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Abstract

Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament
fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the
Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of
Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing
risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single
nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis
risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred,
Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association
and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective
population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency
exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18,
and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament
homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotrans-
duction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia
(PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan
turnover is a primary factor in disease pathogenesis.
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Introduction
Degenerative suspensory ligament (SL) desmitis (DSLD) is an
untreatable progressive idiopathic disorder that affects the con-
nective tissue of the lower limbs in horses and often leads to eu-
thanasia (Halper et al. 2006, 2011). DSLD is an important health
and welfare problem that is of great concern to the community of
owners of Peruvian Horses (PHs) (Peruvian Pasos) and DSLD-
affected horses of other breeds. DSLD was first described in the
PH, a highly predisposed breed, and has subsequently described
in other breeds including the Arabian (AR), American Saddlebred,
Quarter Horse (QH), Morgan, Thoroughbred (TB), Paso Fino,
Akhal-Teke, and European Warmbloods (Mero and Pool 2002;
Mero and Scarlett 2005). Prevalence of DSLD is breed-related;
pony and draft breeds do not develop DSLD based on clinical

knowledge and published reports; other athletic breeds, such as

the AR and TB, have intermediate risk (Young 1993; Mero and

Scarlett 2005; Halper et al. 2006, 2011; Luo et al. 2016). In certain

PH bloodlines or families, DSLD prevalence is up to 40% (Luo et al.

2016).
Onset of DSLD is subtle with progressive multilimb lameness

developing with associated fetlock hyperextension and SL thick-

ening (Halper et al. 2011). Age at diagnosis is variable, ranging

from 3 to 17 years (Mero and Pool 2002). DSLD is characterized by

increased diameter of the body and branches of the SL (Fig. 1).

Collagen disruption, accumulation of interfibrillar matrix proteo-

glycans, and chondroid metaplasia are key histologic features in

affected horses (Plaas et al. 2011). In the PH, DSLD can develop

with no history of athletic work or SL injury. This suggests a
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specific etiology that includes a genetic contribution to disease
risk given the strong breed predisposition in PHs (Mero and
Scarlett 2005), although the genetic architecture of the disease is
unclear.

Breed development of the horse has generated selection pres-
sures to enable to work in agriculture and transport. Rare breeds
can be exposed to loss of population size and genetic diversity
(Ablondi et al. 2020). Morphological and performance traits have
been targets for selective breeding (Petersen et al. 2013; de Simoni
Gouveia et al. 2014). These genetic differentiation events have
been generated by natural and artificial selection, shaping
genomes individually over time with unique traits and specific
genomic footprints. An unintended consequence of this selection
is an increased incidence of disease within certain breeds. When
comparing breeds with different disease risk, it is important to
highlight the locus undergoing selection where deleterious allele
frequency may be increasing, even if it has not yet reached fixa-
tion (Gurgul et al. 2019). Many spontaneous equine diseases, such
as DSLD, closely mimic human heritable disorders. Tendon and
ligament degeneration is an important health problem in
humans and animals, but the contributing genes and pathways
are poorly understood. Comparative studies of a disease in a
spontaneous animal model where reduced genetic diversity
within a breed is associated with long stretches of linkage dis-
equilibrium (LD) can be advantageous as power of association is
higher.

During past decades, investigation of the molecular pathology
of DSLD, disturbances to signaling pathways, genome-wide
analysis with low-density markers, and case–control gene expres-
sion analysis have been performed (Young et al. 2018; Mero and
Pool 2002; Haythorn et al. 2020). A low-resolution genome-wide
association study (GWAS) in the PH identified candidate loci on
Equus caballus autosomes (ECAs) 6, 7, 11, 14, and 26 that did not
meet genome-wide significance (Strong 2005; Metzger and Distl
2020). Therefore, improved understanding of the genetic contri-
bution to DSLD is needed. Carrier horses can be inadvertently

used for breeding before development of a late-onset disease con-
dition, such as DSLD, causing a welfare concern because of sub-
stantial horse morbidity. Breed predisposition suggests that
DSLD-associated genetic variants are enriched in the PH through
linkage to desirable phenotypes. From an evolutionary perspec-
tive, selection for a desired phenotype through breeding practices
results in an increased frequency of haplotypes containing the
gene(s) and functional allele(s) conferring the phenotype at a rate
higher than expected under a null model of neutral evolution
(Cutter and Payseur 2013). GWAS and detection of signatures of
selection (SOS) are two complimentary approaches for associa-
tion between a disease phenotype and genetic variation (Patron
et al. 2019). In a comparative analysis, we investigated the breed
risk of DSLD using a categorical genome-wide SOS and GWAS ap-
proach in the PH and nine other breeds using breed-assigned risk
levels that reflect varying levels of breed risk of DSLD, to capital-
ize on the availability of public single-nucleotide polymorphism
(SNP) data from different breeds of horse. A candidate locus from
GWAS that localizes in a region with a signature of positive selec-
tion signal indicates potential influential variation, particularly
for simple Mendelian diseases (Kemper et al. 2014).

DSLD heritability has not been estimated and no associated
genetic markers have been identified. Genetic testing for DSLD is
not available. Clinically, it is recommended not to use affected
horses for breeding. Our rationale for this work was that large ef-
fect DSLD genetic variants that have become highly frequent in
susceptible breeds should exhibit association signals in a categor-
ical across breed study examining horses classified using average
phenotypes for varying breed related DSLD risk. A locus under
natural or artificial selection would be expected to contain influ-
ential variation. To test this hypothesis, we quantified the rate
and strength of positive SOS and GWAS signals for breed-related
risk of DSLD in 10 horse breeds classified by levels of risk. The
work is innovative because as it departs from the usual case–con-
trol GWAS approach by performing across breed categorical
genome-wide association using breed-assigned risk levels for

Fig. 1. DSLD is a crippling, painful spontaneous equine disease. A Peruvian Horse (PH) (a) that is severely affected with DSLD and a (b) phenotype-
negative control PH. As the disease develops, the SL progressively thickens. Over time, the SL mechanically weakens and ruptures, resulting in a classic
sign of dropped fetlocks in multiple limbs. In the severe case, obvious thickening and dropping of the fetlocks is evident (inset a) compared with the
normal standing posture (inset b). DSLD is typically more evident in the pelvic limbs verses the thoracic limbs, although in some PHs DSLD develops in all
four limbs.
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breed risk of DSLD. We identified novel candidate genes for breed
risk of DSLD that are involved in disturbances to aging in tendon,
mechanotransduction, collagen synthesis, matrix responses to
hypoxia, and lipid metabolism. Such genes are targets for investi-
gation in human tendon/ligament degeneration and could form
the basis for polygenic risk score prediction of disease risk.

Materials and methods
Sampling
Client-owned PHs were recruited at the UW Madison School of
Veterinary Medicine, Texas A&M College of Veterinary Medicine,
and through online advertising. Pedigrees were used to confirm
purebred status. Blood samples or hair bulb samples pulled from
the tail or mane were collected from 162 PHs. All owners gave in-
formed consent to participate in the study. Buffy coat or hair
bulbs underwent DNA isolation using the Gentra Puregene
reagents (Qiagen, Valencia, CA). Concentrated DNA was stored at
�20�C for genotyping. SNP genotyping was performed using the
Axiom Equine Genotyping Array (Axiom MNEC670K), which
includes a total of 670,796 SNPs across all chromosomes. SNP ge-
nomic coordinates were based on the latest genome assembly,
EquCab3 (Kalbfleisch et al. 2018). Two additional datasets, de-
scribed below, were also used by obtaining genotypes for the rele-
vant SNP positions from published whole-genome sequence and
high-density genotype data.

Genotypic data were obtained from 304 horses representing
nine breeds including: TB (n¼ 28), QH (n¼ 72), Belgian (BE)
(n¼ 22), AR (n¼ 36), Welsh Pony (WP) (n¼ 44), Standardbred (SB)
(n¼ 39), Icelandic Horse (IH) (n¼ 18), Lusitano (LU) (n¼ 21), and
Shetland Pony (SP) (n¼ 24) (Table 1). For all breeds other than the
SP, data were previously generated during development of the
high-density equine SNP array (Schaefer et al. 2017). In this study,
whole-genome sequence data compiled from 153 horses repre-
senting 24 separate breeds were used to discover �23 million
biallelic candidate SNPs. After quality control and filtration based
on breed representation, even spacing across the genome, and
probe design considerations, 2,001,826 SNPs were selected for the
Affymetrix equine MNEc2M SNP array (Schaefer et al. 2017). Of
these SNPs, we selected those SNPs shared with Axiom MNEc670
that were located on ECAs 1–31. Horse samples from 24 SPs pro-
vided by Dr. Rebecca R. Bellone, from Veterinary Genetics
Laboratory, School of Veterinary Medicine, University of
California, Davis were also included in this study. These samples
were genotyped using the Axiom Equine Genotyping 670K array
and were remapped to EquCab3 reference genome (Tanaka et al.
2019).

Genetic population structure
We investigated patterns of population structure using five meth-

ods.

Principal component analysis
The genomic information was used to compute a genotypic

(co)variance matrix between all individuals (Vitezica et al. 2013).

By performing eigen decomposition on the matrix using the base

eigen() function in R (R Core Team 2021), the eigenvectors and

eigen values were obtained and normalized dividing each compo-

nent of the vector by the length of the vector to vectors with a

length of 1. Finally, PCs were computed by multiplying eigenvec-

tors by the square root of the associated eigenvalues (Scholkopf

et al. 1997). To review the results, we plotted the projection of the

individuals on the first two PCs, with colors corresponding to

their breed assignment.

Phylogenetic tree analysis
A pairwise identity-by-state distance matrix was computed using

PLINK v1.09 and the –genome command followed by the –cluster

command (Chang et al. 2015). To produce a bootstrapping proce-

dure, we resampled 500 datasets with replacement from the orig-

inal genotypes. Neighbor-joining cladograms were constructed

with these matrices using PHYLIP (Felsenstein 1993). The

“consense” program in PHYLIP was used to combine the boot-

strap results and build a majority rule consensus tree.

Cladograms were built using iTOL v6 RRID: SCR_018174 (Letunic

and Bork 2021).

Admixture analysis
A maximum-likelihood based approach, was used to infer the an-

cestry proportions population using ADMIXTURE RRID:

SCR_001263 (Alexander et al. 2009). To identify the most likely

number of ancestral populations (K) in the dataset, a series of

runs with predefined K values ranging from K¼ 3 to 30, were ex-

amined using 20 cross-validation runs (CV¼ 20). The termination

convergence criterion (delta) was set to 10�4 to stop when the

log-likelihood increases by less than this value between two con-

sequent iterations.

Effective population size
Effective population size (Ne) trajectories were estimated from

LD, across the horse breeds. We used SneP v1.1 (Barbato et al.

2015) to estimate breed-specific Ne trajectory, as an indicator of

genetic drift and population demography in recent years for each

population. The software estimates the historic effective

Table 1. Breeds of horse used for signature of selection (SOS) and genome-wide association study (GWAS) for equine DSLD after disease
risk was assigned to each breed based on clinical knowledge.

Breed #
horses

Source Horse
type

DSLD
risk

Categorical
risk score

Arabian 36 Beeson et al. (2019) and Cosgrove et al. (2020) Ancient Low 1
Belgian 22 Beeson et al. (2019) Draft Control 0
Icelandic Horse 18 Beeson et al. (2019) Pony Control 0
Lusitano 21 Beeson et al. (2019) Ancient Low 1
Peruvian Horse 162 University of Wisconsin-Madison,

Comparative Genetics & Orthopaedic Research Laboratory
Ambling High 3

Quarter Horse 72 Beeson et al. (2019) Athletic Medium 2
Shetland Pony 24 Tanaka et al. (2019) Pony Control 0
Standardbred 39 Beeson et al. (2019) Athletic Medium 2
Thoroughbred 28 Beeson et al. (2019) Athletic Medium 2
Welsh Pony 44 Beeson et al. (2019) Pony Control 0
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population size based on the relationship between LD (r2Þ, Ne,
and recombination rate (Sved 1971; Weir and Hill 1980).

LD-decay estimation
To measure LD content across breeds, we computed pairwise LD
based on SNP r2 using a window size of 100kb, using all markers
with a minor allele frequency (MAF) �5% on each chromosome
using PLINK v1.9 (Chang et al. 2015). Then, we fitted a nonlinear
spline regression (Van Inghelandt et al. 2011; Vos et al. 2017). All
chromosomes were concatenated to get an overall genome-wide
LD-decay estimation.

We also generated a genomic relationship matrix (GRM) for
each breed of horse to evaluate within-breed subpopulation
structure (R Core Team 2021) using the method of VanRaden
(2008).

DSLD risk categorization
Contrasts between breed risk groups were used to identify DSLD-
associated regions across the genome. We classified each breed
into one of the four DSLD risk categories which were then used
for individual horses belonging to that breed: control (1) (BE, IH,
SP, and WP), low risk (2) (LU, AR), medium risk (3) (SB, TB, QH),
and high risk (4) (PH). These breed risk phenotypes were then
used for ordinal GWAS. This risk coding reflects current clinical
knowledge of DSLD, of which the authors have extensive experi-
ence, where draft horses and pony breeds are protected from
DSLD, certain athletic breeds have intermediate risk, and other
breeds have high risk (Young 1993; Mero and Scarlett 2005;
Halper et al. 2006, 2011; Luo et al. 2016). Some of the breeds in the
public SNP dataset were discarded if clinical and epidemiological
knowledge could not estimate DSLD risk for that breed.

Selection and differentiation analyses
Since we were interested in selection along the evolutionary
branch leading to breeds with high risk of DSLD, the control pop-
ulation was considered as the reference for comparison. As many
approaches have been suggested, we scanned the genome for
multiple patterns of molecular variation by (1) locally elevated
levels of genetic differentiation based on allele frequency differ-
ences and (2) differences in long-range haplotype frequencies be-
tween risk groups. To infer these types of signatures, we
estimated levels and patterns of genetic diversity and differentia-
tion using two approaches. A pairwise population haplotype fre-
quency test using hapFLK (Fariello et al. 2013), which accounts for
the hierarchical structure of the sampled populations, was used.
Sex chromosomes were excluded from phasing, so haplotype sta-
tistics were limited to autosomes. We also used a window-based
fixation index (FST) that is a measurement of population differen-
tiation due to genetic structure (Weir and Cockerham 1984).
Finally, we generated locus-specific diagrams of SOS positive hot-
spot regions reflecting LD as well as position relative to nearby
tendinopathy candidate genes.

hapFLK
We performed hapFLK tests to contrast the high risk group with
each of the control, low risk and medium risk groups using
hapFLK v1.2 (Fariello et al. 2013). Computation of hapFLK pro-
ceeds in three steps. First, we estimated a kinship matrix across
groups, which was calculated using the Reynold’s genetic distan-
ces approach. For each SNP in the genome and across risk groups,
we then performed the hapFLK test that incorporates haplotypic
information to increase the power to detect selective sweeps,
where a new mutation that increases its frequency and becomes

quickly fixed in the population such that linked alleles also be-
come fixed. So, the hapFLK statistic calculates the deviation of
haplotypic frequencies with respect to the neutral model esti-
mated by the kinship matrix (Reynolds et al. 1983). To exploit LD
information, hapFLK uses a multipoint model for multilocus gen-
otypes that can be fitted to unphased data (Scheet and Stephens
2006). One of the main applications of this model is to perform
phase estimation using fastPHASE (Scheet and Stephens 2006). In
our analysis, the model was trained on unphased data and,
therefore, our analysis accounts for phase uncertainty associated
with estimation of LD content during haplotype analysis.

The method was used to regroup local haplotypes along chro-
mosomes in a specified number of clusters K set to 25, using a
Hidden Markov Model. We used the following parameters: 25
clusters (-K 25), 20 EM (expectation maximization) runs to fit the
LD model (-nfit¼ 20). Once hapFLK values were generated we im-
plement the “rglm()” function from MASS R package to fit a ro-
bust linear model to normalize hapFLK scores and calculate P-
values. hapFLK P-values at each SNP were computed from this
estimated distribution. To identify region of interest, we used a
Bonferroni-corrected threshold of P� 1.13E�07, obtained by di-
viding P < 0.05 by the number of SNPs in the model.

Fixation index (FST)
The fixation index (Weir and Cockerham 1984) is a moment
estimator of FST and uses unbiased estimators of the numerator
(between-population variance) and the denominator (total vari-
ance). Here, we used the FST statistic to identify unique, divergent
regions of the affected population showing differentiation across
risk groups. FST was calculated in sliding windows of 50kb and a
step size of 25kb using VCFtools 0.1.15 (Danecek et al. 2011).
Then, the estimated FST values were scaled in R software to fol-
low a normal distribution. Standard score or z-score is a measure
of standard deviation that estimates the distance from the mean.
Z FSTð Þ ¼ FST ið Þ�lðFST Þ

SDðFSTÞ , here, l is mean value of all computed FST and
SD(FST) is the standard deviation of them. Then, we defined a
stringent cut off value and selected only the 0.005 most divergent
windows.

Liability threshold modeling of ordinal DSLD
status for across breed GWAS
We also employed a liability categorical threshold (cumulative
probit) model. The response variable (disease risk category), yik,
represents an assignment into one of the four mutually exclusive
and exhaustive categories that follow an order, where 1 indicates
no risk (control), 2 low risk, 3 moderate risk, and 4 high risk. A
schematic representation of this model is shown in
Supplementary Fig. 1. Therefore, in a GLMM framework, this
model can be described by defining the distribution, the linear
predictor and a link function. This threshold model assumes that
the process that gives rise to the observed categories is an under-
lying continuous variable with a normal distribution:

lijk ¼ xT
ijbþ zT

ijbþ eijk

where lijk represents liabilities, conditionally independent and
distributed as lijkjb; b � NðxT

ijbþ zT
ijb; r2

e ¼ 1Þ, xij denotes the j-th
row of the fixed effects design matrix Xi, with the corresponding
fixed effects coefficients denoted by b, zij denotes the j-th row of
the random effects design matrix Zi with corresponding random
effects b, and eijk is the error term, which follows a normal distri-
bution as eijk � Nð0; 1Þ; r2

e was set to 1 to achieve variance
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identifiability in the likelihood because the liabilities are unob-
servable (Gianola 1982; Sorensen et al. 1995). Also, the b vector
was assumed to follow the normal distribution b � Nð0;Gr2

gÞ,
where G is a marker-derived GRM, and r2

g, represents genomic
variance. The ordinal categorical phenotypes were mapped to
four categories (C¼ 4), based on the threshold parameters
cT ¼ cmin < c1 < . . . < cC�1 < cmaxð Þ, with cmin ¼ �1 and
cmax ¼ þ1, which are cut points of the continuous scale such
that the assigned ordinal disease risk category (yik) is given by:

yik ¼

1 if �1 < lijk � c1
2 if c1 < lijk � c2
3 if c2 < lijk � c3
4 if c3 < lijk < 1

8>>><
>>>:

This model was implemented via a Bayesian approach using
the Gibbs sampler algorithm, and sampling from the fully condi-
tional distributions (Sorensen et al. 1995) in the BGLR R package
(Perez and de Los Campos 2014; R Core Team 2021).

We then implemented a univariate linear mixed model regres-
sion GWAS model using the “gaston” R package (Dandine-
Roulland and Perdry 2017) to test each single genetic variant in-
dependently. We regressed each SNP and used the Wald test to
determine P-values. We included a GRM using the “GRM()” inter-
nal function from the “gaston” package to correct for population
structure and cryptic relatedness and remove potential sources
of spurious associations. After obtaining the P-values, we com-
puted the chi-squared statistic (chisq<-qchisq(1-data$pval,1) and
then the genomic inflation factor (k) (median of the resulting chi-
squared test statistics divided by the expected median of the chi-
squared distribution with one degree of freedom (df¼ 1)
(median(chisq)/qchisq(0.5,1)) using R (R Core Team 2021) to in-
vestigate possible systematic bias in our association results and
reviewed results using a quantile–quantile (Q–Q) plot.

Next, we considered two approaches to define significant
thresholds. First, a Bonferroni correction was used (P� 1.13E�07).
However, Bonferroni correction may be too conservative as each
SNP is not an independent test when SNPs reside within long
blocks of LD. As an alternative, we defined genome-wide signifi-
cance using 95% confidence intervals (CI) calculated from the
empirical distribution of P-values observed in the absence of real
association (Karlsson et al. 2013). We determined this distribution
by rerunning the GWAS with randomly permuted phenotypes
500 times. We defined genome-wide significance as associations
exceeding the 5% upper empirical CI (P� 3.24E�5).

Finally, we recalculated principal component analysis (PCA)
as described above using the GWAS SNPs with P-values lower
than the permutation threshold for association with breed risk of
DSLD and plotted the projection of the horses on the first two
PCs, with colors corresponding to their breed assignment.

Candidate gene identification and pathway
analysis
The biological functions of genes mapped to the human genome
and located within positive SOS genomic regions or within flank-
ing regions (50kb) of GWAS-associated SNPs were screened for
relevance to tendon/ligament homeostasis. We also used the
University of California Santa Cruz genome browser (https://ge
nome.ucsc.edu/) to map the significant SNPs that were found to
be under positive selection and associated with breed group risk
of DSLD to the EquCab3.0 assembly (Casper et al. 2018). Lists of
associated genes were submitted for pathway analysis using
Panther software (Mi et al. 2013, 2019).

Results
Genetic diversity and population structure
The population architecture and substructures were investigated
using several approaches as a prerequisite for SOS analysis.
Genomic relationship matrices were plotted for each breed to
evaluate population substructure (Supplementary Fig. 2). PCA
showed good differentiation of the 10 horse breeds by the first
and second principal components (PC1, PC2) (Fig. 2). The first two
PCs explained 34.8% and 12.5% of total genetic variation, respec-
tively. Adding additional PCs did not result in any further observ-
able genetic clusters (Supplementary Fig. 3). The Peruvian Horse
breed was separated from other breeds using PC1. The SP, IH, BE,
WP, and LU breeds were separated along PC2. The PC results showed
a great overlap between AR and QH breeds, indicating a close genetic
relationship between these two breeds in our data. Furthermore, SB,
QH, AR, and TB breeds showed a closer relationship with each other
than with other breeds along both PC1 and PC2.

We also assessed population history for admixture events us-
ing model-based ancestry clustering. The ADMIXTURE software
was used to determine the number of genetic background ances-
tors (K) that explain the observed total sum of between-breed ge-
netic variation. For SOS analysis, it is important to know the
composition of breed ancestry. To estimate the optimum number
of ancestors, we tested a range of K values from 3 to 33. The low-
est 20-fold cross-validation mean squared error (MSE) was
obtained at K¼ 14 (MSE¼ 0.431, Supplementary Fig. 4). There
were only minor differences between the four K values, K¼ 8, 12,
14, and 18 with the lowest MSE (Supplementary Fig. 4); results
from K¼ 12, 14, and 18 had less than 0.001 MSE differences. This
analysis indicated the presence of at least 12 genetic back-
grounds. The individual assignment probabilities indicate distinct
genetic backgrounds exist for the AR, SB, TB, BE, and IH, suggest-
ing clear genetic divergence. This was evident across the four
lowest values of K tested. In all these scenarios, the SB, PH, LU,
and AR showed some degree of ancestral gene flow based on

Fig. 2. A Principal component analysis (PCA) plot representing the
genetic landscape of 10 horse breeds extended across first and second
components (PC1 and PC2) derived from eigen vectors and eigen values
obtained from eigen decomposition of a genotypic (co)variance matrix
between all individuals. Each color shows a different breed, and each
point represents 1 sample.
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admixture analysis (Supplementary Fig. 4). For the PH, our PCA
results show that ancestors are distant and different from the
other breeds in the data set, different from the admixture analy-
sis. All 10 breeds formed single, breed-specific nodes with good
bootstrap support (Figs. 2 and 3). Like the PCA plot, the identity
by descent similarity revealed a close genetic relationship be-
tween AR, QH, TB, SB, WP, SP, LU, BE, and IH breeds. Also, the PH
resides in a distinct clade. We observed horses from the same
breed almost perfectly clustered together, but slight differences
were found in the internal branches within a breed. Next, we esti-
mated patterns of LD decay among clusters over all 31 autosomal
chromosomes and found the average correlation coefficient (r2),
generally decayed rapidly. The decay trend differed between

breeds (Supplementary Fig. 5). The largest LD was observed in the
TB and the lowest in the PH. The breeds with second and third
largest LD content were the SP and AR, respectively. Other breeds
with the smallest LD were the WP and the QH.

To further investigate differences in LD content across breeds,
we estimated ancestral and recent effective population sizes
(Ne), which is an important genetic parameter that relates to the
amount of LD content, genetic variation and genetic drift in a
population and represents the minimum number of breeding
individuals in an idealized population. The estimated effective
population sizes for breeds over the past 100 generations showed
an increasing trend across generations for effective population
size and the Ne parameter diversified between breeds

Fig. 3. Cladogram of 10 horse breeds obtained using a bootstrapped procedure by identity-by-state distance matrix (IBS) and a neighbor-joining tree
algorithm. The outer circle color indicates how breeds constituted their own branches. The number on the branches and sub-branches indicates how
they were supported by 500 bootstrap replicates.

6 | G3, 2022, Vol. 12, No. 10



(Supplementary Fig. 6). The QH, PH, and WP breeds had larger Ne
values, respectively, although the PH had a higher slope, than
other breeds and after generation 75 had the highest Ne esti-
mates. The lowest Ne estimates were obtained for TB, SP, and SB
breeds. The Ne estimates agreed with LD content among breeds.

Candidate regions and genes under positive
selection in horse breeds with differing breed risk
of DSLD
The hapFLK analysis identified 6 regions under positive selection,
which passed the Bonferroni-corrected threshold when the breed
group with high risk of DSLD was compared with the control
breed group (i.e. PH vs. BE, IH, SP, and WP) and distributed on
ECA2, 3, 6, 7, 10, and 23 (Fig. 4). These regions were also detected
when the breed group with high risk of DSLD was compared with
low and medium risk breed groups. The largest regions were lo-
cated on the ECA7 and 23, with a length of �3.3 and �4.6Mb, re-
spectively (Table 2). The region on ECA7 contained the COL5A3
(collagen type V alpha 3 chain), KANK2 (KN Motif and Ankyrin
Repeat Domains 2), LDLR (low-density lipoprotein receptor), and
PIN1 (Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1)
genes (Fig. 5).

The second largest region seen in the high risk vs. control
breed group comparison, located on the ECA23, contained the
KANK1 (KN motif and ankyrin repeat domain-containing protein
1) and VLDLR (very low-density lipoprotein receptor) genes
(Fig. 5). Interestingly, a highly conserved region under positive se-
lection on ECA10 (27.8–28.3Mb) also contained a cluster of Zinc
finger protein-related genes, ZNF135, ZNF274, ZNF606,
C10H19orf18 (chromosome 10 C19orf18 homolog), and ZNF671.

SOS analysis of the breed group with the high risk of DSLD vs.
the breed group with medium risk of DSLD identified a �1.9Mb
region under positive selection on ECA18. This region contained
the COL5A2 (collagen type 5 alpha 2 chain) gene (Fig. 5). In this
contrast, the ECA7 region also contained the JUNB (proto-onco-
gene, AP-1 transcription factor subunit) and PDRX2 (peroxire-
doxin 2) genes.

Finally, our SOS results also showed that for comparison of
the breed group with high risk of DSLD vs. the control breed
group, there were �0.11, 0.52, and �1.1Mb regions with a high se-
lection signal on the ECA2, 3, and 6, respectively, that did not
contain genes whose function is known to be related to tendon
biology. Evaluation of genomic regions under selection using
analysis with the FST statistic identified regions shared with
hapFLK analysis, particularly loci on ECA2, 10, and 23 (Fig. 5). FST

results showed a more polygenic trend than hapFLK analysis.

Association testing of breed risk groups using a
liability ordinal threshold model
GWAS results showed many SNPs deviating from the null line,
and 51 SNPs showed a �log10 P-value, larger than the Bonferroni
threshold (Fig. 6). The estimated lambda value was �1 indicating
that there is no systematic bias in the analysis. The QQ plot
showed deviation of many observed P-values for significant SNPs
from the null hypothesis, indicative of polygenicity in breed risk
of DSLD.

The strongest single-variant associations between breed
groups with differing risk of DSLD detected in the GWAS are
reported in Supplementary File 2. We evaluated the 51 SNPs that
passed the stringent Bonferroni correction threshold for associ-
ated genes by investigating 50kb up- and down-stream from each
SNP; this analysis resulted in the identification of 46 genes
(Table 3).

Several genes were identified with high relevance to tendon/
ligament homeostasis (Table 3). Associated genes we found in-
cluded SEMA7A (semaphorin 7A) on ECA1, COL6A5 (collagen type
VI alpha 5 chain) on ECA16, COL4A1 (collagen type IV alpha 1
chain) gene on ECA17, and GREM2 (gremlin 2 DAN family BMP an-
tagonist) on ECA30. Finally, associations with zinc finger proteins
were also identified on ECA8. When PCA was repeated using
the 1,440 significant GWAS SNPs with P-values lower than the
permutation testing threshold (P� 3.24E�5), we found that
the first 2 PCs explained most of the genetic variation
(Supplementary Fig. 7). The PH population separated into
two clusters and the other horses in the remaining nine breeds
cluster together (Fig. 7).

Pathway analysis
Results of pathway analysis with Panther are presented in
Supplementary File 3. Overrepresented functions for genes asso-
ciated with differing breed risk of DSLD from SOS analysis in-
cluded cellular and metabolic processes and binding. Highlighted
pathways included signaling through the EGF receptor, inflam-
mation mediated by chemokines and cytokines, nicotinic acetyl-
choline receptor, gonadotropin-releasing hormone receptor, and
the wnt pathway. Overrepresented protein classes included nu-
cleic acid metabolism proteins, metabolite interconversion
enzymes, and gene-specific transcriptional regulators. Similar
results were obtained from the GWAS analysis. Here, pathways
enriched by GWAS-associated genes include integrin, inflamma-
tion mediated by chemokines and cytokines, PI3 kinase, iono-
tropic glutamate receptor, and cell cycle signaling.

Discussion
Categorical GWAS approach using breed-
assigned risk levels
In a One Health comparative analysis undertaking research that
is beneficial to both humans and animals, a genome-wide SOS
analysis and a GWAS were used to identify genome-wide associa-
tions between breed groups categorized by differing risk of DSLD.
Genes residing in candidate loci were evaluated for relevance to
tendon/ligament injury. As a part of our SOS analysis, population
structure within the data was evaluated. We confirmed homoge-
neity within horse breeds and heterogeneity between breeds in
our sample population of 10 breeds based on PCA (Schaefer et al.
2017) and findings from the phylogenetic cladogram. LD decay
within breeds generally decayed as previously described
(Petersen et al. 2013; Schaefer et al. 2017). The admixture patterns
in our results showed some admixture between the PH and other
breeds with differing DSLD risk. We based risk categorization on
clinical knowledge of the incidence of DSLD in different breeds
(Young 1993; Mero and Scarlett 2005; Halper et al. 2006, 2011; Luo
et al. 2016). We found that the PH, which was the only breed
assigned a high risk of DSLD, formed a distinct cluster genetically
based on PCA, but admixture analysis suggests sharing of ances-
try with the SB, the AR, and the LU breeds. Here, it is important
not to overinterpret admixture plots where recent genetic drift is
strong (Lawson et al. 2018). The AR breed as a genetic root also
formed a distinct cluster; results that align with knowledge of the
origin of this horse breed (Cosgrove et al. 2020). This type of cate-
gorical GWAS research approach with breed-assigned risk levels
has previously been used in dogs (Smith et al. 2019; Doherty et al.
2020), but not horses. Further validation of candidate genes is im-
portant as biologically relevant candidate genes may still repre-
sent false-positive discoveries (Pavlidis et al. 2012).
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Fig. 4. Manhattan plot of hapFLK and FST analysis over the 31 autosomal chromosomes across 3 group comparisons for the high risk (Peruvian Horse), medium
risk (Standardbred, Thoroughbred, Quarter Horse), low risk (Lusitano, Arabian), and control (Belgian, Icelandic Horse, Shetland Pony, Welsh Pony) breed groups.
a) High risk vs. control, b) high risk vs. low risk, and c) high risk vs. medium risk. The red line in the hapFLK Manhattan plot indicates the Bonferroni threshold
line and in FST shows the upper 0.005% of the top windows of FST values distribution. The x-axes show the chromosomes and the y-axis the –log10(P-value) for
hapFLK and Z-score based for FST. All SNPs and windows passed the defined thresholds highlighted with red color.
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Effective population size
The effectiveness of selection of a mutation depends on both the
fitness effect of new beneficial mutations and the effective popu-
lation size (Ne). We computed effective population size for each
breed separately. The breeds we studied have small recent effec-
tive population size, except for the QH (Ne> 100). It has been sug-
gested that a minimum Ne of 50–100 is needed for sustaining
reproductive fitness in the short term (�100 years) (Frankham
et al. 2014). Horse breeds are largely defined by segregation of
alleles because of founder effect, small effective population size,
and maintenance of deleterious alleles through artificial selec-
tion (Gossmann et al. 2012).

DSLD pathology
A key feature of DSLD is acellular accumulation of proteoglycans,
such as aggrecan and decorin, replacing cells and collagen bun-
dles, suggesting disturbance to matrix homeostasis (Halper et al.
2006, 2011; Schenkman et al. 2009; Young et al. 2018). Such fea-
tures parallel tendon aging and tendinopathy in humans
(Winnicki et al. 2020; Smith and McIlwraith 2021). A certain
amount of proteoglycan turnover may be required to maintain
normal tendon/ligament collagen assembly and matrix homeo-
stasis by aggrecanases that are constitutively active in the tissue
(Rees et al. 2009). In this regard, it is interesting to note that accu-
mulation of ADAMTS4 (�chr5:32.4Mb) and ADAMTS5
(�chr26:25.1Mb) aggrecanases has been identified in DSLD-
affected tendons suggesting sequestration of these enzymes
(Plaas et al. 2011).

Candidate genetic variants associated with
differing breed risk of DSLD influence tissue
aging
Variants in candidate genes discovered in the present study have
the potential to influence SL homeostasis and matrix composi-
tion through effects on mechanotransduction, collagen assem-
bly, and turnover and, consequently, contribute to DSLD
pathology. PIN1 (�chr7:51.8Mb) is a gene with an important role
in tendon aging in humans through modulation of diverse cellu-
lar functions; such effects may influence tendon degeneration
(Chen et al. 2015). Aging is a dominant risk factor for tendon in-
jury and impaired tendon healing, but the associated mecha-
nisms are poorly understood. PIN1 has regulatory effects on
cellular aging; overexpression delays the progression of cellular
senescence as indicated by the downregulation of senescence-
associated b-galactosidase and enhanced telomerase activity
(Chen et al. 2015; Lv et al. 2018). PIN1 is also recognized to have a
vital role in tendon stem/progenitor cell aging and its upstream
miRNA is a prospective target for preventing progenitor cell aging
(Dai et al. 2019). Mechanical loading influences expression of mul-
tiple miRNAs in tendon including downregulation of miRNA-140-
5p (Mendias et al. 2012).

Candidate genetic variants associated with
differing breed risk of DSLD influence tissue
mechanotransduction
Other genes associated with differing breed group risk of DSLD in-
clude KANK1 and KANK2. The KANK protein family is character-
ized by an N-terminal KN motif, coiled-coil motifs, and 4–5
ankyrin repeat domains located in the C-terminus and are key
regulators of adhesion dynamics (Kakinuma et al. 2008; Zhu et al.
2008). KANK is a novel Akt substrate and its interaction with 14–
3–3 proteins is controlled by the phosphoinositide-3 kinase

(PI3K)–Akt signaling pathway (Kakinuma et al. 2008); a pathway
that is critically important to tendon mechanotransduction
(Wang et al. 2018). KANK proteins act to decrease the RhoA-
dependent formation of actin stress fibers and cell migration
(Kakinuma et al. 2008; Seetharaman and Etienne-Manneville
2020). PI3K/Akt signaling regulates important cellular functions
including apoptosis, cell growth, and cell migration; this pathway
has an important role in tendon/ligament homeostasis and repair
(Zhang et al. 2020). KANK2, located on ECA7, is a paralog of this
gene and has similar physiological functions (Zhu et al. 2008; Gee
et al. 2015) and likely similar effects on mechanotransduction.
Disruption of KANK1/2 function may have important novel
effects on tendon/ligament mechanotransduction and collagen
synthesis (Paradzik et al. 2020).

Other candidate tendinopathy genes associated with differ-
ing breed group risk of DSLD identified in this study include
JUNB, and SEMA7A. The transcription factor JUNB has been
linked to type I collagen disruption in fibrous connective tissue
disease (Ponticos et al. 2015) and involvement in signaling path-
ways for tendon (Tan et al. 2020) and muscle (Verbrugge et al.
2018) homeostasis. Semaphorins are cell surface signaling mol-
ecules that regulate cell migration. SEMA7A may influence
mechanotransduction in tendon/ligament (Spencer and Lallier
2009), but more studies are needed. SEMA7A also has a role in
TGF-beta1-mediated tissue remodeling and fibrosis (Kang et al.
2007).

Candidate genetic variants associated with
differing breed risk of DSLD influence matrix
composition
Interestingly, we also identified additional genes associated with
differing breed group risk of DSLD that influence low abundance
fibrillar collagen homeostasis in tendon/ligament. Fibrillar colla-
gen molecules are trimers that can be composed of 1 or more
types of alpha chains. SNP associations within the COL5A2 gene
on ECA18 and COL5A3 gene on ECA7 were identified from our
SOS analysis. Type V collagen is found in tissues containing type
I collagen and acts to regulate assembly of heterotypic fibers
composed of both type I and type V collagen (Mak et al. 2016). In
humans, Ehlers–Danlos syndrome associated with connective tis-
sue hyperelasticity and fragility is linked with heterozygous
mutations in COL5A2 (Chiarelli et al. 2019); COL5A3 mutations
have also been implicated in the syndrome (Imamura et al. 2000).
Collagen V plays an important role in regulating fibrillogenesis
and associated recovery of mechanical integrity in tendons after
injury (Johnston et al. 2017). A proteomic composition analysis of
the muscle, tendon, and junction tissues showed that COL5A3 as
a potential marker for the muscle-tendon junction, a highly in-
terdigitated interface that seamlessly transfers muscle-generated
forces to the tendon (Jacobson et al. 2020). These observations
suggest more detailed study of myofibers in the equine SL may be
indicated. Risk of Achilles tendinopathy is influenced by interac-
tions between extracellular matrix proteins and cell signaling
pathways and this risk is influenced by COL5A2 and COL5A3 var-
iants (Bancelin et al. 2015; Bittermann et al. 2018; Jacobson et al.
2020). The proportion of collagen type V is increased in
Warmblood injured SL, a breed registry that is predisposed to
DSLD (Shikh-Alsook et al. 2015).

We also found that SNPs within COL4A1 and COL6A5 on
ECA16 and 17 were associated with breed group differences in
the risk of DSLD. Collagen IV is a major component of base-
ment membrane. The a1(IV) chain, encoded by COL4A1, is
expressed ubiquitously and associates with the a2(IV) chain to
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form the a1a1a2(IV) heterotrimer. Analysis of skeletal muscle
from COL4A1 mutant animals identified a muscular dystrophy
phenotype with myofiber atrophy, centronucleation, focal in-
flammatory infiltrates, and fibrosis (Guiraud et al. 2017).

Collagen VI is an extracellular matrix protein with critical roles
in maintaining muscle and skin integrity (Lamande and
Bateman 2018). The role of COL6A5 mutations in the develop-
ment of myopathy and fibrosis is not understood (Sabatelli

Table 2. Significant signature of selection regions identified using hapFLK, across four DSLD risk groups, high risk vs. control (HR-Cont),
high risk vs. low risk (HR-LR), and high risk vs. medium risk (HR-MR).

Chr Window size (bp) # SNPs in window P-Value Genes

HR-Cont 2 82,375,201–82,484,566 36 2.481E�09 SH3D19
3 36,714,694–37,237,743 38 1.110E�16 CHMP1A/DBNDD1/DEF8/FANCA/VPS9D1/TUBB3/

TCF25/SPIRE2/CPNE7/PRDM7/MC1R/SPATA33/
CENPBD1/CDK10/DPEP1/SPATA2L/GAS8/ZNF276

6 28,042,417–29,187,416 145 6.505E�14 ATP6V1E1/CECR2/USP18/SLC25A18/MICAL3/
TMEM121B/ADA2/CACNA1C/HDHD5/PEX26/
BCL2L13/IL17RA/BID/TUBA8

7a 48,550,747–51,878,056 197 1.110E�16 PIN1/CCDC151/ANGPTL6/ECSIT/C7H19orf66/UBL5/
ZGLP1/CARM1/ZNF653/CCDC159/RAVER1/S1PR2/
SPC24/TMED1/ATG4D/TYK2/CDKN2D/EPOR/
ELAVL3/ACP5/SMARCA4/PRKCSH/YIPF2/CNN1/
ICAM1/DNM2/SLC44A2/CDC37/EIF3G/LDLR/
C7H19orf38/ICAM3/PLPPR2/ILF3/MRPL4/FDX1L/
KANK2/RDH8/ICAM4/KEAP1/TMEM205/TIMM29/
COL5A3/FBXL12/DNMT1/ICAM5/DOCK6/P2RY11/
ELOF1/RAB3D/OLFM2/TSPAN16/RGL3/QTRT1/
AP1M2/SWSAP1/PDE4A/KRI1/S1PR5/ANGPTL8

10 27,798,713–28,288,061 58 4.195E�10 ZNF135/ZNF274/ZNF606/C10H19orf18/ZNF671
23a 19,766,482–24,404,305 257 1.261E�12 PTAR1/FXN/TMEM252/SMARCA2/PUM3/VLDLR/

KANK1/PIP5K1B/DMRT3/FAM189A2/DOCK8/TJP2/
FAM122A/DMRT1/C23H9orf135/MAMDC2/KCNV2/
DMRT2/RFX3/PGM5/KLF9/APBA1/SMC5

HR-LR 2 100,908,612–101,332,274 120 2.322E�09 PGRMC2/LARP1B/ABHD18
5 49,161,652–49,553,142 58 1.557E�08 ATP1A1/MAB21L3/SLC22A15
6 82,388,851–82,631,911 78 1.470E�12 HMGA2/MIR763
7a 47,027,389–51,858,393 190 1.110E�16 PIN1/CCDC151/ANGPTL6/ECSIT/C7H19orf66/UBL5/

ZGLP1/CARM1/ZNF653/CCDC159/RAVER1/S1PR2/
SPC24/TMED1/ATG4D/TYK2/CDKN2D/EPOR/
ELAVL3/ACP5/SMARCA4/PRKCSH/YIPF2/CNN1/
ICAM1/DNM2/SLC44A2/CDC37/EIF3G/LDLR/
C7H19orf38/ICAM3/PLPPR2/ILF3/MRPL4/FDX1L/
KANK2/RDH8/ICAM4/KEAP1/TMEM205/TIMM29/
COL5A3/FBXL12/DNMT1/ICAM5/DOCK6/P2RY11/
ELOF1/RAB3D/OLFM2/TSPAN16/RGL3/QTRT1/
AP1M2/SWSAP1/PDE4A/KRI1/S1PR5/ANGPTL8

15 55,722,740–55,823,249 24 5.410E�09 LRPPRC/ABCG8/ABCG5/DYNC2LI1
18 3,198,948–3,226,216 11 6.027E�08 MYO7B
23a 26,575,733–26,190,830 36 5.861E�09 PDCD1LG2/RIC1/ERMP1

HR-MR 1 22,168,393–22,174,156 3 6.895E�08 None
1 45,343,494–46,187,762 145 1.110E�16 PCDH15
2 100,839,946–101,131,385 99 1.869E�11 PGRMC2
4 15,433,715–15,886,714 52 4.632E�09 PURB/MYO1G/CCM2/NACAD/TBRG4/RAMP3
7a 46,267,067–51,832,122 306 1.110E�16 PIN1/MAN2B1/CACNA1A/CCDC151/NACC1/RAD23A/

ECSIT/STX10/ZGLP1/CCDC159/RAVER1/TRIR/
S1PR2/JUNB/CDKN2D/DNASE2/ACP5/SMARCA4/
PRKCSH/RNASEH2A/CNN1/DNM2/SLC44A2/IER2/
KLF1/EIF3G/C7H19orf38/ICAM3/PLPPR2/MRPL4/
KANK2/HOOK2/ICAM4/TMEM205/COL5A3/ASNA1/
DAND5/FBXL12/DNMT1/ICAM5/P2RY11/LYL1/
TSPAN16/NFIX/QTRT1/PDE4A/WDR83/ANGPTL6/
C7H19orf66/UBL5/ZNF653/CARM1/SPC24/
GADD45GIP1/BEST2/TMED1/MAST1/ATG4D/TYK2/
GCDH/GNG14/EPOR/TRMT1/DHPS/ELAVL3/
FBXW9/RTBDN/YIPF2/ICAM1/WDR83OS/CDC37/
FARSA/LDLR/SYCE2/ILF3/FDX1L/TNPO2/RDH8/
KEAP1/TIMM29/PRDX2/DOCK6/CALR/ELOF1/
CCDC130/RAB3D/OLFM2/RGL3/AP1M2/SWSAP1/
KRI1/S1PR5/ANGPTL8

18 65,611,515–67,501,715 192 1.775E�10 WDR75/ORMDL1/STAT4/GLS/NAB1/SLC40A1/
MFSD6/COL5A2/STAT1/MSTN/INPP1/ASNSD1/
PMS1/C18H2orf88/HIBCH/ANKAR/OSGEPL1/NEMP2

23 19,864,050–20,127,983 37 1.298E�08 SMC5/MAMDC2

a Regions shared between risk groups. Genes highlighted in bold underlined text may have biological effects on tendon and ligament homeostasis.
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Fig. 5. Locus Zoom plot of hotspot regions containing eight tendinopathy-related candidate genes for breed group risk of degenerative suspensory
ligament desmitis on ECA7, 18, and 23. Each point represents an SNP. The color of each SNP indicates its LD quality, as indicated by color index tab. The
most significant SNP in each region is indicated by a purple diamond.

Fig. 6. Manhattan plot of GWAS results from the liability estimates used as input for an ordinary linear mixed model of breed groups with differing risk
of degenerative suspensory ligament desmitis. Each point represents a SNP. The first dashed dark red line represents the permuted threshold line and
the second dark red solid line represents the genome-wide significance level for Bonferroni correction in �log10(P-value) scale. The top right plot shows
the Q–Q plot of the genome-wide association, where the �log10-transformed observed P-values (y-axis) are plotted against –log10-transformed
expected P-values (x-axis).
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et al. 2011), but the expression of COL6A5 is decreased in the

skin of DSLD-affected horses (Haythorn et al. 2020).

Candidate genetic variants associated with
differing breed risk of DSLD influence lipid
metabolism
There are few studies specifically focused on the role of low-

density lipoprotein (LDL) and very low-density lipoprotein (VLDL)

mutations in tendon/ligament homeostasis, but there is strong

evidence that links these 2 lipoproteins with tendinopathy in fa-

milial hypercholesterolemia (Tilley et al. 2015; Aljenedil et al.

2018). Elevated plasma cholesterol, low-density lipoprotein

cholesterol and triglyceride, and lower high-density lipoprotein

cholesterol are associated with an increased risk of tendinopathy

and xanthoma formation because of LDLR mutations (Raal and

Santos 2012; Tilley et al. 2015). Linkage of VLDLR variants with

tendinopathy has not been established.

Other candidate genetic variant effects on
differing breed risk of DSLD
Other candidate tendinopathy genes associated with breed group

differences in DSLD risk identified in this study include PRDX2

and GREM2. Upregulation of the antioxidant enzyme PRDX2 has a

functional role in oxidative stress (Chu et al. 2013; Jeong et al.

Table 3. Significant genome-wide SNPs identified using ordinal GWAS across four DSLD risk groups and genes located in the associated
650kb window.

SNP position P-Value Chr. Window (bp) Genes

1:167,889,750 5.23E�09 1 167,839,750–167,939,750 None
1:16,979,620 8.12E�09 1 16,929,620–17,029,620 ATRNL1
1:152,659,086 2.48E�08 1 152,609,086–152,709,086 MEIS2
1:172,709,687 2.64E�08 1 172,659,687–172,759,687 NPAS3
1:165,399,279 3.08E�08 1 165,349,279–165,449,279 STXBP6
1:120,389,182 3.72E�08 1 120,339,182–120,439,182 SEMA7A
1:181,251,053 4.45E�08 1 181,201,053–181,301,053 None
1:161,411,374 6.58E�08 1 161,361,374–161,461,374 None
2:85,873,720 5.69E�13 2 85,823,720–85,923,720 None
2:92,260,610 2.58E�09 2 92,210,610–92,310,610 RAB33B/NAA15
2:95,726,382 9.07E�09 2 95,676,382–95,776,382 None
2:83,316,550 2.40E�08 2 83,266,550–83,366,550 LRBA/DCLK2
2:113,433,033 4.46E�08 2 113,383,033–113,483,033 CAMK2D/ANK2
2:103,773,160 4.54E�08 2 103,723,160–103,823,160 None
2:113,793,329 8.30E�08 2 113,743,329–113,843,329 ANK2
4:29,201,049 1.27E�11 4 29,151,049–29,251,049 None
4:85,780,520 2.34E�09 4 85,730,520–85,830,520 MKLN1
5:60,855,540 5.92E�08 5 60,805,540–60,905,540 None
5:21,231,893 1.09E�07 5 21,181,893–21,281,893 KCNK2
6:33,050,364 2.67E�09 6 33,000,364–33,100,364 CCND2
6:77,717,350 1.51E�08 6 77,667,350–77,767,350 SLC16A7
8:35,272,427 6.35E�10 8 35,222,427–35,322,427 LRRC30
8:31,344,118 1.47E�08 8 31,294,118–31,394,118 None
8:96,476,384 5.20E�08 8 96,426,384–96,526,384 ATP9B
8:32,610,990 9.96E�08 8 32,560,990–32,660,990 ZNF891/ZNF10
8:57,317,599 1.04E�07 8 57,267,599–57,367,599 CCDC178
9:72,122,737 7.83E�09 9 72,072,737–72,172,737 None
10:84,997,106 3.41E�09 10 84,947,106–85,047,106 NHSL1/CCDC28A/ECT2L
10:69,894,473 4.22E�08 10 69,844,473–69,944,473 TBC1D32
13:16,237,653 3.58E�09 13 16,187,653–16,287,653 AUTS2
15:55,512,469 1.63E�09 15 55,462,469–55,562,469 PPM1B
15:74,044,214 3.55E�09 15 73,994,214–74,094,214 None
16:30,408,620 9.94E�09 16 30,358,620–30,458,620 FHIT
16:68,091,834 1.91E�08 16 68,041,834–68,141,834 COL6A5
17:77,491,730 2.65E�09 17 77,441,730–77,541,730 COL4A1
17:6,212,612 1.88E�08 17 6,162,612–6,262,612 RNF6/CDK8
17:40,253,974 6.67E�08 17 40,203,974–40,303,974 None
18:27,056,892 8.22E�08 18 27,006,892–27,106,892 GTDC1
19:61,510,513 4.96E�09 19 61,460,513–61,560,513 None
20:61,064,890 7.51E�08 20 61,014,890–61,114,890 None
22:33,468,031 1.85E�08 22 33,418,031–33,518,031 PTPRT
24:22,791,028 6.75E�11 24 22,741,028–22,841,028 SPTLC2
24:46,690,329 2.23E�09 24 46,640,329–46,740,329 CEP170B/PLD4/AHNAK2/CLBA1
27:1,613,634 6.87E�11 27 1,563,634–1,663,634 PSD3
27:18,207,816 8.31E�08 27 18,157,816–18,257,816 SGCZ/MIR383
27:10,846,899 9.65E�08 27 10,796,899–10,896,899 None
29:17,669,169 2.26E�08 29 17,619,169–17,719,169 MALRD1
30:4,279,845 4.07E�10 30 4,229,845–4,329,845 GREM2/FMN2
31:14,453,924 7.19E�09 31 14,403,924–14,503,924 None
31:24,992,307 4.26E�08 31 24,942,307–25,042,307 None
31:6,076,336 1.01E�07 31 6,026,336–6,126,336 PACRG

Genes highlighted in bold underlined text may have biological influences on tendon and ligament homeostasis. Windows represent 50kb flanking regions around
each associated SNP.
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2018) and has been linked to development of rotator cuff tendin-
opathy in humans (Thankam and Agrawal 2021). GREM2 is a BMP
antagonist that is regulated by the circadian clock; GREM2 has
been linked to the development of tendon calcification and the
development of tendinopathy (Yeung et al. 2014).

Many associations were identified with zinc finger proteins.
Zinc finger proteins are among the most abundant proteins in eu-
karyotic genomes and their functions are extraordinarily diverse
(Laity et al. 2001; Gurgul et al. 2019), but a role in tendinopathy
has not been clearly defined.

In general, candidate genes associated with breed group differ-
ences in DSLD risk were supported by pathway analysis results.
Pathway analysis suggested that disturbances to mechanotrans-
duction are an important component of DSLD pathogenesis. It is
also interesting to note that structural and extracellular matrix
proteins were not highlighted in our pathway analysis.

Study limitations regarding use of breed
repository SNP data
More work validating our research findings and expansion of the
breed repository SNP set is needed to fully understand the useful-
ness of this approach, since biologically relevant candidate genes
may still represent false-positive discoveries (Pavlidis et al. 2012).
Our current data set is limited to a single breed with high risk of
DSLD, the PH, which showed some admixture with other breeds
with differing DSLD risk, such as the AR, the SB, and the LU. The
extent to which contrasts with other breeds may reflect variant
differences between breed characteristics as opposed to causal
associations with DSLD is unclear and needs more investigation.
However, associations with candidate tendinopathy genes are bi-
ologically plausible. When PCA using the top GWAS SNPs was re-
peated, the PH population segregated into 2 clusters likely with
differing within-breed risk of DSLD. This observation supports
the categorical GWAS approach we have used in this study.
These findings would be strengthened by further across breed
analysis after addition of other high-risk breeds to the data set.

Enlargement of the breed repository data set over time could be
very valuable with regarding to analysis of other disease pheno-
types in horses where clinical knowledge includes information on
breed incidence or breed categorical risk of disease. Additional
analysis through case–control association within the PH breed
using individually phenotyped horses would also provide further
validation for specific candidate genes.

Conclusions
Use of categorical GWAS with breed-assigned risk levels is a po-
tentially useful research approach in horses. Our findings con-
tribute to knowledge of the genetic background that explains
differing breed risk of DSLD. Using a One Health comparative
analysis investigating SOS and categorical GWAS of breeds of
horse with different breed risk of DSLD, our results suggest that
DSLD is a complex disease with a polygenic architecture.
We have identified several novel candidate genes associated with
elevated breed risk of DSLD that are also novel candidates for hu-
man tendinopathy. When taken together with existing knowl-
edge of the pathology of the disease, our findings suggest that
DSLD pathogenesis is associated with disturbances to SL homeo-
stasis where matrix responses to mechanical loading are per-
turbed through disturbances to aging in tendon (PIN1),
mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen
synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix response
to hypoxia (PRDX2), and lipid metabolism (LDLR, VLDLR). Our
results do not suggest that proteoglycan turnover in SL matrix is
a primary factor in the disease pathogenesis. Candidate loci can
now be specifically characterized using whole-genome sequenc-
ing for mutation discovery in both humans and the equine DSLD
spontaneous tendinopathy model. These results are also encour-
aging regarding future development of a genetic risk test or pre-
diction model to predict DSLD risk in horses before onset of
clinical signs. To avoid inadvertent use of affected individuals for
breeding, genetic testing will need a polygenic risk scoring ap-
proach.

Data availability
Genotype and phenotype data are available at figshare: https://
doi.org/10.25387/g3.20240223. Genotype and phenotype data are
presented in a PLINK binary (.bed, .bim, .fam) format. The bed
files contain genotyping information in binary format. The bim
files contain SNP information. The fam files contain phenotypic
information for each horse breed. Supplementary materials are
also available at FigShare. Supplementary File 1 contains supple-
mentary methods and results. Supplementary File 2 contains sig-
nificant SNP GWAS association results. Supplementary File 3
contains significant pathway analysis results.
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