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Wepropose objective and robust measures for the purpose of classification of “vaginal vs.

cesarean section” delivery by investigating temporal dynamics and complex interactions

between fetal heart rate (FHR) and maternal uterine contraction (UC) recordings from

cardiotocographic (CTG) traces. Multivariate extension of empirical mode decomposition

(EMD) yields intrinsic scales embedded in UC-FHR recordings while also retaining

inter-channel (UC-FHR) coupling at multiple scales. The mode alignment property of

EMD results in the matched signal decomposition, in terms of frequency content, which

paves the way for the selection of robust and objective time-frequency features for the

problem at hand. Specifically, instantaneous amplitude and instantaneous frequency of

multivariate intrinsic mode functions are utilized to construct a class of features which

capture nonlinear and nonstationary interactions fromUC-FHR recordings. The proposed

features are fed to a variety of modern machine learning classifiers (decision tree, support

vector machine, AdaBoost) to delineate vaginal and cesarean dynamics. We evaluate the

performance of different classifiers on a real world dataset by investigating the following

classifying measures: sensitivity, specificity, area under the ROC curve (AUC) and mean

squared error (MSE). It is observed that under the application of all proposed 40 features

AdaBoost classifier provides the best accuracy of 91.8% sensitivity, 95.5% specificity,

98% AUC, and 5% MSE. To conclude, the utilization of all proposed time-frequency

features as input to machine learning classifiers can benefit clinical obstetric practitioners

through a robust and automatic approach for the classification of fetus dynamics.

Keywords: fetal heart rate, uterine contraction, bivariate empirical mode decomposition, intrinsic mode function,

vaginal delivery, cesarean section
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1. INTRODUCTION

According to the World Health Organization (WHO) (World
Health Organization et al., 2015), the high global pregnancy-
related mortality ratio of 216 per 100,000 live births is caused
by the postpartum hemorrhage, infections and pre-eclampsia
(World Health Organization, 2015; Withers et al., 2018). The
postpartum hemorrhage, a leading cause of maternal deaths
(Say et al., 2014), is mainly quoted because of the excessive
blood loss and uterine atony. The substandard care, in terms of
imprecise blood loss estimate and delayed involvement of trained
obstetricians, is also key to maternal mortality and morbidity
(Crowhurst and Plaat, 1999; Rizvi et al., 2004). This underpins
a computerized risk score system using continuous monitoring
of the fetus for early identification of associated risks during
antepartum and intrapartum periods.

Fetal heart rate (FHR) monitoring is the most common
procedure assessing the fetal health in the present-day obstetric
practice (Devane et al., 2017). For this, various techniques are
in practice including fetal stethoscope, intermittent auscultation
(Doppler ultrasound) and electronic fetal monitoring (EFM)
(Freeman et al., 2012). These techniques have the potential
to determine intrauterine hypoxia (Alfirevic et al., 2017), and
also make additional assessments leading to the identification
of normal and abnormal births (Alfirevic et al., 2017). Though
fetal stethoscope is cheap and easy to use for monitoring
purposes only, it lacks the recording of FHR and also requires
right expertise to interpret. Similarly, intermittent auscultation
provides baseline FHR along with the baseline variability,
accelerations and decelerations, however, their quantification
also remains daunting (Rahman et al., 2012). On the contrary,
the EFM, also named cardiotocography (CTG), provides not
only the precise monitoring and recording of FHR but also
captures maternal uterine contractions (UCs), making CTG a
more attractive technique in obstetrics (Warrick et al., 2009).

The current obstetric litigation mostly relies on the visual
assessment of the CTG adhering to guidelines provided by the
International Federation of Gynecology and Obstetrics (FIGO)
(Rooth et al., 1987). However, the subjective interpretation,
and high inter- and intra-observer heterogeneity of the CTG
has led the current research to investigate and propose novel
computerized quantitative and objective measures which might
assist obstetricians in their clinical practice. To date, various
signal processing algorithms and machine learning paradigms
have been utilized to quantify temporal dynamics of CTG
tracings. For example, Signorini et al. (2003) proposed a
multiparametric scheme based on the linear (autoregressive) and
nonlinear (approximate entropy) models for the FHR analysis.
Similarly, Ferrario et al. (2006) adopted variants of entropy
measures to capture qualitative variations of FHR patterns.
Recently, machine learning algorithms based ensemble classifier,
trained on features extracted from raw FHR records, has been
proposed for the robust detection of intrapartum fetal acidosis
(Spilka et al., 2017), and vaginal vs. cesarean delivery (Fergus
et al., 2018). Most of these attempts focused solely on FHR
dynamics. Whilst, being integral to the autonomous nervous

control, FHR variability is sensitive to intrinsic and/or extrinsic
stimuli, for example, UCs (Romano et al., 2006).

Along these lines, Warrick et al. (2009) and Warrick et al.
(2010) performed a series of studies to quantify the dynamic
coupling of UC (as an input) and FHR (as an output). In
Warrick et al. (2009), a linear system identification approach
was applied to quantify strength and timing of the FHR
response to UC in terms of the gain and delay of the
estimated impulse response function (IRF). A follow up study
(Warrick et al., 2010) employed an integrated approach of
system identification along with the FHR baseline and variability
features to classify normal and hypoxic fetuses. These studies
accounted for only linear components and also assumed UC-
FHR dynamics to be stationary. Casati et al. (2014) utilized
a phase based signal processing algorithm, namely bivariate
phase-rectified signal averaging (BPRSA), to investigate the non-
stationary coupling of UC-FHR patterns. Though these methods
have performed satisfactorily, their underlying assumption of
linearity or stationarity among UC and FHR signal components
have resulted in limited accuracy in practical scenarios;
thereby motivating the application of modern signal processing
approaches accounting for both inherent (nonlinearity and
nonstationarity) complexities of UC-FHR dynamics.

Empirical Mode Decomposition (EMD) is a data-adaptive
signal decomposition method which has been designed
specifically for nonlinear and nonstationary signals (Huang
et al., 1998). Recently, multivariate extensions of EMD have
emerged (Rilling and Flandrin, 2007; Rehman andMandic, 2010)
which are capable of modeling complex dynamic interactions
between multiple input data channels, while still accounting
for the nonlinearity and nonstationarity of input data. These
attributes have resulted in wide-ranging applications of EMD
e.g., from biomedical signal processing (Zahra et al., 2017) to
data fusion (Rehman et al., 2015a,b) and signal denoising (Hao
et al., 2017). While the EMD based time-frequency features, in
combination with support vector machines (SVM) as a classifier,
have been employed for the classification of FHR recordings as
“normal” or “at risk” (Krupa et al., 2011), to our knowledge, the
potential of multivariate extensions of EMD to cater nonlinear
and nonstationary complex interactions between UC and FHR
signal components for the classification of different fetal states is
yet to be explored.

In this study, we propose to use multivariate extensions of
EMD to derive robust features that are based on nonlinear
and nonstationary neural interactions of FHR and UC signals,
in order to classify fetal states leading to “vaginal” vs.
“cesarean section” delivery. We hypothesize that complex
features associated with natural oscillations of UC and FHR
couplings may be utilized to discern vaginal and cesarean
temporal dynamics. To test this hypothesis, 552 CTG tracings of
an open access CTU-UHB database were examined using a novel
data-adaptive approach of bivariate EMD (BEMD) (Rilling and
Flandrin, 2007) to derive intrinsic mode functions (IMFs) of UC
and FHR recordings. Subsequently, a set of features was extracted
from each IMF of UC and FHR series, and tested by adopting
machine learning classifiers.
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2. MATERIALS AND METHODS

The data analyzed in the present study was taken from a freely
available CTU-UHB intrapartum cardiotocography database
available at Physionet: http://www.physionet.org/physiobank/
database/ctu-uhb-ctgdb/ (Goldberger et al., 2000). A detailed
description of this database can be found in Chudáček et al.
(2014); herein a brief overview is provided.

2.1. Data Collection
The STAN S21 or S31 (Neoventa Medical, Molndal, Sweden),
and Avalon FM40 or FM50 (Philips Healthcare, Andover, MA)
fetal monitors were used for CTG recordings of FHR (measured
in beats/min) and UC (measured in mmHg) waveforms. An
ultrasound transducer attached to the abdominal wall was used
to record FHR, while a pressure transducer connected to the
maternal abdomen was used to record UC; both sampled at 4
Hz. The dataset comprised a total of 552 CTG tracings with
singleton, uncomplicated pregnancies; no known intrauterine
growth restriction or congenital defects; gestational age > 37
weeks; maternal age > 18 years; 506 vaginal deliveries and 46
cesarean section. Each record was of maximum 90 mins duration
preceding the delivery, including stage-I recording of maximum
60 min and stage-II recording of maximum 30 min. The dataset
also contains the following clinical and outcome measures: sex,
weight, gestational age and presentation of the fetus, type of
delivery, lengths of labor (I & II) stages, parity, umbilical artery
pH, base excess, base deficit in extracellular fluid, Apgar scores,
and partial pressure of CO2 (pCO2).

2.2. Signal Pre-processing
CTG recordings in the clinical set-up are prone to various types
of noises and artifacts. For example, the sensor contact loss might
generate an abrupt FHR drop followed by its sharp restoration,
and also fluctuations in the UC baseline. A sliding median
filtering was adopted to correct outliers and missing data, using
a sliding window of 10 sec and a threshold of (1± 0.33)µ, where
µ is the median computed over the 10 s window at each time
instant (Spilka et al., 2017). Missing data lasting more than 10 s
was removed for subsequent analysis.

Traditionally, FHR variability is quantified across arbitrary
defined frequency bands. For example, Signorini et al. (2014),
Gonçalves et al. (2013), Warrick and Hamilton (2013), and
Warrick and Hamilton (2014) subdivided the FHR spectrum
across four frequency bands of very low frequency (VLF, <0.03
Hz), low frequency (LF, 0.03–0.15Hz), movement frequency (MF,
0.15–0.5 Hz), and high frequency (HF, 0.5–1 Hz) (Fergus et al.,
2018). On the contrary, Improta et al. (2014) adopted slightly
different frequency limits for LF (0.05–0.2 Hz) and HF (0.2–1
Hz) ranges. Generally, VLF is attributed to long lasting nonlinear
fluctuations, LF to the neuro-sympathetic fetal control, MF to
the fetal movement, while HF is associated to the fetal breathing
(Signorini et al., 2003). Keeping the objective of the present study
(to quantify the physiology of UC-FHR interactions), we focused
on a wide range of frequency (0.004–0.5 Hz) to investigate all
possible physiological mechanisms which might be of interest.
Consequently, UC and FHR recordings were filtered using a

6th order Butterworth band-pass filter of 0.004–0.5 Hz cut-off
frequency. The lower cut-off frequency of this band-pass filter
ensures the detrending of baseline. A causal filter was used to
avoid phase distortion associated with the filtering process. All
data pre-processing and analyses were performed using our in-
house built MATLAB (version R2018a; Mathworks) routines. A
schematic of the overall proposed scheme in this study is shown
in Figure 1.

3. BIVARIATE EMPIRICAL MODE
DECOMPOSITION

We employ EMD based approach to model the nonlinearity and
nonstationarity of the input UC and FHR time series data. EMD
is a fully data driven approach which decomposes a nonlinear and
nonstationary signal into its natural oscillations in the form of
distinct amplitude/frequency modulated (AM/FM) components,
termed IMFs. EMD has advantage over conventional multiscale
approaches of windowed Fourier and wavelet transform, which
project input signals onto fixed basis functions (Huang et al.,
1998), whereas EMD provides fully data driven basis functions
in terms of physically meaningful IMFs and instantaneous
frequency estimates.

In our case, bivariate extension of EMD, known as BEMD
(Rilling and Flandrin, 2007), has been used to decompose
the complex (two-channel) input data z(t) = F(t) + jU(t),
consisting of FHR F(t) and UC U(t) time series as its real
and imaginary components, respectively. BEMD operates by
decomposing a bivariate (complex) data into its constituent
rotational modes in multidimensional spaces thereby preserving
inherent correlation(s) present within the two input channels
of z(t). The extension from EMD to BEMD is nontrivial
since BEMD requires local mean estimation of input data in
multidimensional spaces which is not straight forward. The steps
required to compute the BEMD are given in Algorithm 1.

In the present study, modeling of input data in the form of
a complex signal z(t) enables us to exploit inherent correlation
among UC and FHR time series data. In addition, it provides
useful insight into nonlinear and nonstationary dynamics of
data in terms of its instantaneous amplitude and instantaneous
frequency estimates. We employ BEMD to produce a set of M
complex IMFs, γm(t), m = 1, ...,M, from an input signal z(t) as
follows:

z(t) =
M
∑

m=1

γm(t)+ r(t) (1)

where r(t) denotes the trend in data.
Next, the real and imaginary components of the

estimated complex IMFs are separated into real-valued IMFs,
corresponding to real and imaginary components of z(t) i.e.,
real part of γm(t) will be the mth IMF for FHR (γ F

m(t)) while the
imaginary part will become themth IMF for UC (γU

m (t)).
Subsequently, the Hilbert transform is applied to each IMF

to estimate the instantaneous amplitude and instantaneous
frequency. For example, the Hilbert transform representation
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FIGURE 1 | A schematic of the proposed scheme in this study. FHR, fetal heart rate; UC, uterine contraction; BEMD, bivariate empirical mode decomposition; MJiA,

mean of joint instantaneous amplitude; MmAM, mean of monotonic change in AM; VmAM, variance of monotonic AM change; WMF, weighted mean frequency;

ME, mean energy; PSI, phase synchronization index; IMF, intrinsic mode function.

for the mth IMF of FHR time series is given by the following
analytical signal,

γ F
m+(t) = γ F

m(t)+ jH(γ F
m(t)), (2)

where H is the Hilbert transform operator. The instantaneous
amplitude of γ F

m+(t) can be computed as follows,

Aγ F
m
(t) =

√

(γ F
m(t))

2
+ (H(γ F

m(t)))
2. (3)

The instantaneous phase of γ F
m+(t) can be defined as,

φγ F
m
(t) = arctan

[

H(γ F
m(t))

γ F
m(t)

]

. (4)

The instantaneous frequency is defined as the rate of change of
the instantaneous phase of γ F

m+(t),

fγ F
m
(t) =

d

dt

[

φγ F
m
(t)
]

. (5)

The same procedure is followed to obtain the instantaneous
amplitude AγU

m
(t), phase φγU

m
(t) and frequency fγU

m
(t) for the UC

signal.
Finally, the joint instantaneous amplitude Amulti

γm
, and the joint

instantaneous frequency estimates fmulti
γm

belonging to mth IMFs

of FHR and UC are given by Lilly and Olhede (2012), Ahrabian
et al. (2015), and Bhattacharyya and Pachori (2017),

Amulti
γm

(t) =

√

[

Aγ F
m
(t)
]2

+

[

AγU
m
(t)
]2

(6)

fmulti
γm

(t) =

[

Aγ F
m
(t)
]2

fγ F
m
(t)+

[

AγU
m
(t)
]2

fγU
m
(t)

[

Aγ F
m
(t)
]2

+

[

AγU
m
(t)
]2 (7)

4. FEATURE EXTRACTION

The present study utilized a set of following features: mean
of joint instantaneous amplitude, mean of monotonic change
in amplitude modulation (AM), variance of monotonic AM
change, weighted mean frequency, mean energy and phase
synchronization index. These features were estimated for each
IMF of both FHR and UC signals. A brief description of these
features is provided next.

4.1. Mean of Joint Instantaneous Amplitude
Mean of joint instantaneous amplitude (MJiA) is calculated by
Bhattacharyya and Pachori (2017),

µ =
1

T

∫

T
Amulti

γm
(t)dt, (8)
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Algorithm 1 Bivariate EMD

1: Let z̃(t)=z(t),
2: a unit complex number e−jθk is used to project the complex

signal z̃(t) in the direction of θk to obtain K signal
projections, given by

pθk (t) = ℜ
(

e−jθk z̃(t)
)

, k = 1, ...,K
whereℜ(.) represents the real part of a complex number, and
θk = 2kπ/K,

3: locate {tkj (t)}
K
k=1 corresponding to maxima points of

{pθk (t)}
K
k=1,

4: obtain envelope curves {eθk (t)}
K
k=1 by using the spline

interpolation of maxima points
[

tkj , z̃(t
k
j )
]

,

5: determine the arithmetic mean m(t) of all envelope curves,
and subtract from the input signal i.e., d(t) = z̃(t) − m(t).
Next, let z̃(t) = d(t) and go to step 2,

6: repeat until d(t) becomes an IMF.

where Amulti
γm

(t) represents the joint instantaneous amplitude,
defined in Equation (6), and T represents the number of data
samples of FHR and UC signals.

4.2. Mean of Monotonic AM Change
Mean value of monotonic AM change (MmAM) is given by
Bhattacharyya and Pachori (2017) and Kawahara et al. (1999),

υ =
1

T

∫

T

dAmulti
γm

(t)

dt
dt, (9)

where Amulti
γm

represents the joint instantaneous amplitude,
defined in Equation (6).

4.3. Variance of Monotonic AM Change
Variance of monotonic AM change (VmAM) is given by
Bhattacharyya and Pachori (2017) and Kawahara et al. (1999),

σ =
1

T

∫

T

(

dAmulti
γm

(t)

dt
− υ

)2

dt, (10)

where Amulti
γm

represents the joint instantaneous amplitude,
defined in Equation (6), and υ is calculated using Equation (9).

4.4. Weighted Mean Frequency
The weighted mean frequency (WMF) for the mth IMF of the
FHR signal is defined as (Oweis and Abdulhay, 2011; Zahra et al.,
2017),

f
′

γ F
m
=

∑

t Aγ F
m
(t)f 2

γ F
m
(t)

∑

t Aγ F
m
(t)fγ F

m
(t)

, (11)

where Aγ F
m
(t) and fγ F

m
(t) are, respectively, instantaneous

amplitude and instantaneous frequency, defined in Equations (3)
and (5), respectively. Similarly, the WMF for the mth IMF of the
UC signal can be determined.

4.5. Mean Energy
Mean energy (ME) contained by the mth IMF of the FHR signal
is defined by Biju et al. (2017),

Eγ F
m
= log(

1

T

∑

t

∣

∣γ F
m(t)

2
∣

∣), (12)

Similar approach can be followed to determine ME of the mth
IMF for the UC signal (i.e., EγU

m
).

4.6. Phase Synchronization Index
Phase synchronization index (PSI) between instantaneous phases
of mth IMFs for FHR (φγ F

m
(t)) and UC (φγU

m
(t)) is calculated as

(Saleem et al., 2016, 2018)

ϕm =
1

T





[

∑

t

cos(1φγm (t))

]2

+

[

∑

t

sin(1φγm (t))

]2




(13)
where 1φγm (t) = φγ F

m
(t) − φγU

m
(t). T represents the number of

data samples of FHR and UC signals, and φγ F
m
(t) and φγU

m
(t) are

estimated using Equation (4).The value of PSI index ϕm ranges
from 0 to 1 i.e., 0 corresponds to the absence of synchronization,
and 1 corresponds to the perfect synchronization.

5. FEATURES PROCESSING

5.1. Feature Normalization and Selection
The extracted features (defined in section 4) were found having a
divergent range of values which might affect the performance of
classifiers. Keeping this, a standard mean normalization feature
scaling scheme is applied to raw features, and is given by,

Fnorm =
F−mean(F)

max(F)−min(F)
, (14)

where Fnorm represents the normalized feature, and
mean(.),max(.), and min(.) are, respectively, average, maximum
and minimum values of the raw feature F.

This study considered SVM based recursive feature
elimination (RFE) (Guyon et al., 2002) strategy as a feature
selection criteria to determine a sub-set of highly discriminating
features from the entire feature set. RFE is a recursive procedure
in which a ranking criterion for feature sub-set is computed from
all features based on learned weights from a classifier (i.e., linear
SVM in this work) at each iteration, and subsequently a feature
with the smallest criterion is removed. Algorithmic details of
RFE are described in the Supplementary Material. The optimal
number of features were decided based on the performance of
the classification model i.e., sensitivity, specificity, area under the
ROC curve (AUC) and mean squared error (MSE).

Belsley collinearity diagnostics (Belsley, 1991) procedure was
employed to test the collinearity of extracted features. Briefly,
this approach detects the sources of collinearity and provides a
measure of their strength by exploiting the condition indices.
Variance decomposition proportions are adopted to detect
interdependent variates, and to estimate the level of degradation
in the regression due to dependencies.
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5.2. Class Balancing
The imbalance distribution of dataset (506 vaginal deliveries as
compared to 46 cesarean cases) might cause the classifier to over-
fit to the majority (vaginal) class, and the probability to predict
the normal vaginal delivery on most of the unseen test data will
be high. To evade this biasing, we employed a standard class
imbalance handler, namely synthetic minority over-sampling
(SMOTE) (Chawla et al., 2002), in our classification framework.
SMOTE (Chawla et al., 2002) works by oversampling the
minority class by generating synthetic examples in the feature
space based on the chosen k nearest neighbors from the minority
class (see Supplementary Material for more details).

In the present study, we evaluated the classification
performances under two conditions: (1) without class balancing
(baseline condition), and (2) with class balancing. For class
balancing, the training dataset is over- or under-sampled
using the SMOTE method i.e., the minority (cesarean) class
is over-sampled by 400%, while the majority (vaginal) class is
under-sampled by 100%. The test dataset does not undergo
any transformation. The train and test splitting, and the class
balancing is repeated for every run and the performance
of classifiers is averaged over 30 simulations. For baseline
evaluation, classifiers were trained on original features (without
class balancing), and also averaged over 30 simulations.

5.3. Classification Methods
The present study considered three different classifiers: (i)
decision trees, (ii) SVM, and (iii) ensemble classifier: AdaBoost.
The overall aim is to determine a classifier with the most
appropriate decision boundary resulting in the maximum
separability of classes. Recent studies have suggested the
application of decision trees to evaluate the fetal state from
cardiotocogram signals (Yilmaz and Kilikçier, 2013; Kamath
and Kamat, 2018). Thereby, we also adopted this well-known
methodology (Breiman, 2017) in the current study, which
splits the data space into sub-spaces based on input features.
Hierarchical tree structures recursively partition the data space
into disjoint sets with linear and nonlinear boundaries. We
utilized Gini’s diversity index (Breiman et al., 2005) as the split
criteria owing to its wide usage. The implementation parameters
were chosen appropriately to ensure coarse distinctions between
classes.

SVM has been widely adopted in classification problems
associated with biomedical data (Georgoulas et al., 2006b; Krupa
et al., 2011; Moslem et al., 2011; Ocak, 2013). SVM works by
identifying the hyperplane that maximizes separation between
classes. The most appropriate hyperplane in feature space
maximizes margins between the hyperplane and nearest data
points. The important factors concerning SVM tuning include a
kernel function, box constraints (which control trade-off between
margin-violating observations and the training time) and the
kernel scale (which scales predictors before computing the kernel
function). A Gaussian kernel function is considered in this study
due to non-linearly separable nature of data. Optimal values of
box constraints and the kernel scale are sought which maximize
the validation accuracy.

Ensemble classifiers have also shown promising performance
in similar studies (Tomas et al., 2013; Peterek et al., 2014).
Therefore, we also consider the AdaBoost classifier (Schapire,
1999) in this study as a representation of ensemble classifiers. The
basic principle of boosting is to significantly reduce the error of
any weak learner (which is slightly better than random guessing)
by combining predictions of many such classifiers. The algorithm
trains a weak learner using different distributions of the training
dataset and subsequently combines all classifiers produced by the
weak learner into a compound classifier. The number of weak
learners is set to 20 as a trade-off between the accuracy and the
training time. The learning rate is set as to make the number of
learning cycles moderate.

5.4. Validation Schemes and Performance
Measures
Hold out validation is employed for splitting the data using a
80/20 split i.e., 80% of data is held out for the classifier training,
and the remaining 20% data is reserved for the classifier testing.
Since training and test datasets are randomly sampled from the
entire dataset, learning and prediction steps are averaged over
30 epochs using unique seeds. The over-sampling is repeated on
the training data in each step. The performance metrics for each
method are averaged over 30 runs.

The performance of classifiers is evaluated in terms of
sensitivity, specificity, AUC and MSE. Sensitivity is defined as
the rate of correct prediction of the cesarean delivery, whereas
specificity is considered as a measure of correct prediction rate
of the vaginal delivery. AUC (Fawcett, 2006) represents a trade
off between sensitivity and specificity, and is recommended as
a classification performance tool when datasets are imbalanced.
Larger the sensitivity, specificity and AUC values are, the better
the classification performance is. Finally, the MSE is considered
to quantify differences between predicted and actual class labels.
Smaller values of the MSE indicate better performance of
classifiers.

6. RESULTS

6.1. Bivariate Empirical Mode
Decomposition
Figure 2 illustrates raw and processed FHR and UC recordings
for one representative subject of vaginal cohort. BEMD
decomposition, consisting of M = 5 bivariate (2-channel)
IMFs, of initial 2 mins recordings of FHR (left panels) and
UC (right panels) signals (shown in Figure 2) is shown in
Figure 3. As expected, it was found that lower-indexed IMFs (i.e.,
IMF 1) carried higher frequency content while higher-indexed
IMFs (i.e., IMF 5) contained lower frequency information.
Another important trend that can be observed in the BEMD
decomposition is the alignment/matching of similar frequency
contents along the same-indexed IMFs from both FHR and UC
recordings. This “mode alignment” across multiple IMFs is a
characteristic of multivariate extensions of EMD (Rehman et al.,
2009) and, in our case, was a vital pre-requisite to obtain robust
time-frequency based features for the improved classification.
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FIGURE 2 | Raw and processed waveforms of FHR [bpm] and UC [a.u] recordings for one representative subject of the vaginal group. (A) raw FHR, (B) raw UC, (C)

processed FHR, (D) processed UC. FHR, fetal heart rate; bpm, beats per minute; UC, uterine contraction; a.u, arbitrary units.

Note that the channel-wise implementation of (single-variate)
EMD on our dataset would have yielded mismatched scales
across multiple IMFs leading to physically meaningless estimates
of chosen features in equations 8–13. Therefore, the application
of multivariate extension of EMD to preserve the “matched”
scales in FHR and UC recordings is one of the highlights of
our work.

Given that we had a large number of subjects in the current
study, it was not possible to create a multivariate EMD with
that many number of channels due to inherent limitation of
multivariate extensions of EMD on total number of input data
channels. Therefore, we had applied BEMD separately for each
subject, which resulted in matched IMFs across multiple subjects
as well and that had been validated empirically by plotting
the Fourier spectrum of IMFs obtained from multiple subjects
(see Figure S3). The matching of scales across multiple subjects,
despite those scales being obtained from multiple instances of
BEMD, could be attributed to the fact that natural oscillations
of FHR and UC signals were expected to be similar within
different subjects.

We tested various selections of M (i.e., number of IMFs),
and observed that relevant important information needed for
good classification accuracy is present in the first five IMFs. For
example, AUC value for the balanced dataset was found to be
maximal forM = 5 (see Figure S4).

6.2. Group-Averaged Features
Group-averaged values of individual features evaluated in
this study, for each IMF, are given in Figure 4 and also in
Table 1. Large values of MJiA were associated with the higher-
indexed IMFs (Figure 4A). Vaginal cohort demonstrated greater

heterogeneity represented by the large variances associated with
all IMFs. For MmAM across the vaginal group, all IMFs were
found with positive mean values except the 4th IMF which
had negative mean. Whereas, all IMFs for the cesarean group
demonstrated negative mean values (Figure 4B). Majority of the
MmAM IMFs for the vaginal group were found with larger
variances with the 1st IMF having largest and the 4th IMF
having smallest variance. As compared to the vaginal group,
all MmAM IMFs of the cesarean group demonstrated reduced
variance except the 4th IMF which had larger variance than its
corresponding IMF for the vaginal group (Figure 4C).

The highest values of WMF for the FHR recording were
observed for the 1st IMF and the lowest value was found for
the 3rd IMF for both vaginal and cesarean cohorts (Figure 4D).
The WMF variance increased from smaller- to higher-indexed
IMFs i.e., the lowest variance occurred for the 1st IMF and the
highest variance occurred for the 5th IMF of the FHR series.
For the UC series, the highest WMF value was found for the
5th IMF for both vaginal and cesarean groups while the lowest
value was found for the 3rd IMF (Figure 4E). Interestingly,
all WMF IMFs demonstrated smaller values for the cesarean
group, however, this reduction was not found to be statistically
significant. Similar to the FHR series, larger variance was also
found across the 5th IMF for the UC recording. ME values
increased across the ascending order of IMFs for both FHR
and UC as well as across both vaginal and cesarean groups
(Figures 4F,G). Higher variances were found for all ME IMFs of
the cesarean group as compared to the vaginal group. For the
UC signal, all IMFs of the cesarean group were found having
smaller ME values as compared to the vaginal group. Overall
smaller PSI values (< 0.1) were found between FHR and UC
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FIGURE 3 | Intrinsic mode functions derived from bivariate empirical mode decomposition of initial 2 mins recordings of FHR (Left panels) and UC (Right panels)

recordings shown in Figure 2. FHR, fetal heart rate; UC, uterine contraction; IMF, intrinsic mode function.

with highest values across the 5th IMF and lowest values across
the 1st IMF for both vaginal and cesarean groups (Figure 4H).
Cesarean group demonstrated higher PSI values as compared to
the vaginal group for all IMFs except the 3rd IMF where values
remained unaltered.

We compared the group-averaged values of all features for
vaginal vs. cesarean differentiation for each IMF. However, no
significant differences were observed across any comparison
demonstrating that none of these features may solely differentiate
between vaginal and cesarean delivery dynamics.
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FIGURE 4 | Averaged values of individual features for vaginal and cesarean groups. Error bars represent standard errors. FHR, fetal heart rate; UC, uterine contraction;

IMF, intrinsic mode function; AM, amplitude modulation. (A) mean of joint instantaneous amplitude, (B) mean of monotonic AM change, (C) variance of monotonic AM

change, (D) weighted mean frequency of FHR, (E) weighted mean frequency of UC, (F)mean energy of FHR, (G)mean energy of UC, (H) phase synchronization index.

6.3. Feature Selection
Belsley collinearity test showed that only five features exhibited
dependencies which were of minor strengths. Keeping this,
the present work did not perform any feature transformation
to remove mutual dependencies. Of note, machine learning
classifiers employed in the present work are not influenced
by the collinearity because they include parameter tuning
(i.e., regularization) which induce implicit feature selection.
Moreover, cross-validation also verify the robustness of the
employed classifiers even in the presence of collinearity.

Figure 5 represents the performance measures for the RFE
feature selection strategy as a function of number of features.
The highest values for sensitivity and AUC, and lowest MSE

were found under the application of all 40 features. Whereas,
highest specificity was found for 20 features. These observations
signify that discriminating properties of all features are best
exploited when employed in a combination. Therefore, we do
not consider feature selection in the subsequent classification
framework. Combinations of features as a function of number of
features (as that of Figure 5) are given in Table 2. For example,
AUC of 0.76 was found for combination of 3 features including
MmAM of IMF 1, ME of IMF 4, and PSI of IMF 5.

6.4. Classification Without Class Balancing
Figure 6 (upper panels) shows that sensitivities were quite low
i.e., 6, 7, and 4%, respectively, for decision tree, SVM and
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AdaBoost classifiers. However, specificities were relatively higher
i.e., 72, 84, and 89% for decision tree, SVM and AdaBoost,
respectively. The mis-classification rate depicted in terms of MSE
were considerably high i.e., the highest MSE value of 41% was
found using decision tree, and the lowest value of 22% was found
using AdaBoost. Highest AUC of 70%was observed for AdaBoost
while a lowest AUC value of 51% was associated with the decision
tree classifier. These results are expected because classifiers are
destined to overfit to the vaginal class due to imbalanced data.

6.5. Classification With Class Balancing
The classification performance on balanced data is shown in
Figure 6 (bottom panels). Sensitivity increased to 66% with
decision tree, 88.5% with SVM and 91.8% with AdaBoost;
suggesting that the classification of cesarean deliveries can be
best performed using an AdaBoost classifier. SVM and AdaBoost
maintained highest specificities (90% and 95.5%, respectively)
while decision tree demonstrated lowest specificity of 87%;
suggesting that the correct prediction of vaginal deliveries can be
best performed by an AdaBoost classifier. The AdaBoost classifier
outperformed other classifiers in terms of AUC (98%) and MSE
(5%) also. To sum, AdaBoost performed the best classification as
indicated by higher metrics and also in terms of the confidence
on these measures indicated by the reduced standard errors.

6.6. Classification Performance
Comparison of BEMD vs. EMD
The present study also compared the classification performance
of BEMD-based features with that to EMD-based features.
For EMD scenario, IMFs were extracted separately for FHR
and UC series employing independent instances of EMD
implementation; providing 80 features in total. Similar to BEMD
case, classification performance of EMD was determined for
both balanced and unbalanced data. It was observed that BEMD
outperformed EMD for both balanced and unbalanced data
for all classifiers. For example, 30% increase in sensitivity, 38%
increase in specificity, 25% increase in AUC, and 37% decrease
in MSE was observed for decision tree classifier for BEMD as
compared to EMD-based features extraction (see section 6 of the
Supplementary Material for more details). This was expected
because BEMD ensures mode alignment both across FHR and
UC channels as well as across different subjects. The EMD
based method, on the other hand, would not achieve mode
alignment across FHR and UC channels resulting in the sub-
optimal performance. These results signify the importance of
BEMD adaptation for an application as that of the current study.

7. DISCUSSION

7.1. Main Findings
In the present study, we have employed multivariate extension of
EMD algorithm to capture and utilize the complex dynamics of
UC-FHR interactions for the purpose of improved classification
of fetal states. Owing to the data-driven and fully multivariate
nature of EMD, we have been able to decompose intrinsic
oscillatory modes of raw FHR and UC data into multiple
IMFs. More importantly, resulting IMFs have been demonstrated
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FIGURE 5 | An illustration of performance measures for the RFE feature selection scheme. Panel (A) represents sensitivity, (B) represents specificity, (C) represents

AUC, and (D) represents MSE. AUC, area under the ROC curve; MSE, mean squared error; RFE, recursive feature elimination.

to exhibit “mode alignment,” which ensures similar frequency
scales being aligned in same-indexed IMFs across two channels.
That yields robust and physically meaningful time-frequency
based features to be employed with machine learning classifiers
for better classification of “vaginal vs. cesarean section”
deliveries. Consistent with our hypothesis, we observed that
empirically derived IMFs of distinct spectral characteristics
embed unique features sensitive to the intrapartum dynamics.
The present study adds another layer to the existing literature
suggesting novel features of data-driven oscillatory components
of CTG variabilities along with state-of-the-art machine learning
classifiers to be employed in the current clinical obstetric
practice for evaluation of fetal status. With a classification
accuracy of 98%, the present study demonstrates that proposed
features might be useful adjunct to conventional biochemical and
biophysical measures of fetus to design a decision support system
for fetal well-being.

7.2. Spectral Analysis of CTG Dynamics
After its introduction in 1960s, EFM was envisaged to assist
diagnosis of fetus related complications such as cerebral palsy,
neonatal seizures, and brain damage. Currently it is the most
prevalent approach used in routinematernal care worldwide with
approximately 85% live births (Sartwelle and Johnston, 2018).
Traditionally, a visual scrutiny of continuous or intermittent
FHR is practiced by obstetricians and gynecologists to evaluate
the fetal well-being based on its morphological features, for
example, accelerations, decelerations, baseline rate, overall
impression contraction frequency, variability and determine risk.
Though CTG was introduced with the expectation to prevent
cerebral palsy and perinatal mortality, Cochrane Collaboration

Review reported its merits only in terms of reduced risk of
neonatal seizures with no evidence of added benefit for what it
was anticipated (Alfirevic et al., 2017). Further to this, recent
years have evidenced a significant increase in cesarean deliveries
and instrumental vaginal births (Vintzileos et al., 1995; Melman
et al., 2013), mainly attributed to the mis-diagnosis and mis-
interpretation of CTG owing to its intrinsic subjective variability.
With the aim to reduce the variability factor of interpretation,
various intrapartum FHR interpretation systems have been
suggested including 3-tier and 5-tier systems (Pruksanusak et al.,
2017). It was concluded that 3-tier system is more appropriate
than 5-tier system to be adopted in daily obstetrics practice
(Pruksanusak et al., 2017).

Parallel to other clinical domains, FHR research has also
sought a paradigm shift from the “subjective interpretation”
to “objective tools” using computerized strategies and to
develop automatised early-warning decision support systems.
Along these lines, Cerutti et al. (1989) and other colleagues
performed a series of studies employing spectral analysis of
FHR to evaluate the clinical relevance of abdominal fetal
ECGs during the antepartum period. They adopted auto-
regressive model based spectral analysis, and analogous to
adults, three significant patterns for fetal heart rate variability
(HRV) spectrum were observed across VLF (< 0.03 Hz), LF
(0.04–0.15 Hz), and HF (0.2–0.4 Hz) ranges. LF and HF
powers were established to be sensitive to the sympathetic and
parasympathetic activation, and that the LF/HF power ratio
represents the sympathovagal balance in response to HRV.
These studies also found that, additional to classical parameters
e.g., mean and variance of RR intervals, the power spectral
densities across these frequency ranges, and the LF/HF ratio
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TABLE 2 | Combinations of features corresponding to features’ selection as of Figure 5.

Number of

features

Features

IMF1 IMF2 IMF3 IMF4 IMF5 AUC

3 MmAM ME of UC, PSI 0.76

5 MmAM MJiA ME of UC,

WMF of UC

PSI 0.77

7 MmAM MJiA MmAM,

ME of FHR

ME of UC,

WMF of UC

PSI 0.83

9 MmAM,

VmAM

MJiA MmAM,

ME of FHR

ME of UC,

WMF of UC

PSI,

VmAM

0.88

13 MmAM,

VmAM

MJiA,

MmAM

MmAM,

ME of FHR,

ME of UC

ME of UC,

WMF of UC,

WMF of FHR

PSI,

VmAM,

MmAM

0.94

18 MJiA,

MmAM,

VmAM

MJiA,

MmAM,

ME of FHR

MmAM,

ME of FHR,

ME of UC,

PSI

ME of UC,

WMF of UC,

WMF of FHR,

MJiA

PSI,

VmAM,

MmAM,

ME of UC

0.987

20 MJiA,

MmAM,

VmAM,

ME of UC

MJiA,

MmAM,

ME of FHR,

PSI

MmAM,

ME of FHR,

ME of UC,

PSI

ME of UC,

WMF of UC,

WMF of FHR,

MJiA

PSI,

VmAM,

MmAM,

ME of UC

0.998

25 MJiA,

MmAM,

VmAM,

ME of UC,

PSI

MJiA,

MmAM,

ME of FHR,

PSI,

ME of UC

MmAM,

ME of FHR,

ME of UC,

PSI,

WMF of FHR

ME of UC,

WMF of UC,

WMF of FHR,

MJiA,

VmAM

PSI,

VmAM,

MmAM,

ME of UC,

ME of FHR

0.988

35 MJiA,

MmAM,

VmAM,

ME of UC,

PSI,

WMF of FHR,

ME of FHR,

MJiA,

MmAM,

ME of FHR,

PSI,

ME of UC,

WMF of UC,

WMF of FHR

MmAM,

ME of FHR,

ME of UC,

PSI,

WMF of FHR,

WMF of UC,

MJiA

ME of UC,

WMF of UC,

WMF of FHR,

MJiA,

VmAM,

ME of FHR,

PSI

PSI,

VmAM,

MmAM,

ME of UC,

ME of FHR,

MJiA,

WMF of FHR

0.983

40 MJiA,

MmAM,

VmAM,

ME of UC,

PSI,

WMF of FHR,

ME of FHR,

WMF of UC

MJiA,

MmAM,

ME of FHR,

PSI,

ME of UC,

WMF of UC,

WMF of FHR,

VmAM

MmAM,

ME of FHR,

ME of UC,

PSI,

WMF of FHR,

WMF of UC,

MJiA,

VmAM

ME of UC,

WMF of UC,

WMF of FHR,

MJiA,

ME of FHR,

PSI,

MmAM,

VmAM

PSI,

VmAM,

MmAM,

ME of UC,

ME of FHR,

MJiA,

WMF of FHR,

WMF of UC

0.985

AUC, area under the ROC curve; IMF, intrinsic mode function; MJiA, mean of joint instantaneous amplitude; MmAM, mean of monotonic AM change; VmAM, variance of AM change;

WMF, weighted mean frequency; ME, mean energy; PSI, phase synchronization index; FHR, fetal heart rate; UC, uterine contraction.

index might be complementary to provide deeper understanding
of autonomic nervous system of the fetus and its associated
pathological factors.

Given that FHR patterns embed nonlinear dynamics (Choi
and Hoh, 2015; Gonçalves et al., 2016), a study by Signorini et al.
(2003) utilized an integrated approach of linear (autoregressive
spectral power) and nonlinear [approximate entropy (ApEn)]
models. The results evidence that examination of both signal

variability and regularity seems to has potential to underline
pathological conditions e.g., higher ApEn value represents
increased irregularity, and lower LF power corresponds to the
reduced contribution of the neural sympathetic drive under
the pathological FHR. Various other nonlinear descriptors
have also been used in literature to quantify FHR dynamics,
including Lempel Ziv complexity (Spilka et al., 2012), multifractal
approaches (Doret et al., 2011).
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FIGURE 6 | Performance measures i.e., sensitivity, specificity, AUC and MSE,

using decision tree, SVM and AdaBoost classifiers for balanced and

unbalanced classes. AUC, area under the ROC curve; MSE, mean squared

error; SVM, support vector machine.

One fundamental limitation of spectral parameters is their
derivation across arbitrary defined frequency bands which were
actually adopted from adult HRV analysis and still remains
controversial (Doret et al., 2015). As a matter of fact, few studies
attempted multiscale analysis to estimate FHR dynamics over
a wide range of scales. For example, variants of entropy based
models [ApEn and Sample entropy (SamEn)] were found to be
sensitive to short-term and long-term FHR patterns associated
with normal and distressed fetuses of gestational ages of 30–35
weeks (Ferrario et al., 2006).

7.3. Machine Learning for CTG Analysis
It is not possible to make a direct comparison of the current
study with studies of other researchers because of different
methodologies and hypotheses. However, an indirect comparison
in terms of the automatic characterization and classification of
CTG based on machine learning tools to extract decision making
features is outlined below.

An artificial neural network (ANN) was employed to
differentiate normal conditions from pathological fetuses
(Magenes et al., 2001), and nonstress tests (Kol et al., 1995). A
sensitivity of 88.9% and a false-positive rate of 4.3% was achieved
to discriminate between normal and abnormal nonstress test
(Kol et al., 1995). In another study, Georgieva et al. (2013) also
trained a feed-forward ANN to investigate FHR recordings
and to predict adverse labor outcomes by extracting a set of six
features. Later, these features were combined with six clinical
parameters to form a larger set of 12 features, followed by a
principal component analysis (PCA) for feature reduction.
With 36% mis-classification rate for test data recordings, overall

sensitivity of 60.3% and specificity of 67.5% was achieved in
Georgieva et al. (2013). Georgoulas et al. (2006b) and Georgoulas
et al. (2006a) also proposed a novel processing method for FHR
analysis using PCA to define descriptive features, and a SVM
based classifier to predict the risk of metabolic acidosis; best
performance reported was 78% in terms of AUC. In a similar
study, Ocak (2013) extracted features from FHR and UC signals,
and performed classification using SVM followed by a feature
reduction scheme (Xu et al., 2014) using genetic algorithm;
achieving a high classification accuracy of 99.3% and 100%,
respectively, for normal and pathological fetuses. Another study
used particle swarm optimization and binary decision tree along
with SVM to evaluate the fetal state (Yilmaz and Kilikçier, 2013)
and achieved a classification accuracy of 91.62%.

With the aim to discriminate an abnormal pregnancy from
the normal one, Spilka et al. (2014) adopted a random forest
classifier along with the latent class analysis. Similarly, a
sparse SVM classifier was adopted in a study for selection
of most significant and relevant subset of features from a
large number of linear, nonlinear and multifractal features
for fetal acidosis detection (Spilka et al., 2017) and achieved
a satisfactory accuracy (73% sensitivity and 75% specificity).
In another study, Spilka et al. (2013) reported sensitivity
and specificity of 64.1% and 65.2%, respectively, based on a
combination of 50 classical morphological, frequency-domain
and nonlinear features. Classification was performed using
nearest mean classifier with AdaBoost. Similarly, another study
by Spilka et al. (2012) reported a high classification accuracy
of 73.4% sensitivity and 76.3% specificity by extracting a set
of 33 conventional and nonlinear features. Stylios et al. (2016)
extracted 54 discriminating features and observed that the
application of only 3 features might provide sensitivity of 68.5%
and specificity of 77.7%. With the aim to assess fetal hypoxia, an
image-based time-frequency (IBTF) approach along with genetic
algorithm was suggested by Cömert et al. (2018). It was reported
that the classification of 15 IBTF features using a least square
SVM classifier provided sensitivity of 63.45% and specificity
of 65.88%.

With the objective to differentiate vaginal vs. cesarean
delivery, recently Fergus et al. (2018) has suggested the use of
an ensemble model comprising a combination of three classifiers
applied to a set of features extracted from raw FHR tracings.
Subsequently, a RFE scheme was followed to remove those
features with low discriminating power. It was reported that
the combination of Fisher linear discriminant analysis (FLDA),
random forest (RF) and SVM achieved the best performance
with sensitivity of 87%, specificity of 90%, AUC of 96% and
MSE of 8%.

By far the majority of aforementioned studies focused on
dynamic features of FHR traces in isolation, and did not
incorporate responses of fetus to UCs. Analogous to adult HRV,
FHR is also sensitive to external stimulus (Romano et al., 2006).
Given the FHR deceleration follows a UC, the later provokes a
transient hypoxia to fetus resulting in FHR variations; suggesting
UC as a strong modulator of FHR (Romano et al., 2006). To
this, the spectral estimation was performed using parametric and
non-parametric time-varying approaches of short-time Fourier
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transform and autoregressivemodels across traditional frequency
ranges (Romano et al., 2006). A significant increase in the FHR
variability power was observed in “active” state as compared to
the “quiet” state across LF and HF ranges (i.e., 0.03–0.2 and 0.2–1
Hz). Similar results were also found for distress fetuses (Warrick
et al., 2009), with the application of a system identification
approach estimating impulse response function, in terms of
higher gain and prolonged delay between FHR and UC. The
value of high gain corresponds to the strong relation, and a long
delay represents the increased latency of FHR response to the UC.
The authors also incorporated FHR baseline dynamics and the
FHR variability along with the system identification approach to
develop a larger set of features with the aim to classify normal vs.
hypoxic fetuses. The application of SVM classifier detected half
of the pathologies at least 1 h 40 min before the delivery. Despite
having promising performance, these studies are limited by the
fact that theymostly develop features across traditional frequency
ranges. Further to that adoptedmethodologies assumedUC-FHR
relations to be linear and stationary in nature, except few attempts
which focused on the non-stationarity. For example, a BPRSA
approach was adopted to assess the coupling of fetal ECG and
uterine activity (Casati et al., 2014).

Though various studies have successfully achieved adequate
accuracy, still there is a space for improvement, specifically
for the delineation of vaginal vs. cesarean dynamics. Contrary
to Fergus et al. (2018) which examined only FHR dynamics,
the present study investigated nonlinear and nonstationary UC-
FHR couplings using the multivariate extension of EMD. For
this, scale-matched empirically derived modes of FHR and UC
were examined to develop a set of unique features which have
previously been applied to quantify various physiological systems
(Saleem et al., 2016, 2018; Bhattacharyya and Pachori, 2017). We
observed that AdaBoost classifier performs on-par with the best
accuracy i.e., 91.8% sensitivity, 95.5% specificity, 98% AUC and
5%MSE.

7.4. Physiological Interpretation of IMFs
and Their Associated Features
A recent trend in the spectral analysis of many biological
and physiological systems has been to focus on the significant
oscillatory modes rather than contiguous frequency ranges of
the underlying dynamics. For example, recent work in cerebral
hemodynamics have shown the superiority of utilizing oscillatory
components extracted via principal dynamic modes analysis
(Marmarelis et al., 2012; Saleem et al., 2017; Hameed et al.,
2018; Shahzad et al., 2018), and Hilbert-Huang transformation
based multimodal analysis (Novak et al., 2004). It is reported
that control of various physiological mechanisms may be
characterized by discrete oscillatory dynamics of the underlying
time series rather than across a-priori defined traditional
frequency bands e.g., sympathetic cerebrovascular control was
associated with a low-pass and 0.03 Hz oscillatory components
of the blood pressure control (Saleem et al., 2017). Similarly, 0.2
Hz oscillations of mechanical arm of the baroreflex loop were
affected by orthostatic challenges (Shahzad et al., 2018).

Akin to these physiological systems, fetus dynamics also
comprise biological oscillations e.g., labor contraction of
uterus has been modeled as a 0.008 Hz oscillatory feedback
system (Maeda, 2013). Along these lines, the present study also
hypothesized that “vaginal vs. cesarean” dynamics might be
differentiated by complex features of spectral oscillations of
UC-FHR couplings. To achieve this, we adopted an EMD based
approach, whose power mainly lies in its data-driven nature, to
estimate inherent oscillatory components, namely IMFs. Each
IMF carries inherent discrete scales present in input data, and
its characteristics might be affected by certain physiological
mechanisms. For example, IMFs of very-low-frequency (i.e.,
<0.03 Hz) might be influenced by thermoregulatory homeostasis
(Gonçalves et al., 2013; Romano et al., 2016), and IMFs of
low-frequency of 0.03–0.15 Hz might represent the controlling
effect of neural sympathetic activity and vasomotor control
(Signorini et al., 2003, 2014; Magenes et al., 2004; Cesarelli
et al., 2010). Similarly, IMFs embedding 0.15–0.5 Hz oscillations
may characterize mechanical attributes of maternal breathing
and fetal movements (Signorini et al., 2003, 2014; Magenes
et al., 2004; Cesarelli et al., 2010), whereas high-frequency
IMFs of 0.5–1 Hz might be affected by the fetal respiration
related vagal activity (Signorini et al., 2003, 2014; Magenes
et al., 2004; Cesarelli et al., 2010). Future studies might target
to quantify the precise biological origins of these IMFs, for
example, by enhancing certain frequency components of UC-
FHR couplings. One approach to this direction might be to apply
external stimuli to trigger a specific physiological mechanism
to observe the corresponding changes in IMF features
(Magenes et al., 2004).

Though FHR and UC time series can embed many
IMFs, the present study noticed that important data scales,
which could help examine fetal dynamics for “vaginal vs.
cesarean” classification, mostly resided in first few IMFs
containing high frequency modes. However, this does not mean
that remaining IMFs are of no biological or physiological
relevance, instead it could imply that information in those
IMFs does not contribute much toward classification task
at hand.

The precise physiological interpretation of adopted features
of IMFs is imperceptible, however plausible explanation is as
follows. Larger MJiA values of higher indexed IMFs might
represent that low-frequency activities of both FHR and UC
are mutually coherenced. Positive MmAM values may indicate
the highly consistent variations in amplitudinal characteristics
of both FHR and UC, whereas the negative MmAM values
represent that these amplitudinal fluctuations might be in
opposite directions. Negative MmAM values across the cesarean
cohort shows that variations in signal strengths of FHR and UC
are less synchronized as compared to that of the vaginal group.
VmAM might represent the deviation of signal strengths. Larger
VmAM values across low-indexed IMFs show that amplitudinal
variations of high frequency FHR and UC oscillations are highly
heterogeneous.WMF represents the strengths of synchronization
between amplitude and frequency characteristics of a specific
spectral oscillation. In FHR, both amplitude and frequency
were highly coherenced across low- and high-frequency
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oscillations as compared to that across middle-frequency
oscillations. For UC dynamics, low-frequency oscillations
demonstrated greater amplitude-frequency coherence in the
vaginal group. Similar to FHR, UC also demonstrated reduced
amplitude-frequency synchronization across middle-frequency
oscillations. ME represents the relative distribution of power
across different frequency components. Interestingly, high-
indexed IMFs of both FHR and UC carry most of the
power, indicating that low-frequency control mechanisms
contribute strongly to both FHR and UC dynamics. PSI
represents the phase-synchronization between same-indexed
IMFs of FHR and UC. Greater PSI across high-indexed IMFs
shows that low-frequency oscillations of FHR and UC are
highly synchronized.

7.5. Complexity Analysis of the Proposed
Scheme
Since findings of the present study are quite encouraging
suggesting the application of the proposed scheme in
ongoing CTG research, it is worth-mentioning its real-
time implementation and computational cost. EMD-based
algorithms, especially their real-time implementations,
are inherently computationally very expensive. Moreover,
owing to their completely data-driven nature, computational
requirements of EMD-based methods might be hard to establish
explicitly since they vary with the complexity (number of
oscillations) of the input signal. Though, the EMD and its
multivariate extensions, in their original formulation were
designed for batch processing, FPGA based architecture for
online and real-time computation of the BEMD has recently
been proposed (Malik et al., 2019). It would make sense
to use that architecture in BEMD applications requiring
online and real-time processing, including the application
addressed in the present work. That would be a good avenue for
future research.

It is also relevant to mention that the BEMD operation, which
is exclusively used for signal decomposition, is not dependent
on the length of the input time series, rather it depends on
the number of extrema in the input signal. Note that the
BEMD sifting operation stops when the residual signal is devoid
of any rotations (oscillations in 2D). For classification task,
according to the statistical heuristics, data available to train
machine learning classifiers should contains ample number of
training instances in comparison to the number of features. For
example, a rule-of-thumb is that data samples should be at least
10 times more than the number of features (Hua et al., 2004).
In the current case of 40 features, minimum 400 data samples
would be sufficient for appropriate training of the machine
learning classifiers. Our classification experiments with cross-
validation on unseen data demonstrated the sufficiency of the
training data for the classification task at hand. In addition,
previous studies (Fergus et al., 2018) also provided evidence of
adequacy to train classifiers using the same data for the similar
classification task.

Regarding the computational cost of the BEMD
decomposition, a detailed description is provided in ur Rehman

et al. (2014). Briefly, the numerical complexity of BEMD for the
input signal of T samples, number of projectionsV , total number
of M IMFs, and the number of detected extrema Mk(dm,k, v)
in the vth projection of the mth IMF and the kth iteration
is given by,

C =

M
∑

m=1

Km
∑

k=1

T(11V + 2)+
M
∑

m=1

Km
∑

k=1

V
∑

v=1

15Mk(dm,k, v). (15)

Note that the complexity of BEMD depends on the number of
detected extrema of the input signal which makes it hard to
predict or specify the complexity of the method for an unseen
class of signals.

The average training time for a machine learning classifier
for a 40 dimensional feature matrix containing 404 training
samples was found to be approximately 121 ms. Whereas, the
computational time at the test stage for 102 test instances
was approximately 11 ms on a machine with 2.30GHz i5-
6200U CPU and 8GB RAM running MATLAB (version R2018a;
Mathworks). Of note, the difference between training and test
time increases proportionally for all machine learning classifiers
when the number of training and test instances are increased.
As training is performed in an off-line manner, the real-time
performance of these classifiers depends upon the computational
time requirements at the test stage. Mostly, the C/C++ versions
of these classification methods give real-time performance at the
test stage for a large number of test instances, thus, favoring their
application in on-line prediction systems (Lu et al., 2010).

7.6. Conclusion
To conclude, the adaptive decomposition of FHR and UC
interactions provides basis functions, in terms of IMFs, which
might be used to derive robust features for classification of
vaginal vs. cesarean delivery dynamics. The results of the present
study signify that appropriate machine learning and signal
processing algorithms might help to understand CTG variability,
and to improve inter- and intra-observer agreement for the
CTG interpretation.
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