent models, the
maternal separation model was constructed (Figure 6) (444).
Briefly, this model involves removing new-born pups from the
dam, during the critical HPA axis hypo-responsive phase in the
early postnatal period. Most commonly, pups are removed for 2–
3 h per day during the first 2 weeks of life from postnatal days 1–2
to postnatal day 12–14 (108, 188, 445, 446). This interruption in
the normal maternal environment, leads to a stress response not
only in the pups but also in the dams. As a result of this mater-
nal stress response, the maternal care given to the pups is altered.
In the last 20 years, the critical importance of maternal care has
been researched extensively no more so in the area of epigenet-
ics (447–449). Alterations in maternal care has been shown to
have effects on the development and function of the HPA axis.
Moreover, the impaired stress response is thought to underlie the
deficits seen in different behavioral domains, in particular, both
cognitive and emotional modalities (447). This disruption of the

normal maternal environment and dam–offspring interaction can
subsequently affect the quality of the maternal care received by
the pups. Indeed, this model of early-life stress results in long-
lasting changes to the offspring’s CNS, at all levels including altered
expression, neurochemistry, electrophysiology, and morphology
(8, 450).

When animals are allowed to grow to maturity, a behav-
ioral phenotype is present, characterized by visceral hypersensi-
tivity, increased anxiety and depressive behaviors, altered stress
responsivity, altered neurochemistry specifically serotonergic neu-
rotransmission, enhanced immune response, altered gut micro-
biota profile, and disruption of the intestinal barrier (108). We
have previously shown that adult male rats previously subjected
to maternal separation exhibit visceral hypersensitivity to CRD
(135). Moreover, the effects of MS are exacerbated by expo-
sure to an acute stressor specifically 1 h of water-avoidance stress
(WAS) (451, 452).

The maternal separation model is sensitive to many factors such
as sex differences, with the abundance of studies being performed
in male rodents, however clinically the preponderance of female to
male IBS patients is 3:1. It is unclear from the literature that the MS
procedure induces the same robust phenotype in female rodents.
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Moloney et al. Animal models of stress-induced visceral pain

Moreover, the protocol of separation itself has also proved crucial.
Specifically, sex-dependent effects on VMR were evident when the
separation was performed by the removal of an entire or half litter
from the home cage (446). Males that were exposed to whole lit-
ter separation and females that were exposed to both whole litter
and half litter separation developed visceral allodynia and hyper-
sensitivity to CRD (446). Moreover, when males underwent an
additional acute stress, this did not modify the CRD response. On
the other hand, when females were exposed to an additional acute
stress, they exhibited an exacerbated response to CRD (8, 446). The
rat MS model is the most commonly used rodent model of IBS
and has proved crucial in delineating the underlying mechanisms
as well as testing novel therapeutic strategies.

Although the maternal separation model is well established and
characterized in rats, its utility in mouse strains has proved difficult
to replicate. Data from our lab and others suggest that maternal
separation stress alone is insufficient to induce a robust, repro-
ducible behavioral phenotype (453, 454). However, when maternal
separation stress is combined with unpredictable maternal stress,
a more overt behavioral phenotype is exhibited (310, 455).

Neonatal Irritation Models
Early-life stress not only in the form of psychological stress but
also in the context of physical stress has been shown to be a valid
preclinical model of IBS pathophysiology. The neonatal intes-
tine when exposed to mechanical and chemical stressors results
in a pro-inflammatory phenotype with mucosal inflammation
and tissue irritation. Daily irritation of the neonatal colon by
mechanical irritation (daily noxious CRD) or chemical irritation
(daily intra-colonic injection of mustard oil) increases pain behav-
iors in response to CRD from adolescence to adulthood (417,
456). Moreover, this heightened pain response was accompanied
with decreases in exploratory behavior, indicative of an anxiety-
phenotype. The findings described in these studies implies that
irritation of the neonatal gut, be it via mechanical or chemical
means, can lead to the process of central sensitization due in part
to sensitized peripheral afferents (8, 417, 456). These behavioral
outputs are in parallel with IBS in the clinical scenario; visceral
hypersensitivity with comorbid anxiety.

ANIMAL MODELS OF ADULT STRESS-INDUCED VISCERAL PAIN
Acute stress models
Acute stressors in adulthood can lead to an immediate behavioral
phenotype. The most widely used acute stress paradigms to model
IBS preclinically are WAS and restraint stress. The WAS paradigm
was originally developed by Bonaz and Tache and Enck et al. (457,
458) to assess stress-related alterations in gut motility and motor
function. Briefly, rodents are placed on a small platform raised
slightly above water level. This stressor is based on the aversive
environment of surrounding water. The WAS paradigm has been
used extensively to assess the impact of psychological stress on
visceral pain modulation (8, 311). Data from the literature show
that 1 h WAS was sufficient to induce a delayed visceral hyper-
sensitivity to CRD, in male Wistar rats (459). Moreover, others
have shown that chronic WAS-induced effects are thought to be
modulated at an epigenetic level, with HDAC inhibitors shown to
reverse WAS-induced hyperalgesia (400).

Moreover, other forms of acute stress such as restraint stress for
2 h, was also found to induce heightened VMR to CRD in male
(460) and female Wistar rats (446). The time spent in an acute
stress situation has proven crucial to the development of the IBS
phenotype (461). Acute stressors of longer duration >2 h tend to
be susceptible to the animals habituating to the stressful environ-
ment and this can confound the behavioral outputs. Moreover,
WAS was recently shown to induce both hyperalgesia and analge-
sia depending on the duration and number of stress sessions (311,
462). Transient stressors generally trigger adaptive responses and
this type of model mimics the stress-related hypersensitivity to
CRD as reported in IBS patients.

Chronic mild stress
Daily life stressors affect individuals in different ways. Persistent
mild stressors can accumulate and potentiate the effects of stress
on the host. Modeling chronic daily stress in rodents is achieved
through the chronic mild stress (CMS) paradigm. Convergent lines
of evidence suggests that high levels of chronic daily stress can
impact on the intensity and severity of visceral pain symptoms
(181, 463–466). In light of this, an array of rodent models involv-
ing unpredictable chronic and intermittent exposure to variety of
stressors have recently been developed (8). Following on from the
previous section, WAS was in fact one of the first chronic stress
models to be adapted to the study of visceral hypersensitivity (467).
Early data proved promising with studies showing that a 1 h daily
WAS, for 10 consecutive day protocol was sufficient to induce vis-
ceral hypersensitivity to CRD in male Wistar rats (410, 468). This
effect was long-lasting and persistent up to 30 days after the end
of the stress. One of the confounds of this study was based on
the methodology used to assess VMR. EMG recordings were per-
formed however this involves surgical implantation of electrodes
and ensuing single housing of animals, to avoid injury (410), which
in itself could be described as a stressor. Indeed, when VMR was
assessed using intraluminal colonic solid-state manometry, both
male and female naïve Wistar rats exposed to WAS developed a
reduced response to CRD referred to as visceral analgesia (311).
This findings appear to be in direct contrast to each other and
highlight the challenges of developing models of stress-induced
visceral hypersensitivity.

Moreover, the picture becomes even more complex when we
consider mouse models. Indeed, chronic WAS in C57Bl/6 mice has
shown many varied effects including visceral hyperalgesia (311),
visceral analgesia (311), or to have no influence on the VMR (469).
Many other factors may be of course at play such as the condi-
tions prior to CRD including surgery and housing environment,
and these factors are dependent on the route of VMR assessment
(311). Taken together, it becomes clear that the basal environment
and state of the animals prior to stress exposure can impact their
response to the stressor itself (8).

Furthermore, the nature or type of stressor is also crucial, with
habituation known to occur when animals are repeatedly exposed
to the same type of stressor, a phenomenon thought to be mediated
via oxytocin (470) and endocannabinoid pathways (471). More-
over, these pathways are indeed themselves also important in pain
processing (472, 473). Taking this knowledge on board, that homo-
typic stressors may/do lead to habituation, more recent models
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employ stressors of different natures. These heterotypic stressors
such as cold restraint stress, WAS, or forced swimming were found
to induce immediate but not long-term visceral hyperalgesia as
monitored by EMG recordings at 8 h, 24 h, and 7 days after the ces-
sation of the stress paradigm in male Wistar rats (474). Developing
the model further, with more multifaceted paradigms and longer
lasting stress sessions (134, 475, 476) causes a behavioral phe-
notype in rodents that mimics aspects of depression. This more
recently developed model may prove useful when assessing the
mechanisms of chronic visceral pain comorbid with depression-
like symptoms (432). Taken together, it is clear that many other
factors outside of the stress model can have significant effects on
the parameter of interest and thus limit the models utility (477).
Factors such as the sex and strain of the animal model, housing
conditions before, during and after the stress paradigm and diur-
nal variation are all known to alter sensitivity to stress (477). From
the literature, what we have learned is that variety within the stress
paradigm itself (time, type of stressor) appears crucial to inducing
stress-induced effects and preventing habituation (470, 478–480).
All of these facets could also in themselves potentially alter the
influence of CMS paradigms on the visceral pain sensitivity, as
recently assessed by Larauche et al. (311).

Chronic psychosocial stress
Daily stressful events are commonplace in modern society. How-
ever, when modeling stress in rodent models, the stressors most
often occur in a novel environment and not in the animals’ home
cage. This has been a cause for critique with some of the most
widely used stress models. The chronic social defeat and over-
crowding paradigm was designed to overcome this obstacle and
thus animals undergo stress scenarios in their home cage. The
paradigm is based on the unpredictable nature of life’s stressors.
Sessions of resident intruder social defeat and cage overcrowding
are randomized so as to occur at different times of the day, in an
unpredictable manner and for a chronic period, 19 days in total.
We have recently shown this model to be an effective preclinical
model to mimic many of the key phenotypes in the IBS popula-
tion, specifically a heightened response to CRD (134) and anxiety-
and depression-related behaviors (481).

Moreover, Reber and colleagues (482) have shown that this
model of chronic psychosocial stress robustly enhances GI dys-
function in a mouse model of colitis. Furthermore, other chronic
psychosocial stressors such as chronic overcrowding when applied
to rats also induces a heightened sensitivity to CRD concomitant
with enhanced HPA axis activity and intestinal mucosal inflam-
mation (483). Taken together, these studies demonstrate that this
model of chronic psychosocial stress may have multiple effects
across the brain–gut axis resulting in an IBS phenotype.

Conditioned fear-induced stress model
There is increasing evidence of augmented prevalence of GI symp-
toms, including visceral pain and IBS in patients suffering from
post-traumatic stress disorder (PTSD) (122, 484–487). Indeed,
it has been shown that in some individuals, the experience of
stress can prime such individuals to respond differently to subse-
quent stressful events. Over the last decade, Stam and colleagues
have investigated this in preclinical models, particularly rats. They

have shown that short exposures to shocks or a social confronta-
tion environment with a predator or aggressive conspecific animal
induces long-lasting conditioned fear-responses to trauma-related
cues (425). Moreover, these animals exhibit a generalized behav-
ioral sensitization to novel stressful stimuli that is persistent and
may intensify over time (488–491). Furthermore, this group have
also shown that 2 weeks after a single session of foot shocks,
repeated CRD causes increased cardiovascular reflexes in pre-
shocked rats when compared to their non-shocked controls (489).
Remarkably, female rats appear to exhibit an alternative pattern of
sensitized behavioral responsiveness to the same challenge, again
highlighted the strong role of sex differences in visceral pain pro-
cessing (492). This specific rodent model mimics clinical features
of a subset of IBS patients exhibiting stress-related visceral hyper-
sensitivity due to PTSD. However, it is important to note that
the findings presented above are mainly characterized by a single
group of investigators, thus the reliability of the model needs
further independent confirmation.

Physical stressors
Post-infectious models of visceral pain. A significant proportion
of IBS cases occur after an illness particularly an infection of the
GI tract. This is reported to be as much as 10% of patients with IBS
(493). Interestingly, the proportion of people who suffer from an
intestinal infection who will then go on to develop IBS ranges from
3 to 36% and appears to be dependent upon the infecting organ-
ism. Moreover, the psychological state of the individual at the time
of infection appears to also play a critical role in the development
of IBS symptoms (494). Infections of bacterial origin when com-
pared to the short-lived effects of viral gastroenteritis appear to
be more long-lasting and persistent (494). A transient Trichinella
spiralis infection was shown to induce sustained visceral hyper-
sensitivity in a mouse model (5, 495). Moreover, similar findings
were found in a rat model of Nippostrongylus brasiliensis infection
(496). Although the vast majority of human post-infectious hyper-
sensitivity symptoms are observed after bacterial infection with
Salmonella, Escherichia coli, Shigella, or Campylobacter, there has
been limited animal models of this type of visceral hypersensitivity
(497, 498).

Post-inflammatory models of visceral pain. Inflammation is one
of the leading causes/mechanisms thought to underpin IBS and
its associated symptomatology (499–502). However, this remains
a controversial topic and others have reviewed this previously
(503, 504). Moreover, this symptom set appears to be common
in patients of inflammatory bowel disorders also such as those
in remission from ulcerative colitis (505). Indeed, many clinical
cases of IBD switch to IBS cases and this occurs in 30–50% of
patients (506). Inflammatory pain models have been well devel-
oped in somatic pain assays and to some extinct in visceral pain
models. Indeed, an array of chemical irritants have been used
in preclinical models to induce colonic inflammation and resul-
tant visceral hypersensitivity (8). In rats, mustard oil (507, 508),
acetic acid (509), and zymosan (510, 511) have been shown to
induce short-term visceral hypersensitivity due in part to colonic
inflammation. Moreover, other compounds such as TNBS induce
severe colonic inflammation and visceral hypersensitivity when
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administered intra-colonically (512, 513). Interestingly, in some
models of inflammatory-induced visceral hypersensitivity, the
phenotype can re-emerge days or weeks after the initial inflam-
matory response. Moreover this re-emergence is not associated
with any inflammatory biomarkers (512, 514). Importantly, the
experimental design appears to play a major role in the applica-
tion and effectiveness of such models. Models, such as the dextran
sodium sulfate (DSS)-induced colitis model has provided us with
some surprising findings where animals exhibited an increased
response to CRD on day 5 or day 60 after the induction of col-
itis in male Balb/c mice. However, chronic DSS colitis was not
associated with changes in VMR to CRD (515). However, con-
trasting findings have also been reported by other groups, whereby
DSS colitis failed to induce any alterations in VMR or visceral
sensitivity at all time points tested in either C57Bl/6 or Balb/c
mice (516). One can speculate on the many possible reasons
for these observed differences, however, what they do suggest is
that inflammation on its own may not be sufficient to induce
visceral hypersensitivity and that the nature and severity of the
inflammatory stimulus and their combined effects may determine
when/whether post-inflammatory hypersensitivity will result if at
all (8, 512). Moreover, as is seen in post-infectious visceral hyper-
sensitivity, psychological state may also play a role (517). Indeed
this was investigated by Larsson et al. (469), who demonstrated
that prior exposure of animals to a stressor, be it either psycholog-
ical or psychosocial in origin, revealed an enhanced susceptibility
to colitis and an aggravated colonic inflammatory response (482,
518, 519). Furthermore, this was also associated with a heightened
susceptibility to recurrence of colonic inflammation even though
the colitis had dissipated (520, 521). Similarly, a prior bout of col-
itis was sufficient to leave the colon in a state more susceptible to
the negative effects of stress (522). However, the complex associ-
ation between colitis, stress, and visceral pain response remains
contentious as stress has also been found to both exacerbate or
indeed to have no effect on post-inflammatory visceral sensitivity
in rats (523) and in mice (8, 469).

FUTURE DIRECTIONS
MICROBIOTA MANIPULATIONS
The role of the microbiota–brain–gut axis on health and disease
is an area of biomedicine that is receiving much media attention
of late. The complex communication between the gut microbial
population and the CNS has far reaching implications not least
in the area of visceral pain and psychiatric comorbidities. Mod-
ulation of the gut microbiota via prebiotic/probiotic treatment
has been shown to have positive effects on visceral pain behav-
iors as discussed earlier (222, 240–242). Antibiotic treatment has
long been known to alter GI function, effects which are reversed
upon probiotic treatment (524). Thus, it is logical that antibiotic-
induced visceral pain may be a future model used to investigate the
underlying mechanism of such a phenomenon. Indeed work from
our own lab has recently demonstrated that early-life antibiotic-
induced disruption of the colonizing microbiota is associated with
visceral hypersensitivity and altered spinal signaling in adulthood.
These results indicate that a temporary alteration in the compo-
sition of the GI microbiota during a crucial time-window in the
neonatal rat has a long-lasting impact on nociceptive pathways

and that the developing pain systems are subject to modulation by
the microbiota (248).

Moreover, intriguing studies to assess the exact contribution
of the gut microbiota to the development of visceral hypersen-
sitivity and IBS can be achieved through fecal transplantation
studies whereby fecal matter from donor IBS patients can be used
to inoculate recipient animals and subsequent behaviors can be
assessed. This paradigm has already shown its merit in transferring
other behaviors specifically anxiety-related behaviors in a mouse
model (525).

CONCLUSION
An effective stress response is critical to the survival of any liv-
ing creature. The ability to sense changes in the environment and
adapt accordingly is quintessence to survival. However, the host’s
reaction to perceived stress can sometimes become disturbed lead-
ing to an over-exaggerated response. Stress has been implicated
in and associated with a plethora of somatic disorders; ulcers,
migraine, hypertension, and psychiatric disorders; anxiety, depres-
sion, PTSD. Here, we specifically reviewed the literature in the
context of stress as a major risk factor for the development of IBS
and visceral pain. The mechanism by which stress impacts on nor-
mal physiology to cause such devastating disorders still remains
unclear. Numerous mechanisms have been postulated including
alterations in plasticity, neurogenesis, catecholaminergic neuro-
transmission, and more recently gut microbiota. Modern day life
exposes us all to stressors of varying types (psychological/physical)
and severities (acute/chronic) and as such the search for novel
pharmaco-therapeutics has never been more pertinent.

Despite the ever growing body of literature, the exact mech-
anisms underlying visceral pain still remain less well understood
than that of somatic pain. Central sensitization of primary sen-
sory afferents is an important underlying mechanism for both
somatic and visceral hypersensitivity and hyperalgesia. One of
the hurdles in understanding the mechanisms of stress-induced
visceral pain is that visceral pain response is experienced dif-
ferentially depending on numerous factors, including the time
at which stress was applied, duration of stress, sex differences,
and genetic background amongst others. Psychological stress at
any point during our lifetime can lead to permanent alterations
of the HPA axis, the descending pain modulatory system, the
immune system, and the gut microbiota, all of which can be
manifested as chronic visceral hypersensitivity. Mechanisms by
which physical stress such as infections, mediate visceral hyper-
sensitivity are likely to be different to that of psychological stress
and may involve altered immune system functioning. Consid-
ering the diverse mechanisms of visceral pain, the development
of treatment strategies and therapeutic interventions will rely on
good animal models, all of which have been reviewed here. It
is clear that that the drive to develop clinically relevant mod-
els and thus design new novel therapeutics has never been more
pertinent.
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