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Introduction

Therapeutic peptides are an important group of biopharma-
ceuticals and purification with preparative reversed-phase 
liquid chromatography (RP-LC) is often necessary during 
manufacturing in order to obtain sufficient purity [1]. Cur-
rently, there is a trend in the biopharmaceutical industry 
towards improving process understanding and replacing 
statistical and empirical correlations with mechanistic mod-
els [2]. Adsorption isotherm determination is an essential 
step in the mechanistic modeling of preparative LC and is 
preferably performed using the inverse method (IM) since 
it requires little experimental work and small amounts of 
substance [1, 3, 4]. Recently, we extended the IM to esti-
mation of adsorption isotherm parameters directly from 
overloaded profiles obtained in gradient elution [3–6]. The 
IM had previously only been used in isocratic elution and it 
was then cumbersome to determine isotherms for gradient 
elution since experiments had to be performed at multiple 
modifier levels in isocratic elution [7].

In general, the retention of most peptides is sensitive to 
the fraction of organic modifier in the eluent and to the elu-
ent pH, so they are often separated via gradient elution at 
low pH [8]. An ion-pair reagent, such as trifluoroacetic acid 
(TFA), is commonly added to adjust the pH and increase 
the peptide retention, since peptides often have at least 
one positive charge at low pH. Positively charged peptides 
can exhibit severe tailing, especially in overloaded condi-
tions, on standard C18 stationary phases [9]. To address 
this, a charged surface hybrid (CSH) C18 stationary phase 
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that contains a small number of positively charged groups 
can be used. However, anionic ion-pairing reagents such 
as TFA adsorb on CSH stationary phases, thereby poten-
tially competing with the peptide for adsorption. This com-
plicates the determination of peptide adsorption isotherms, 
since the adsorption isotherm for the ion-pairing reagent 
must then be taken into account.

This study extends our investigation of nonlinear 
adsorption isotherm determination with the IM in gradi-
ent elution [3–6] to the presence of an adsorbing additive. 
To this end, the adsorption isotherms on CSH stationary 
phases of two endogenous opioid peptides in the presence 
of TFA were determined in gradient elution. Two models 
were established, one taking the competition for adsorption 
sites from TFA into account and the other neglecting it. The 
adsorption isotherms from the two models were compared 
and their ability to predict elution profiles was evaluated. 
This study also demonstrates the use of the IM in a practi-
cal case, i.e., peptide purification, where gradient elution is 
routinely employed.

Theory

The equilibrium-dispersive (ED) model describes the mass 
balance in the chromatographic column for component i 
[1]:

where F  =  (1  −  εt)/εt is the phase ratio, εt is the total 
porosity, w is the interstitial mobile phase velocity, Da is 
the apparent dispersion coefficient, t and x are the time and 
length coordinates in the column, and C and q are the local 
mobile and stationary phase solute concentrations, respec-
tively. Danckwerts-type boundary conditions [1] were used 
at the column inlet and outlet coupled with experimentally 
obtained injection profiles for each injection volume. The 
gradient is then described by the inlet condition for the 
organic modifier:

where ϕ0 is the fraction of organic modifier in the mobile 
phase at the beginning of the gradient, tp is the time when 
the gradient reaches the column inlet, β  =  Δϕ/tg is the 
slope of the gradient with Δϕ being the change in modi-
fier fraction between the beginning and end of the gradient, 
and tg is the duration of the gradient. In RP-LC, linear sol-
vent strength (LSS) theory [10] can be used to modify the 
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competitive Langmuir adsorption isotherm to incorporate 
the organic modifier dependence, which then becomes

where a is the Henry constant and K the association equi-
librium constant in pure water, while S is a parameter 
describing the organic modifier dependence. Subscript P 
denotes the peptide and subscript T denotes TFA.

Materials and Methods

Chemicals

The peptides leu-enkephalin (LeuEnk; CAS #58822-
25-6) and met-enkephalin (MetEnk; CAS #58569-55-4) 
were used as solutes. LeuEnk (93%) was purchased from 
Bachem (Bubendorf, Switzerland) and MetEnk (77%) 
from Alfa Aesar (Karlsruhe, Germany). Trifluoroacetic 
acid (≥99.0%) was used as an ion-pairing reagent and 
purchased from SigmaAldrich (St. Louis, MO, USA). The 
mobile phase consisted of gradient-grade acetonitrile from 
VWR (Radnor, PA, USA) and water with a conductivity of 
18.2  MΩ  cm from a Milli-Q Plus 185 water purification 
system from Merck Millipore (Darmstadt, Germany).

Instrumentation

An Acquity H-Class Bio chromatograph from Waters (Mil-
ford, MA, USA) with a quaternary solvent manager, an 
autosampler with a 50-µL extension loop, a column oven, 
and a PDA detector was used. The column temperature was 
set to 25.0 °C and the flow rate was 0.25 mL min−1. The 
column was an XSelect CSH C18, 100 × 2.1 mm column 
from Waters. The CSH particles were prepared by derivat-
izing bare bridged ethylene hybrid particles with a weakly 
basic ionizable silane before the ligand bonding and the 
end-capping steps [11]. The C18 surface coverage was 
2.38  µmol  m−2 and the amine surface coverage was esti-
mated to be approximately 0.02  µmol  m−2 [11]. For this 
specific column, the average particle diameter was 4.81 µm 
and the total porosity was measured by pycnometry to be 
0.668 using acetonitrile and dichloromethane.

Procedure

The adsorption isotherm of TFA was obtained using the per-
turbation pulse method [1] on four isocratic plateaus: 10.00, 
13.75, 17.50, and 25.00% acetonitrile. Perturbations were 
obtained for each acetonitrile plateau at 12 TFA concentra-
tions in the range of 0–45 mM. The fraction of acetonitrile in 
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1+ KPe
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the eluent is given as the weight fraction (w/w), so the gradi-
ent slope is given as the weight percentage of acetonitrile per 
minute. To determine the adsorption isotherms of the peptides 
in gradient elution, overloaded injections were performed 
in gradient elution at three gradient slopes: 0.25, 1.00, and 
2.75% min−1. The gradient was linear and ran from 13 to 25% 
acetonitrile with no isocratic hold. The TFA concentration was 
held constant at 37.3 mM in both the eluent and diluent. Over-
loaded injections were performed by injecting 20 and 50 µL 
of peptide samples containing 17.9 mM LeuEnk or 13.8 mM 
MetEnk. The two elution profiles used in the IM were 20 µL, 
0.25% min−1 and 50 µL, 2.75% min−1. Calibration was done 
by direct integration of the 290-nm response [3]. The column 
efficiency was determined to be 2700. The adsorption iso-
therm parameters were determined using the IM following the 
stepwise approach described by Åsberg et al. [3].

Results and Discussion

To demonstrate the gain in peak shape with the CSH col-
umn, overloaded elution profiles were recorded on an 
Atlantis T3 C18 column from Waters with the same dimen-
sions and particle size. Figure 1 compares the elution pro-
files obtained with the two columns. The peaks obtained 

on the CSH column are much narrower although the same 
load is used on both columns and baseline separation could 
be obtained (Fig.  1b). The difference in chromatographic 
performance is most pronounced at low TFA concentra-
tions as shown in Fig.  1 for 2.6  mM (0.02%, v/v) TFA. 
In the following experiments, the TFA concentration was 
increased to 37.3 mM (0.29%, v/v) to include conditions 
where the peptide concentration is significantly lower than 
the TFA concentration, i.e., if competition between TFA 
and the peptide can be neglected at 37.3 mM TFA it can be 
neglected also at lower TFA concentrations.

TFA Adsorption Isotherm

The adsorption isotherm slope data obtained from the per-
turbation pulse experiments at the four acetonitrile fractions 
were fitted simultaneously to the bi-Langmuir isotherm model 
extended to gradient elution by applying LSS theory [3]:

The rationale for the bi-Langmuir model was that the 
sorbent surface contains two types of possible interac-
tions with TFA: the hydrophobic interactions with the C18 
layer (partitioning) and the electrostatic interactions with 
the positively charged amine groups [11]. The fit was 
very good with R2 =  0.9930 and the numerical param-
eters were estimated to be

a1,T  =  1.13, Sa1,T  =  3.29, K1,T  =  13.4  M−1, and 
SK1,T = 187,

a2,T  =  6.30, Sa2,T  =  3.99, K2,T  =  408  M−1, and 
SK2,T = 4.42.

Subscript 1 denotes the site corresponding to adsorp-
tion on the C18 layer and subscript 2 denotes interactions 
with the charged groups. Since K1,T ≪ K2,T, the interac-
tions at site 1 are much weaker compared to site 2 and the 
saturation capacity is higher for site 1. This is expected 
since the electrostatic interactions are stronger than the 
hydrophobic ones for a small ionic solute such as TFA 
and the surface coverage is lower for the charged ligand. 
The adsorption isotherm for TFA shows an increas-
ing adsorption of TFA on CSH surface with increasing 
acetonitrile fractions (Fig.  2) and therefore acetonitrile 
dependence must be taken into account when studying 
the adsorption isotherm of TFA in gradient elution.

Peptide Modeling

LeuEnk and MetEnk have a charge of +1 at the studied pH 
and can therefore be repelled from the positive groups on 
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Fig. 1   Overloaded elution profiles recorded for the same samples 
using two different columns: a Atlantis T3 C18 and b XSelect CSH 
C18. The mobile phase was acetonitrile/water with 2.6  mM TFA in 
gradient elution (10–25% acetonitrile in 10 min); 40 µL of MetEnk 
(4.4 mM) and LeuEnk (6.7 mM) were injected individually and the 
chromatograms overlaid. Note the considerably reduced tailing on the 
CSH column as compared to the T3 column
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the CSH stationary phase. The only interaction is therefore 
with the C18 layer and consequently the competitive Lang-
muir isotherm, Eq. (3), is suitable. Two adsorption isotherm 
models were evaluated using the inverse method: model 

A accounts for the competition with TFA for the C18 sites 
and model B neglects the TFA adsorption. Model A uses 
the values K1,T =  13.4  M−1 and SK1,T =  187 for TFA in 
Eq.  (3) obtained from the perturbation pulse experiments, 
while model B assumes that K1,T = 0 and hence no com-
petition with TFA. The resulting models show a large over-
lap between experimental and calculated chromatograms; 
94.1% area overlap for LeuEnk and 95.1% overlap for Met-
Enk, which is considered very good.

Regarding process optimization, the model’s ability to 
predict elution profiles is the most important character-
istic, while for process understanding, the adsorption iso-
therm model per se is most important [5, 12]. To evaluate 
the models predictive power, four elution profiles were 
predicted and compared with experimental results, varying 
both the injection volume and gradient slope for both pep-
tides (Fig. 3). Both models predict identical elution profiles 
for all conditions, so we conclude that the predictive power 
of the model does not decrease when the adsorption of TFA 
is neglected under the studied conditions. The overall pre-
dictions are in good agreement with experimental results, 
considering how sensitive the peptides are to the acetoni-
trile fraction.

We have previously demonstrated that the estimated 
isotherm parameters obtained using the inverse method 
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Fig. 2   Bi-Langmuir adsorption isotherm, Eq.  (4), for TFA on the 
CSH stationary phase with different fractions of acetonitrile in the 
mobile phase (given in the legend)
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Fig. 3   Experimental (Exp.) elution profiles and elution profiles pre-
dicted using the two models for LeuEnk (a–c) and MetEnk (d–f) at 
different gradient slopes and injection volumes. “With TFA” denotes 
model A, which accounts for the competitive adsorption of TFA, and 

“No TFA” denotes model B, which neglects TFA adsorption. Note 
the very good agreement between the results of the two models, indi-
cating that neglecting TFA does not alter the predictive power
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in gradient elution lack physical meaning and should be 
treated as numerical fitting parameters, although the overall 
shape of the adsorption isotherm is physically correct [5]. 
Therefore, the shapes of the adsorption isotherms obtained 
using the two models are compared in Fig.  4. Excellent 
agreement was found between model A and B results at 
all acetonitrile fractions, indicating that neglecting TFA 
adsorption provides a valid approximation when acquir-
ing adsorption isotherms for such systems. The physical 
explanation is that TFA adsorbs mainly on the positively 
charged groups, denoted as site 2, and very weakly on the 
C18-type sites (site 1), while the peptides adsorb strongly 
on these sites. The competition from TFA therefore has a 
minor influence on the peptide adsorption mechanism. 
Being able to neglect the TFA in the estimation of the pep-
tide’s adsorption isotherm has two clear advantages: (1) 
it decreases the number of required experiments since the 
TFA adsorption isotherm does not need to be determined 
and (2) the parameter estimation in the IM becomes more 

robust, i.e., probability to get stuck in a local minimum 
decreases, when the number of components decreases.

Conclusions

We investigated the performance of the inverse method for 
adsorption isotherm determination in gradient elution in 
the case of an adsorbing additive by modeling the adsorp-
tion of two peptides on a CSH C18 stationary phase with 
TFA in the eluent. We found that TFA competition could 
be neglected without loss of predictive power or loss of 
physical relevance of the adsorption isotherm since TFA 
probably adsorbs mainly on the positively charged ligands 
rather than on the C18 ligands and therefore does not com-
pete with the peptide for the available C18 adsorption sites. 
Being able to neglect the adsorption of TFA reduces the 
number of experiments and allows the use of a simplified 
mechanistic model which in turn increases the calcula-
tion speed and robustness, which is especially important in 
process optimization involving competitive adsorption iso-
therms of three or more peptides [13].
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	 3.	 Åsberg D, Leśko M, Enmark M et al (2013) Fast estimation of 
adsorption isotherm parameters in gradient elution preparative 
liquid chromatography. I: the single component case. J Chroma-
togr A 1299:64–70. doi:10.1016/j.chroma.2013.05.041
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