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ABSTRACT

Human CD4+ T cells are often subdivided into distinct subtypes, including Th1, Th2, Th17, and Treg cells, that are thought
to carry out distinct functions in the body. Typically, these T-cell subpopulations are defined by the expression of distinct
gene repertoires; however, there is variability between studies regarding the methods used for isolation and the markers
used to define each T-cell subtype. Therefore, how reliably studies can be compared to one another remains an open ques-
tion. Moreover, previous analysis of gene expression in CD4+ T-cell subsets has largely focused on gene expression rather
than alternative splicing. Here we take a meta-analysis approach, comparing eleven independent RNA-seq studies of hu-
man Th1, Th2, Th17, and/or Treg cells to determine the consistency in gene expression and splicing within each subtype
across studies. We find that known master-regulators are consistently enriched in the appropriate subtype; however, cy-
tokines and other genes often used as markers are more variable. Importantly, we also identify previously unknown tran-
scriptomic markers that appear to consistently differentiate between subsets, including a few Treg-specific splicing
patterns. Together this work highlights the heterogeneity in gene expression between samples designated as the same
subtype, but also suggests additional markers that can be used to define functional groupings.
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INTRODUCTION

The adaptive immune response relies on the ability of
T cells to detect foreign antigen and respond by carrying
out appropriate functions, such as the secretion of cytotox-
ins or cytokines. Importantly, T cells are not a uniform cell
type, rather it is now recognized that multiple subtypes of
T cells are generated during development and/or an im-
mune response based on the nature of the foreign antigen
and/or the context in which the antigen engages with
T cells (DuPage and Bluestone 2016). In particular, sub-
types of CD4+ T cells differ in the antigens they engage
and in the nature of their response to antigen, resulting
in the optimal functional response to various types of im-
mune challenge. However, there is abundant variation in
the field in how CD4+ T subtypes are isolated and defined

(DuPage and Bluestone 2016; Stockinger and Omenetti
2017). While this variability is widely acknowledged, its im-
pact on the nature of the molecular characteristics of the
cells studied has not been analyzed in detail.

Three of the most widely studied T-cell subtypes are the
T-helper 1 (Th1), T-helper 2 (Th2), and T-helper 17 (Th17)
subsets of CD4+ T cells, each of which have been defined
as expressing signature cytokines. Th1 cells secrete the cy-
tokine interferon gamma (IFNγ) to promote an innate im-
mune response against viruses or cancer (Tran et al.
2014), while parasite-fighting Th2 cells secrete the cyto-
kines interleukin (IL)-4, IL-5, and IL-13 (Pulendran and
Artis 2012). Th17 cells secrete IL-17 and IL-23 to fight fun-
gal infections (Harrington et al. 2005) or cancer.
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Importantly, an inappropriate balance of T-cell subtypes
not only reduces effectiveness of fighting pathogens but
can also cause disease. Overabundance or activity of Th1
cells contribute to colitis (Harbour et al. 2015), Th2 cells
contribute to asthma and allergies (Venkayya et al. 2002),
and Th17 cells contribute to multiple sclerosis and other
autoimmune diseases (Vaknin-Dembinsky et al. 2006).
T-cell subsets have historically been defined based on

the expression of a lineage-defining master transcription
factor (Shih et al. 2014). The Th-specific master regulatory
transcription factors include: T-box transcription factor
TBX21 (T-bet) for Th1 (Szabo et al. 2002), GATA-binding
protein 3 (GATA3) for Th2 (Zhang et al. 1997; Zheng and
Flavell 1997), and RAR-related orphan receptor gamma
(RORγ) for Th17 (Ivanov et al. 2006). However, using these
two key factors, a master regulator and signature cyto-
kines, to define T-cell subsets is increasingly appreciated
to be too simple to adequately explain the breadth and
plasticity that has been observed for T-cell populations
(DuPage and Bluestone 2016). For example, another com-
mon T-cell subtype are regulatory T cells (Treg), which sup-
press immune responses. Treg suppressive function was
found to depend on the master regulator Forkhead Box
P3 (FOXP3) (Zheng and Rudensky 2007), but there are no
well-defined signature cytokines for Treg cells. Treg cells
produce TGFB, IL-10, or IL-35, which are critical anti-in-
flammatory cytokines, but not all of these cytokines are
produced by all Treg cells (Shih et al. 2014). Moreover,
core signature cytokines and master regulators such as
IFNγ and T-bet have been observed in Th17, Th22 and
other hematopoietic cells (Shih et al. 2014).
Another definition used to discriminate T-cell subsets is

their ability to sense and migrate to specific chemokines
through expression of distinct chemokine receptors, in-
cluding: CXCR3 for Th1, CCR4 for Th2, CCR6 for Th17
and IL2RA for Tregs (DuPage and Bluestone 2016).
However, transitionary T cells exist that simultaneously ex-
press chemokine receptors from two subsets (Cohen et al.
2011). Moreover, based on all of the above definitions,
T cells have shown remarkable plasticity in their ability to po-
larize between distinct T-cell subtypes (Bending et al. 2009;
DuPage and Bluestone 2016). Therefore, it is clear that bet-
ter descriptions are needed of the molecular differences
that define functionally distinct T-cell subpopulations.
A complication to the study of CD4+ subtypes is that

methods to isolate populations vary widely across the field.
One approach to purifying T-cell subsets is the use of an-
tibodies to chemokine receptors or other extracellular
marker proteins to isolate specific T-cell subsets directly
from blood using flow cytometry or magnetic beads.
However, these methods are limited by the above-men-
tioned variability and overlap in expression of thesemarker
proteins. In contrast, an alternate method to enrich for
T-cell subsets is polarizing naïve CD4+ T cells toward dis-
tinct phenotypes in vitro with various cytokine cocktails.

While these cytokine cocktails are meant to mimic the en-
vironment that promotes the development of each sub-
type, the conditions used vary from one laboratory to
another, thereby also inducing variability between studies.
Importantly, while the field acknowledges that distinct
methods of isolation of CD4+ subtypes likely generate
functionally different cells (DuPage and Bluestone 2016),
the extent to which these cell populations differ has not
been thoroughly examined. Moreover, the use of the
same designation (i.e., Th1) for cells purified from blood
or polarized in culture complicates the literature and
begs the question of whether or not it is appropriate to
compare cell populations from distinct studies (DuPage
and Bluestone 2016; Zhu 2018).
Here we seek to better understand the variability and or

similarities between T-cell subsets generated by distinct
methodologies by taking a meta-analysis approach to
compare gene expression across a range of T-cell subsets
that have been isolated and defined by a variety of meth-
ods. By comparing RNA-seq data across eleven indepen-
dent studies we identify a set of ∼20–50 genes whose
expression is well-correlated with distinct T-cell subsets.
Notably, these include some, but not all, of the genes en-
coding the cytokines and receptors typically used to
define T-cell subsets, as well as some additional genes
that have not previously been considered indicators of
cell fate. In addition, we also investigated the extent to
which alternative splicing contributes to transcriptomic
variation between subsets. We indeed find a small set of
genes for which splicing patterns at least somewhat corre-
late with cell subtype; however, splicing seems to be less
definitively regulated in a subtype-specific manner than
transcription. Together, our findings are consistent with
models arguing for more elaborate and nuanced defini-
tions of T-cell populations (Shih et al. 2014). Moreover,
our data provide important information as to the underly-
ing biologic differences between CD4+ subsets and sug-
gest new molecular markers that may also be used to
define these populations.

RESULTS

Selection of data sets and RNA-seq analysis
pipeline

Given the extensive variability in the methods used in the
field to generate and define CD4+ T-cell subsets we were
interested in determining how much molecular variation
exists in the resulting cell populations and whether there
are transcriptomic signatures that robustly identify T-cell
subsets regardless of experimental conditions. To carry
out a meta-analysis of transcriptomic variation in T-cell
subtypes, we identified RNA-seq experiments in the
NCBI-GEO and EMBL-EBI-ArrayExpress databases that
were from poly(A)-selected RNA samples derived from

Gene expression signatures in T-cell subsets

www.rnajournal.org 1321



CD4+ T cells purified from the blood of healthy humans
and had at least two out of three of the following types
of samples: naïve (no stimulation), Th0 (stimulated in the
absence of polarizing cytokines), or specific T-cell subsets.
We differentiate between naïve and Th0 cells, as stimula-
tion through the T-cell receptor alone (as in Th0) has
been shown by us and others to dramatically impact tran-
scriptome expression compared to naïve cells (Martinez
et al. 2012, 2015). We also confirmed the quality of the
data sets by requiring that all samples had >60% uniquely
mapped reads and no nonhuman overrepresented se-
quences. Lastly, we performed principle component anal-
ysis of samples by gene expression to confirm that in each
study samples clustered by cell type (Supplemental Fig.
S1). In total, 10 publicly available data sets, plus one in-
house data set (Bl, GSE135118), met these inclusion and
quality control criteria (Fig. 1A; Supplemental Table S1).
These 11 data sets include multiple replicate samples of
naïve and Th0 CD4+ cells, as well as Th1, Th2, Th17, and
Treg subpopulations (Fig. 1A,B). Importantly, these data
sets encompassed samples of specific T-cell subsets ob-
tained using one of two general approaches: (i) sorting
cells from whole blood using known extracellular protein
markers, or (ii) in vitro polarization of naïve CD4+ T cells to-
ward Th1, Th2, or Th17 cell fates with specific cytokine
cocktails. Data sets that generated T-cell populations by

in vitro polarization obtained naïve precursors from either
adult whole blood or neonatal cord blood and used dis-
tinct cytokine combinations (Fig. 1A). A detailed descrip-
tion of the experimental conditions and RNA-seq
technical specifications for each data set is shown in
Supplemental Table S1.

To begin to look for common patterns of gene and iso-
form expression in the above data sets, raw RNA-seq data
from all samples were uniformly processed by trimming
low quality base calls and adaptor sequences and aligning
reads to the hg38 genome (Fig. 1C). Gene expression was
then quantified with the Salmon and DESeq2 algorithms,
while local splicing variations were quantified with the
MAJIQ algorithm (Fig. 1C), which is optimized to detect
complex and unannotated splicing events (Vaquero-
Garcia et al. 2016). Importantly, all but two of these data
sets used a donor-paired experimental design (i.e., multi-
ple cell types were isolated or derived from each given
donor), allowing us to directly compare transcriptome pro-
files within T-cell subsets from an individual donor. RNA-
seq-based genotyping was used to confirm all sample
pairings, as well as to identify sample pairings in those
studies in which such information was not given (see
Materials and Methods). For expression analysis we used
the asinh transformation. The asinh transformation is a
commonly used method for stabilization of variance in

A

C

B

FIGURE 1. Data sets and analysis pipeline used for meta-analysis. (A) Data sets used in this study and the breakdown of samples and isolation
methods for each data set. Sorted: samples sorted from blood; Polarized: samples in vitro polarized; Adult or Cord: cells derived from adult or
cord blood. Ab (Abadier et al. 2017), Mo (Monaco et al. 2019), Ra (Ranzani et al. 2015), Bl (this study), He (Hertweck et al. 2016), Lo (Locci et al.
2016), Re (Revu et al. 2018), Mi (Micossé et al. 2019), Hn (Henriksson et al. 2019), Ka (Kanduri et al. 2015), Tu (Tuomela et al. 2016). For further
detail, see Supplemental Table S1. (B) Total number and quality of data sets for each T-cell subtype used in this study. (C ) Pipelines used to pro-
cess RNA-seq data and quantify gene expression and splicing variation.
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TPM in gene expression analysis (Huber et al. 2002;
SEQC/MAQC-III Consortium 2014; Francesconi et al.
2019).

Master regulators are consistently expressed
in a subtype-specific manner, while other
common markers are not

In order to determine the validity and robustness of both
the data sets and our analysis pipeline, we first assessed
the expression of well-accepted signature genes of Th1,
Th2, Th17, and Treg cell populations across the various
subpopulations. Although the absolute expression of pre-
viously described “master regulators” for Th1 (TBX21),
Th2 (GATA3), Th17 (RORC), and Treg (FOXP3) varied

from study to study, within any given study the majority
of the Th1, Th2, Th17, and Treg samples expressed their
respectively known master regulators more highly than
any other cell type (Fig. 2A). For example, 25 of the 25
Th1 populations across all seven Th1-containing data
sets, expressed the Th1 master regulator TBX21, as or
more highly than other cells in the same study (Fig. 2A,
top panel). Similarly, 21 of 22 Th2 samples highly ex-
pressed the Th2 master regulator GATA3 (Fig. 2A, second
panel), and all of the Th17 and Treg samples were en-
riched for their respective master regulators RORC and
FOXP3 (Fig. 2A, bottom two panels). As emphasized
above, each study analyzed here used different protocols
to obtain T Helper cell RNA-seq samples. Therefore, these
enrichment data demonstrate that master regulator gene

A B C

FIGURE 2. Expression of classical master regulators and cell surfacemarkers across T-cell subsets. Expression of signature genes typically used to
delineate T Helper cells, including genes encoding (A) master transcription regulators and (B) cell-surface proteins, across all data sets. Each sub-
plot represents a distinct gene, while each column in a specific subplot is a distinct study. Studies are listed at bottom and ordered as in Figure
1A. Cell type listed on right is the subtype expected to be enriched for the two genes plotted on that row. For each study, the mean and distri-
bution of the given gene is displayed as a box plot, with the values for each individual sample represented as a dot. Dots are colored by cell
subtype. Note that not all studies contain all cell types, as described in Figure 1A. Expression values shown as the inverse hyperbolic sine (asinh)
of transcripts per million (TPM). (C ) Comparison of the median TPM in the expression of the indicated genes in the corresponding cell subtype
relative to all others in the data set. Dots are values for individual data sets, and the boxplot shows the range and median for each gene. In each
case, the darker color is the master regulator and the lighter color is the surface marker.
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expression clearly segregates Th1, Th2, Th17, and Treg
populations independent of experimental method.

Interestingly, unlike the clear expression patterns of
master regulators, several extracellular markers commonly
used to isolate T Helper cell subpopulations showed less
consistent Th1, Th2, Th17, and Treg-specific expression
patterns (Fig. 2B,C). The Th1 extracellular marker CXCR3
was preferentially expressed six out of seven data sets;
however, in one data set (Lo), Th1 cells express less
CXCR3 than Th0 cells. This variability in expression cannot
be explained by the method of cell isolation as Lo used
similar methods as other studies that do show Th1-specific
expression of CXCR3 (in vitro polarized, He and Si).
Similarly,CCR4 only was enriched in Th2 cells in only three
of the six data sets that include these cells (Mo, Ra, and
He), while the Th17 extracellular marker CCR6 showed
Th17-specific expression patterns in only 9/16 samples
across four out of five data sets. Finally, while the Treg ex-
tracellular marker IL2RA was highly expressed in 9/9 Treg
samples from both data sets with Treg samples, its differ-
ence in expression compared to other T-cell subsets is
markedly lower than that observed for FoxP3 (Fig. 2C).

We also find significant variability in the extent to which
T-cell subtype samples expressed their expected signature
cytokines (Fig. 3). Almost all of the Th1 samples (22/25) do
express the Th1-specific cytokine IFNG more highly than
other cell types in the same study. In contrast, we observe
no enrichment of the Treg-associated cytokines TGFB or
IL10 in Treg cells relative to others (Fig. 3). Th17 and Th2
cells show some bias in expression of their associated cyto-
kines, IL4/5/13 and IL17A/F, respectively, over other cell
types, but only approximately half of the individual Th17

or Th2 cell samples express higher levels of these cytokines
than other cells in the same studies (Fig. 3). Taken together,
the above analysis of genes previously associatedwith Th1,
Th2, Th17, and Treg populations reveals significant vari-
ability of all but the “master regulator” genes. This raises
concerns about the validity of using mRNA levels of cyto-
kines and cell surface receptors as consistent and reliable
identifiers of T-cell subtypes, although it is possible that cy-
tokine protein expression does correlate well with T-cell
subtype asmany cytokines are regulated at a posttranscrip-
tional level (Anderson 2008). In addition, the data we ana-
lyze here does not rule out the possibility that there is more
synchrony of gene expression at other time points during
T-cell differentiation.

Th1, Th2, Th17, and Treg populations highly express
core sets of genes

Given the relatively limited consistency of expression of
genes expected to correlate with T-cell subtypes, we
next asked if other genes might be consistently enriched
in Th1, Th2, Th17, and/or Treg cells regardless of variation
in culture conditions and cellular sources. Specifically we
mined the full gene expression data as determined by
DESeq2 (Fig. 1C) for genes “reliably expressed” in a given
T-cell subset, which we define as genes that are signifi-
cantly more highly expressed in a given subset relative to
others, in at least two of the studies analyzed (see
Materials and Methods). 555 unique genes were reliably
higher in at least one T-cell subset over another acrossmul-
tiple data sets (Supplemental Table S2). These 555 subset-
associated genes were then ranked by the number of data

A

C

B

D

FIGURE 3. Expression of cytokines across T-cell subsets. Expression of cytokines associated with (A) Th1, (B) Th2, (C ) Th17, or (D) Treg cells,
across all data sets. Each plot represents a distinct gene, while each column is a distinct study. Studies are listed at bottom and ordered as in
Figure 1A. For each study, the mean and distribution of the given gene is displayed as a box plot, with the values for each individual sample rep-
resented as a dot. Dots are colored by cell subtype. Note that not all studies contain all cell types, as described in Figure 1A. Expression values
shown as the inverse hyperbolic sine (asinh) of transcripts per million (TPM).

Radens et al.

1324 RNA (2020) Vol. 26, No. 10

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.075929.120/-/DC1


sets in which they were enriched, followed by the fold dif-
ference in expression between the subset analyzed versus
others (Supplemental Fig. S2).
Notably, by this ranking, the top 20 most associated

genes for each T Helper subset (Fig. 4) include the “master
regulators” TBX21 for Th1, GATA3 for Th2, RORC for
Th17, and FOXP3 for Treg. Moreover, consistent with
the analysis of specific cytokines and chemokine receptors
in Figures 2 and 3, the top Th1-associated genes include
CXCR3 and IFNG, the top 20 Th17-associated genes in-
clude IL17A/F and CCR6, and IL2RA is among the top 20
Treg-associated genes (Fig. 4). In contrast, none of the
Th2 signature cytokines or receptors genes (IL-4/5/13
andCCR4) are significantly enriched in Th2 cells compared
to the other populations surveyed (Fig. 4).
In addition to the master regulators, cytokines, and che-

mokine receptors specific to distinct CD4+ T-cell subtypes,
many of the core genes enriched in Th1, Th2, Th17, and
Treg cells have been implicated in the biology of these
cells (see Discussion). However, at least two of the top 20

Th1 core genes (TRPS1 and STOM) and three of the top
20 Th2 core genes (TNFSF11, TNFRSF11A, and LRRC32)
have not previously been implicated in Th1 and Th2 biol-
ogy, respectively, and may represent potential new mark-
ers of CD4+ subtypes (see Discussion). Therefore, our
identification of subset-associated genes highlights addi-
tional genes that may contribute to the function of partic-
ular T-cell subsets and/or be useful as markers for
subpopulations. Importantly, the expression of many of
these core genes in CD4+ T-cell subtypes is independent,
at least at steady state, from the expression of master reg-
ulators, as indicated by limited correlation in the expres-
sion levels of the genes in Figure 4 with the
corresponding master regulators (Supplemental Fig. S3).

Analysis of local splicing variations reveals
Treg-biased isoform expression

Given our success in identifying genes whose expression is
highly associated with specific T-cell subsets, we next

FIGURE 4. T cells consistently express core set of genes in a subset-specific manner. Reliably expressed T Helper genes (as defined in Materials
andMethods), ranked by number of supporting data sets and log2FC differences. The heatmap shows inverse hyperbolic sine (asinh)-transformed
TPMs. Each column is a sample, and samples are grouped by cell type and author. Gene names are on the right. Grayscale boxes in the leftmost
segment indicate whether a given core T Helper gene was reliably more highly expressed in a given subset over others. The median logFC be-
tween the given subtype over others is quantified by the grayscale of the boxes (darker indicates higher logFC). All differential expression analyses
were performed between samples from the same data set. The data sets with Treg samples lacked Th0 samples, so there is no “enriched in Treg
vs. Th0” column.
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asked the question of whether particular splicing patterns
(i.e., mRNA isoforms) of certain genes was also correlated
with T-cell subtype. Alternative splicing is a ubiquitous
mRNA processing step that arises from differential inclu-
sion of exons, introns or portions thereof. Such splicing var-
iations often result in different protein isoforms, which can
have disparate functions (Braunschweig et al. 2013).
Recent studies have revealed widespread and co-regulat-
ed alternative splicing early in CD4+ T-cell activation in the
absence of polarizing cytokines (Ip et al. 2007; Martinez
and Lynch 2013; Martinez et al. 2015). While a few studies
have reported differential splicing or expression of splicing
regulatory proteins in particular T-cell subsets in mice
(Stubbington et al. 2015; Middleton et al. 2017), a compre-
hensive comparison across human T-cell subsets has not
been reported.

In contrast to the results with gene expression, we find
very few instances in which we observe consistent differ-

ences in splicing patterns in a T-cell subtype-specific man-
ner (Fig. 5A; Supplemental Table S3). The few instances of
subset-specific splicing that we can detect across data sets
are cases of modest differential isoform expression in Treg
cells versus Th2 or Th17 cells (Fig. 5A). These splicing
events represent all standard classes of splicing patterns
(Fig. 5B) and occur in genes that do not display any differ-
ences in overall expression (Fig. 5C; Supplemental Table
S2). Therefore, the isoform differences that do exist be-
tween T-cell subtypes are not readily detected in typical
gene expression profiling.

Overall, the data in Figure 5 suggests that alternative
splicing is not a general determinant of T-cell identity.
However, we do note that some of the observed Treg-
biased splicing events are in genes linked to cytokine ex-
pression and immune function and thus are potentially of
interest for future studies. For example, ARHGEF2 exhibits
differential use of alternative 3′ splice sites at the

A

B C

FIGURE 5. Only a limited number of splicing events are consistently regulated in a subset-specific manner in T cells. (A) Heatmap of PSI value for
splicing events that show reproducible differences between Treg cells and Th2 and/or Th17 cells. Each column is a sample, and samples are
grouped by cell type and author. Gene names and splicing event are on the right. Gray boxes in the heatmap indicate splicing events that lacked
sufficient RNA-seq read depth to accurately quantify PSI. Grayscale boxes in the leftmost segment indicate comparisons that met significance
threshold. The median dPSI of significant differences between the given subtype over others is quantified by the grayscale of the boxes (darker
indicates higher dPSI). Significant differences are based on comparison between samples from the same data set (Ra and Mo have Treg), but PSI
values are shown for all samples. (B) Pie chart of splicing events identified as differentially spliced between all T Helper subset comparisons.
Categories include cassette exons (CE), alternative first exons (AFE), alternative 3′ss (Alt3′ss), alternative last exon (ALE), or alternative 5′ss
(Alt5′ss), or other nondefined patterns of splicing (Other AS). (C ) Change in expression (Log2FC) in all genes that are differentially expressed
(DE) or alternatively spliced (AS) between two cell subtypes studies as compared to all genes (ALL). The change in expression of each type of
splicing event is also shown as for B.
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beginning of exon 7 in Treg cells versus Th2 and Th17 cells
(Figs. 5A, 6A). ARHGEF2 encodes GEF-H1, a Rho guanine
nucleotide exchange factor (Rho-GEF) that is involved in
the response to intracellular pathogens and is required
for expression of IL1β and IL6 (Wang et al. 2017). Tregs
generally express more of the isoform that uses the distal
3′ splice site than Th2 or Th17 cells (Figs. 5A, 6A). Use of
this distal 3′ splice site results in the removal of a single
alanine residue in the linker between the microtubule
binding domain and the enzymatic Dbl-homology domain
and has been shown to correlatewith loss of RhoA-enhanc-
ing activity by GEF-H1 (Chen et al. 2019). A related Rho-
GEF, ARHGEF3, is also somewhat differentially spliced
between Treg and Th2 cells in that a proximal alternative
first exon is favored in Tregs versus Th2 cells, thus altering
the first 32–38 amino acids of the encoded protein
(Fig. 6B). While functional differences have not been iden-
tified between the isoforms with distinct amino-termini,
ARHGEF3 has been linked to activation of RhoA inmyeloid
development (D’Amato et al. 2015).
Finally, a particularly interesting case is ZNF451, which

exhibits preferentially skipping of an in-frame exon 2 in
Treg cells as compared to Th17 cells (and perhaps also
Th2 cells, although not scored as significant due to limited
read count, Fig. 6C). ZNF451 is a SUMO E3 ligase and has
also been shown to physically interact with Smad4 to re-
press its activation of TGF-β signaling (Feng et al. 2014;
Cappadocia et al. 2015). Notably, exon 2, encodes part
of the domain required to recruit SUMO to substrates
(Cappadocia et al. 2015).While the role of the E3 ligase ac-

tivity of ZNF451 to TGF-β signaling has not been defined,
the differential expression of exon 2 in Treg cells suggests
that this splicing difference may be a mechanism to differ-
entially regulate TGF-β signaling in T-cell subsets.

DISCUSSION

Much variability exists in how T-cell subsets are differenti-
ated and defined. To investigate how much variability ex-
ists in the gene expression profiles of nominally similar but
experimentally distinct T-cell populations, we took a meta-
analysis approach comparing RNA-seq data collected
across distinct laboratories and methods. Importantly,
while our transcriptomic analysis does confirm enriched
expression of subtype-specific master regulators, we find
that many other genes markers commonly associated
with Th1, Th2, Th17, or Treg cells show limited predictive
power to differentiate subtypes, at least for the range of
time points and conditions encompassed here. On the
other hand, our analysis uncovers a handful of genes pre-
viously unknown to be regulated in a cell-type specific
manner that show significant enrichment in one T-cell sub-
set compared to others. Finally, we show that while alter-
native splicing appears to play a limited role in shaping
T-cell differentiation into subsets, a few exceptions to
this rule may exist, especially in Treg cells.
Using a pair-wise comparison method we were able to

identify∼860 genes that exhibit differential expression be-
tween at least two T-cell subsets (Fig. 4; Supplemental
Table S3). We emphasize that the genes highlighted in

A

B

C

FIGURE 6. Treg-biased splicing events are predicted to alter protein function. Details of the splicing patterns for genes (A) ARHGEF2, (B)
ARHGEF3, and (C ) ZNF451, that exhibit some Treg bias (top) and the quantification of the variable events across samples (bottom).
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Figure 4 are consistently enriched in a CD4+ T-cell subset
regardless of purification method or cell source, and thus
are likely genes that are intimately tied to the biology of
each subset. For example, the top ten Th1 reliably ex-
pressed genes were mostly previously known to be impor-
tant for Th1 biology, including the master regulator TBX21
(Szabo et al. 2002), the Th1-associated cytokines IFNG and
CXCR3 (DuPage and Bluestone 2016), the IFNG enhancer
IFNG-AS1 (Collier et al. 2014), as well as IL18RAP (Jenner
et al. 2009), TIMD4 (Nakajima et al. 2005), GBP5 (Lund
et al. 2007), and CCL5 (Shadidi et al. 2003).

Similarly, the top ten reliably expressed genes in Th2,
Th17 and Treg cells include those implicated in relevant
biology. For example, the top Th2 core genes includes the
Th2master regulatorGATA3andother genespreviously im-
plicated in Th2 biology such as GATA3-AS1, PTGDR2 (aka
CRTH2), SEMA5A, IL17RB, AKAP12, and HPGDS
(Angkasekwinai et al. 2007; Lund et al. 2007; Wang et al.
2007; Zhang et al. 2013; Mitson-Salazar et al. 2016); while
the top ten Th17 reliably expressed genes includes Th17
master regulatorRORC, aswell asgenes known tobe impor-
tant for Th17 biology including ADAM12 (Zhou et al. 2013),
COL5A3 (Castro et al. 2017), CCR6, IL1R1 (Hu et al. 2011),
ABCB1 (Ramesh et al. 2014), PLXND1 (Guo et al. 2016),
and MAP3K4 (Cleret-Buhot et al. 2015). Finally, the top
ten Treg reliably expressed genes includes Tregmaster reg-
ulator FOXP3 and additional genes known to be important
for Treg biology including CEACAM4 (Hua et al. 2015),
HMCN1 (Sadlon et al. 2010), DNAH8 (Regateiro et al.
2012), SEMA3G, CSF2RB (Bhairavabhotla et al. 2016),
IKZF2 (Thornton et al. 2010), LINC01281 (Ranzani et al.
2015), and CTLA4 (Takahashi et al. 2000).

Importantly, beyond confirming genes known to be in-
volved in CD4+ T-cell identity, our analysis also revealed
genes that may represent novel biology or new markers
for specific CD4+ T-cell subsets. For example, Th1 identi-
fied core genes CCL5 and TIMD4 encode for cell-surface-
exposed proteins, so it would be especially interesting if
these proteins could be used for isolating or quantifying
Th1 cell populations. In addition, one of the top 10 Th1-re-
liable genes, TRPS1, is not known to be important for Th1
cell populations specifically but is implicated in Th17
(Yosef et al. 2013). STOM was also reliably expressed in
Th1 samples, but it is not known what role, if any, STOM
plays in T-cell biology. Similarly, Th2 identified core genes
TNFSF11 and SEMA5A encode for cell-surface-exposed
proteins and are more consistent Th2 cell markers at the
mRNA level than CCR4 or IL4/5/13 (Fig. 4), suggesting
that TNFSF11 and SEMA5A proteins might have utility in
isolation of Th2 cells by flow cytometry, while the enrich-
ment of TNFSF11A and LLRC32 among the highly Th2-as-
sociated genes, suggest new Th2 biology. Th17 identified
core genes ADAM12, COL5A3, NTN4, and TSPAN15 are
as at least as consistently expressed in a Th17-specific
manner than the commonly used genes RORC, CCR6, or

IL17A/IL17F (Fig. 4). ADAM12 and TSPAN15 encode for
cell-surface-exposed proteins, so could be used for isolat-
ing or quantifying Th17 cell populations. Treg identified
core genes CEACAM4, CSF2RB, IKZF2, and LINC01281
are as good or better markers at the mRNA level for Treg
cells than the commonly used genes FOXP3, IL2RA, IL10,
or TGFB. CEACAM4 and CSF2RB encode for cell-surface-
exposed proteins, so may have utility for isolating or quan-
tifying Treg cell populations. Taken together we conclude
that surveying a combination of differentially expressed
genes may be more informative for defining and studying
T-cell subsets than simply relying on one or two markers.

Finally, a major question we sought to answer in this
study is whether cytokines, or distinct CD4+ T-cell differen-
tiation programs, also impact alternative splicing.
Surprisingly, we find little evidence for widespread coordi-
nated changes in splicing that correlate strongly with T-cell
subset identity. This could reflect the fact that splicing rep-
resents a fine-tuning of T subset function rather than a ma-
jor determinant, or is regulated at different times during
differentiation than gene expression. Alternatively, splic-
ing may be more sensitive than gene expression to varia-
tions in the methods used to isolate subpopulations of
CD4+ T cells or the depth of sequencing, as RNA-seq-
based splicing quantifications is known to require more
read-depth than gene expression as only a subset of reads
report on differential isoforms (Vaquero-Garcia et al.
2016). Regardless, we did identify a few genes for which
splicing might contribute to differential function of Treg
cells, such as AHRGEF2 and ZNF451. Similar to the unap-
preciated subset-biased gene expression programs men-
tioned above, these splicing events represent potentially
new biology that we anticipate will motivate further study.
We also do not test here the possibility that other forms of
posttranscriptional gene regulation, such as 3′ end pro-
cessing or translational control, could impact differential
protein expression in CD4+ T-cell subsets. Such investiga-
tions would be an interesting goal of future analyses.

MATERIALS AND METHODS

Experimental model and subject details

For the in-house Bl data set, CD4+ human peripheral blood
mononuclear cells were obtained via apheresis from de-identified
healthy blood donors after informed consent by the University of
Pennsylvania Human Immunology Core. Samples were collected
from three donors, ND307 (age: 46, sex: male), ND523 (age: 26,
sex: female), and ND535 (age: 32, sex: male).

Primary T-cell isolation and in vitro culturing of naïve
CD4+ T cells into Th0 cells

From the CD4+ T cells apheresis, naïve CD4+ T cells were nega-
tively selected for with MACS Miltenyi CD45RO microbeads

Radens et al.

1328 RNA (2020) Vol. 26, No. 10



(130-046-001). Six-well plates were coated for 3 h with 2.5 µg anti-
CD3 (555336) at 37°C then washed with PBS. 10×106 Naïve
CD4+ T cells were then cultured in complete RPMI in the anti-
CD3-coated six well plates with 2.5 µg soluble anti-CD28
(348040) and 10 IU of IL-2. Cells were harvested after 48 h.

RNA-sequencing of primary T cells

RNA was isolated with RNA Bee (Tel-Test Inc.), according to the
manufacturer’s protocol, from bulk naïve CD4+ T cells (cultured
for 0 h) and Th0 cells (cultured for 48 h with anti-CD3 and anti-
CD28). The RNA integrity number (RIN) was measured with a bio-
analyzer, and all samples had a RIN>8.0 (Supplemental Fig. S4).
RNA-sequencing libraries were generated by and sequenced by
GeneWiz. The libraries were poly(A) selected (nonstranded) and
paired-end sequenced at a 150 bp read length.

Selection of data sets and RNA-seq data processing

The following search termswere used to find appropriatedata sets
on EMBL-EBI-ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)
and NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/): “T Helper,”
“Naïve,” “CD4,” “Th0,” “Th1,” “Th2,” “Th17,” and “T Regulato-
ry.”Data sets that had at least two of the following types of samples
were retained for further analysis: Naïve, Th0, or Th1/Th2/Th17/
Treg.

SRA files for the publicly available data sets were downloaded
from the NCBI Sequence Read Archive (Supplemental Table S1).
SRA files were converted to fastqs with fastq-dump (sratoolkit
v2.9.2; Leinonen et al. 2011) using the following commands:
–split-3 –gzip. Sequencing adaptors and low quality base calls
were trimmed from reads using trim_galore (v0.5.0, downloaded
from www.bioinformatics.babraham.ac.uk/ projects/trim_galore/)
using the following commands: –stringency 5 –length 35 -q 20.
For gene expression analyses, transcript level counts were ob-
tained using Salmon (v0.11.3; Patro et al. 2017) inmapping-based
mode with default settings. The Salmon transcriptome indices
were prepared with the GRCh38 genome and Ensembl
GRCh38.94 transcript database. Transcript level counts were col-
lapsed into gene level counts with tximport (v1.12.0; Soneson
et al. 2015). For alternative splicing analyses, fastq reads were
alignedwith STAR (2.5.2a) to theGRCh38 genome supplemented
with theEnsemblGRCh38.94 transcript databaseusing the follow-
ing commands: –outSAMattributes All –alignSJoverhangMin
8 –readFilesCommand zcat –outSAMunmapped Within. The
aligned bam files were then quantified for alternative splicing
analyses with MAJIQ (v2.1-59f0404; Vaquero-Garcia et al.
2016), usingMAJIQbuildwith the following additional command:
–simplify 0.01.

Identifying and confirming which samples derived
from the same human donors

All but one data set (Ra) used a paired-donor experimental
design, meaning two or more samples representing different
T-cell subsets derived from the same human donor. To determine
which samples derived from the same donor, single nucleotide
variants were identified for each RNA-seq sample, and then the

proportion of shared genomic variation between samples was cal-
culated. To identify and call the single nucleotide variants from
the genome-aligned bam files, bcftools (v1.9; Li 2011) was
used. The command used was bcftools mpileup -Ou –f
<genome.fasta> <bam file> | bcftools call -mv -Ob –output
<bcf file>. The bcf files were indexed, and then merged (–out-
put-type z) with bcftools into a vcf file. The merged vcf file was
then filtered with bcftools view –min-af 0.25 –output-type z,
then the vcf was normalized and converted back to a bcf with
bcftools norm -m-any | bcftools norm -Ob –check-ref w –f
<genome.fastq>. The resulting bcf was indexed with bcftools,
and then processed with plink (v1.90b6.7; Purcell et al. 2007) us-
ing the following commands: –bcf <bcf file> –const-fid 0 –allow-
extra-chr 0 –recode –out <working directory>. To quantify the
proportion of shared genomic variation between samples (identi-
fy by descent or IBD), plink was runwith the following command: –
file <working directory> –genome –out <working directory>.
Groups of samples were determined to derive from the same
donor if IBD scores were greater within the group than outside
the group. Reassuringly, this analysis confirmed which samples
derived from the same donor in data sets that provided donor in-
formation, so we feel confident in in our determination of sample
donor pairs for data sets from which donor information was not
provided.

Quality control checks

The trimmed fastqs were analyzed by FastQC (v0.11.2 download-
ed from www.bioinformatics.babraham.ac.uk/projects/fastqc/).
FastqQC results were used to confirm each sample did not have
any nonhuman overrepresented sequences. One publicly avail-
able data set relevant to this study (but not used for further anal-
yses) failed this quality control check because some samples had
overrepresented bacterial genome sequences possibly indicating
a bacterial contamination during cell culture. To confirm samples
from the same donor were convincingly differentiated or sorted
into different T-cell subtypes, PCA analysis was carried out on
the gene-level counts using DESeq2::plotPCA (v1.22.1; Love
et al. 2014). One publicly available data set relevant to this study
(but not used for further analyses) failed this quality control check
because the T-cell subtype explained <10% of the variance in
gene expression across samples in the data set (at least 57% of
the variance in gene expression was attributed to the identity of
the donor, suggesting inefficient cell sorting). The final quality
control check was to confirm a sufficient percentage of reads in
the fastqs aligned to the human genome uniquely and unambig-
uously at a rate of at least 60% according to the STAR logs.

Differential expression analyses

DESeq2 (v1.22.1) in R (v3.5.1) was used to quantify differential ex-
pression between T-cell subtypes for each data set (see bitbucket
repository for commands used). For each test for differential ex-
pression between two T-cell subtypes, samples were only ever
compared from the same data set (see Fig. 1A). For example, Bl
Naïve vs. Bl Th0. Before testing for differentially expressed genes,
genes were filtered to only retain genes with total counts greater
than 10 in at least two samples in at least one subtype.
Mitochondrial and ribosomal genes were also filtered out. For
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all but the Ra and Mi data sets, the donor-aware model matrix
supplied to DESeq2 controlled for gene expression variation
due to donor by using “design=∼Donor +Subtype.” The Ra
and Mi data set design matrices were simply “design=
∼Subtype.” To control for noisy estimates of log2 fold-change
in lowly expressed genes and genes with a high coefficient of
variation, a log fold-shrinkage was applied to the DESeq2
differential expression results: “DESeq2::fcShrink(<deseq_obj>,
<coefficient>, type=apelgm, lfcThreshold=1.5, svale=True”).

Identifying consistently differentially expressed
genes between T-cell subtypes

To identify core sets of geneshighly expressed in eachCD4+T-cell
subtype, we performed differential expression analyses between
all pairs of subtypes, controlling for the human donor source of
the sample (i.e., Th0 vs. Th1, Th2 vs. Th1, Th17 vs. Th1, TReg vs.
Th1). Differential expression analyses were done with DESeq2,
and the resulting log2 fold changes (log2FC) and the s-values
(the probability that the sign of the log2FC is wrong) were used
to identify core genes. For example, core Th1 genes were defined
as genes more highly expressed (log2FC>1) in Th1 samples than
Th0, Th2, Th17, or TReg samples; Th1 core genes needed to be
consistently higher in Th1 than Th0, Th2, Th17, or TReg in the
data sets that included both Th1 and Th0 samples (genes higher
in two out of two data sets), Th1 and Th2 samples (genes higher
in at least four out of five data sets), Th1 and Th17 samples (genes
higher in three out of three data sets), or Th1 and TReg samples
(geneshigher in twoout of twodata sets). Th1 coregeneswere fur-
ther filtered out if none of the differential expression comparisons
showed the gene ever having an s-value <0.001. Core genes were
then identified for Th2, Th17, andTRegpopulations. The resulting
core genes are represented in Supplemental Table S3, whereby
each core gene can be represented by multiple rows: Each row
summarizes the differential expression results for the gene from
a given CD4+ T-cell comparison (Th0 vs. Th1, Th2 vs. Th1, etc.).
In many cases, core genes were identified for multiple T-cell sub-
types. For example, CXCR3 is a core gene for Th1 (mean log2FC
2.95 over Th2 in five data sets, log2FC 4.2 over Th17 in three
data sets) and CXCR3 is also a core gene for TRegs (log2FC 2.36
over Th2 in two data sets).

To better visualize these T-cell subtype core genes, the core
genes table was filtered, per gene, to select which T-cell compar-
ison (i.e., Th0 vs. Th1) had the greatest number of data sets show-
ing higher expression with s-value <0.001 (ties decided by the
greatest mean log2FC across the data sets). After the above filter-
ing, each core gene was represented by a single T-cell subtype
comparison. For each CD4+ T-cell subtype comparison, core
genes were sorted by log2FC to rank genes by the greatest differ-
ential expression in favor of the given subtype comparison. Figure
4 shows these sorted genes’ asinh for transcripts per million (TPM)
levels. Asinh(x) is calculated as ln[x + sqrt(x^2+1)].

Splicing analyses

To look for genes exhibiting consistent differences in splicing be-
tween T-cell subtypes, the MAJIQ algorithm (v2.1-59f0404;
Vaquero-Garcia et al. 2016) was used to quantify alternative splic-
ing from the genome-aligned bam files (see bitbucket repository

for details). With the exception of the Ra and Mi data sets, differ-
ential splicing was quantified between all pairs of samples from
the same donor (e.g., Ka Th1 donor 1 vs. Ka Th2 donor 2). For
Ra and Mi, samples were compared in bulk versus each other
(e.g., all Th1 vs. all Th2 in Ra). MAJIQ deltapsi quantifies the dif-
ference in percent splice included for every splice junction (e.g.,
GeneA junctionX shows a 20% difference in inclusion between
Ka Th1 donor 1 vs. Ka Th2 donor 2 or 20% difference in inclusion
between Ra Th1 samples and Ra Th2 samples). MAJIQ also quan-
tifies the probability that a difference in splice inclusion is above
some threshold, and we used a threshold of 20%. Significant dif-
ferences in splicing were those identified as having a 95% proba-
bility of being greater than a 20% difference in splicing.

Identifying consistently differentially spliced genes
between T-cell subtypes

To identify consistently differentially spliced splice junctions, for
each junction and for each T-cell subtype comparison, we first
identified the splice junctions that showed a significant difference
in splicing in at least one donor from at least one data set. Next,
we filtered out junctions for which any other donors disagreed on
the direction of the change in splicing. We next filtered out junc-
tions for which two data sets disagreed on the direction of the
change in splicing. Next, we filtered out splicing changes where
the number of data sets that agreed the splicing change was at
least 10% in the same direction was fewer than two. Forty-three
genes passed these filters, and these genes are listed in
Supplemental Table S4.

DATA DEPOSITION

The new RNA-seq from naïve and Th0 cells generated for this
study is available in GEO (GSE135118). Accessions for the other
data sets used in this study include: Hn (E-MTAB-6300), Mi
(E-MTAB-5739), Ra (E-MTAB-2319), Tu (GSE52260), Ka
(GSE71645), Ab (GSE107981), Re (GSE110097), He (GSE62484),
Mo (GSE107011), and Lo (GSE78276). All scripts used to analyze
data for this study are made publicly available here: https://
bitbucket.org/cradens/t_cell_meta_anlaysis/.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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