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1 Introduction

The use ofmathematical tools to study and understand the spread of infectious diseases
is a mature and fruitful area of research. In their 1927 paper Kermack andMcKendrick
(1927) established the susceptible-infected-recovered (SIR) framework which forms
the basis ofmanymodels to this day. However, their model assumes that any individual
can interact with any other. In reality, in large populations each individual only inter-
acts with a few others, and these connections determine the possible routes of disease
transmission. Moreover, studies have found significant heterogeneity in the number of
contacts a single individual may have (Pastor-Satorras and Vespignani 2001). The use
of graphs or networks to describe these contact patterns represented a major advance
in our ability to model more realistic social behaviour. In network-based models indi-
viduals are represented by nodes in the network, with edges (or links) encoding the
interactions between nodes.

Since the direct analysis of stochastic epidemics on networks is far from trivial,
one often relies on deterministic mean-field models that are aimed at approximating
some average quantities taken from the stochasticmodels. Derivingmean-fieldmodels
can be done in several different ways depending on what one chooses to focus on.
For example, considering all nodes and edges in all possible states leads to pairwise
models (Keeling 1999; House and Keeling 2011), while considering separately each
individual and all possible ways in which it can become infected by its neighbours
leads to the message passing (MP) formalism (Karrer and Newman 2010). Focussing
on all possible star-like structures, typically defined by a node and all its neighbours,
and also taking into account their disease status, yields the so-called effective-degree
models (Lindquist et al. 2011). Edge-based compartmental models (EBCM) are based
on considering a randomly chosen test node and working out the probability of it
staying susceptible, with this probability being then equivalent to the proportion of
susceptible nodes in the entire population (Miller et al. 2012). See Danon et al. (2011),
Pastor-Satorras et al. (2015) andKiss et al. (2017) for reviews. All of thesemodels start
from the same stochastic model, thus, it is not surprising that some of these models
(House and Keeling 2011; Taylor and Kiss 2014; Miller and Kiss 2014; Kiss et al.
2017) are, in fact, equivalent, as we will demonstrate later.

While network models capture contact more accurately, the assumption that the
underlying stochastic transmission and recovery processes are memoryless (Keeling
and Eames 2005; Volz 2008; House and Keeling 2011) remains restrictive. Of course,
memoryless processes aremathematicallymore tractable and relatively simple to anal-
ysewhen compared tomodelswhere the inter-event times are chosen fromdistributions
other than the exponential. However, when compared to data, these assumptions are
often violated. For example, diseases can exhibit unique and non-Markovian behaviour
in terms of the strength and duration of infection. In this respect, the distribution of
the infectious period is usually better approximated by some peaked distribution with
a well defined mean, see e.g. Bailey (1954), Gough (1977), Wearing et al. (2005) and
references therein.

TheMPmethod does not rely on these assumptions and is able to predict the average
behaviour of an epidemic outbreak with general distributions for the transmission
times and the duration of infection, although we still require these be independent.
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Mean-field models for non-Markovian epidemics on networks 757

Throughout the paperwewill denote these distributions as τ(a) andq(a),wherea is the
time since the node became infected, known as the age of infection. Once a susceptible
node has been exposed to a transmission event, it becomes infected immediately, while
the recovery from the disease grants a lifetime immunity. Using these distributions
assumes a homogeneous response to disease; whilst this restriction is not always
necessary (see e.g. Wilkinson and Sharkey 2014), it is a common simplification in
order to obtain a concise model. However, the main focus of this paper is to explore
the flexibility of the EBCM in being able to capture epidemics where the infection
and recovery processes are described by general independent distributions.

The rest of the paper is organised as follows. In the following section we introduce
the MP method (Karrer and Newman 2010) and show how the epidemic model is
constructed. We then go on to present the extension of the edge-based compartmental
model (Miller et al. 2012) to SIR epidemics with general but independent distribu-
tions for time to transmission and duration of the infectious period. This section also
contains the main result of the paper, namely, a full rigorous proof that MP model and
the EBCM are equivalent, and hence, that the EBCM provides an exact representation
of the average stochastic behaviour on the ensemble of infinite Configuration Model
(CM) networks (Bender and Canfield 1978; Molloy and Reed 1995, 1998). Section 3
contains a re-parametrisation of the MP model in the special case of Markovian trans-
mission. This proves to be a useful tool in showing how several well-known models
can be derived from the MP model or the EBCM when additional assumptions about
the network or recovery process are made. In Sect. 4, we compare numerical solutions
of the mean-field models to averaged results from explicit stochastic network simula-
tions. The paper concludes with a discussion of main results and possible directions
for future research.

2 Model summary

2.1 The message passing (MP) method

In their 2010 paper, Karrer and Newman (2010) introduced the message passing
approach to model SIR dynamics on networks. Here, we briefly present the ideas
behind their model and its assumptions. Recalling τ(a) and q(a) as the densities for
transmission and duration of the infectious period one can introduce a new func-
tion f (a)

f (a) = τ(a)

∫ ∞

a
q(x) dx, (1)

such that the probability that a node infected at time 0 attempts to transmit the disease
to a given neighbour before time t is

∫ t
0 f (a)da, since a neighbour can only transmit

the disease if it has not yet recovered. Note that the integration of (1) over all time is the
overall probability of an attempted transmission of the disease across a given network
edge, commonly known as the transmissibility of the disease. This is a quantity which
is important in percolation models to determine the epidemic threshold and expected
final epidemic size of a major outbreak (Newman 2002; Kenah and Robins 2007).
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758 N. Sherborne et al.

In order to model the dynamics of disease spread, consider a test node u. This
node is placed into a cavity state where it can become infected but is not able to
transmit the disease to any of its neighbours. This has no effect on the probability
of the node being in any given state (Miller et al. 2012). Now consider a node v

which is a neighbour of u; the message is the probability that v has not attempted
to transmit the disease to u by calendar time t , denoted Hu←v(t). This probability
is comprised of two distinct possibilities; the first possibility is that v will make no
attempt to transmit the disease before age t , this is given by 1 − ∫ t

0 f (a) da. This
means that even if v is one of the initially infected nodes, it would not attempt to
transmit to u. Alternatively, it could be that v will transmit to u at some age a <

t , but v itself was infected at some time t1 > t − a and has, therefore, not yet
attempted to transmit the disease to its neighbour u. This requires v to have initially
been susceptible (with probability z) and to have escaped transmission from each of its
neighbours until at least time (t − a). On a tree network with no loops, this is exactly
z
∫ t
0 f (a)

∏
w∈N (v)\u Hv←w(t − a) da, whereN (v) denotes the set of neighbours of

v. Hence, combining these two gives

Hu←v(t) = 1 −
∫ t

0
f (a)

⎡
⎣1 − z

∏
w∈N (v)\u

Hv←w(t − a)

⎤
⎦ da. (2)

In principle, one could calculate (2) for all edges (in both directions) to find a full
solution for the proportion of the population that is susceptible, infected or removed
at any time t . For example, the probability that u is susceptible is the product of
Hu←w(t) across all neighbours w ∈ N (u) multiplied by the probability that it was
initially susceptible, z. On a single fixed finite tree network, solving (2) for all edges
will, in fact, yield the exact solution of the stochastic epidemic (Karrer and New-
man 2010). The size of such a system of equations would be twice the number of
all edges in the network (since both Hu←v(t) and Hv←u(t) would need to be calcu-
lated).

Throughout this paper we consider unweighted, bi-directional and static networks
constructed according to the configuration model (CM). Every node is assigned a
number of neighbours, known as its degree, according to a probability distribution
pk , known as the degree distribution, that describes the probability that a randomly
chosen node has degree k. Let us now focus on an ensemble of CM networks and
consider an average message, H1, instead of considering distinct messages across
every edge (Karrer and Newman 2010). For CM networks, as the size of the net-
work tends to infinity, so does the length of the shortest loops, and, therefore, the
network becomes locally tree-like. This means that the messages that a node receives
from each of its neighbours are independent, and the average message received by
the test node u is equal to the product of the average message for each neigh-
bour.

The product in (2) is then this H1 raised to the power of the excess degree of
the node, its degree excluding the edge which connects it to the test node. The
following moment generating functions average this product over the degree distribu-
tion
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Mean-field models for non-Markovian epidemics on networks 759

G0(x) :=
∑
k

pkx
k, G1(x) := 1

〈k〉
∑
k

pkkx
k−1,

G2(x) := G ′
1(x) = 1

〈k〉
∑
k

pkk(k − 1)xk−2, (3)

where 〈k〉 = G
′
0(1) is the mean degree. G1(x) is the generating function for the

excess degree distribution, since kpk/〈k〉 describes the probability that a node reached
by traversing a randomly selected edge has (k − 1) other contacts (Newman 2002);
the mean excess degree is given by G ′

2(1). The moment generating function G2(x)
will be used to trace the route of infection in later models. Using G1 to replace the
product in (2), the equation for the average message H1(t) is

H1(t) = 1 −
∫ t

0
f (a) [1 − zG1(H1(t − a))] da, (4)

with H1(0) = 1.
In practice, the trajectory of H1(t) is found by identifying and then solving a

differential or integro-differential equation. For example, the purely Markovian case
(i.e. τ(a) and q(a) are both exponential distributions), with transmission and recovery
parameters β and γ , leads to

dH1

dt
= γ − (β + γ )H1(t) + βzG1(H1(t)),

where, again, z is the fraction of the population which was initially susceptible at time
t = 0 (Karrer and Newman 2010). However, the precise form of this equation is not
universal, it depends on the particular choice of τ(a) and q(a). The proportions of
susceptible, infected and recovered individuals at any time t are then given, in terms
of the message H1(t), as

〈S〉(t) = zG0(H1(t)),

〈R〉(t) =
∫ t

0
q(a) [1 − 〈S〉(t − a)] da,

〈I 〉(t) = 1 − 〈S〉(t) − 〈R〉(t).
(5)

The MP model (5) with the average message H1 is exact when the stochastic epi-
demic is considered on the ensemble of infinite CM networks (Karrer and Newman
2010). Although this approach is theoretically able to model dynamics for gen-
eral choices of independent transmission and recovery processes, the need to find
a numerically solvable differential equation for H1 in (4) has restricted the use of MP,
and numerical examples are limited, see Karrer and Newman (2010), Wilkinson and
Sharkey (2014) for several examples where output from the MP model is compared
to results based on simulations.
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2.2 EBCM for general transmission and recovery processes

The edge-based compartmental model is an established tool for Markovian dynam-
ics (Miller et al. 2012). We introduce a new extended EBCM which generalises the
method to general transmission and recovery processes τ(a) and q(a). Again, the
EBCM uses the fact that the probability that the test node u remains susceptible is
the probability that u escapes transmission from all of its neighbours. This concept is
similar to the notion and use of H1 in MP models. Recovery is modelled using age-
structured differential equations. However, the EBCM uses the instantaneous rates of
transmission and recovery given by the hazard functions rather than the raw densities
τ(a) and q(a). These are defined as

ζ(a) := τ(a)

ξτ (a)
, and ρ(a) := q(a)

ξq(a)
, (6)

where ξτ (a) and ξq(a) are the respective survival functions (see, e.g., Miller 2011).

ξτ (a) =
∫ ∞

a
τ(â) dâ = e

−
∫ a

0
ζ(â) dâ

,

ξq(a) =
∫ ∞

a
q(â) dâ = e

−
∫ a

0
ρ(â) dâ

.

(7)

All of these disease variables and related functions are summarised in Table 1. As
before, the contact network is a CM network with degree distribution and generat-
ing functions as defined in (3). The basis of the EBCM revolves around finding the
probability that a random test node (in a cavity state) is in a susceptible, infected or
recovered state at time t . As this test node is chosen at random, these probabilities are
equal to the proportions of the population in each state at time t , denoted S(t), I (t)
and R(t), respectively.

The first important quantity is Θ(t), defined in a manner similar to H1(t) in (4) as
the probability that the representative test node has not received transmission from a
given neighbour by time t . This approach then differs fromMP by directly expressing
a differential equation for the dynamics of Θ . The model is known as “edge-based”
because it considers the state of the neighbours of the test node; the densities 	S(t),
	I (t) and 	R(t) describe the probability that at time t a random neighbour of the test
node is (i) still susceptible, (ii) infected but has not attempted to transmit the disease to
the test node, (iii) recovered, and did not transmit to the test nodewhilst it was infected.
The age of infection is, in general, crucial in determining the hazard rates, and so we
introduce i(t, a) as the density of infected nodes with the age of infection a. Similarly,
φI (t, a) is the density of infected neighbours who have not transmitted to the test node
and have age a. Thus, it is clear that I (t) = ∫ t

0 i(t, a)da and 	I (t) = ∫ t
0 φI (t, a)da.

These variables are summarised in Table 2. We also introduce the Dirac delta function
as follows Gel’fand and Shilov (1964)

δ(x) =
{

+∞, x = 0

0, x �= 0
,

∫ ∞

−∞
δ(x)dx = 1.
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Table 1 The variables and functions describing the transmission and recovery processes

Variable Definition

τ(a) The density of the transmission process

q(a) The density of the duration of the infectious period

ξτ (a) The survival function of the transmission process. The probability that an
infected node of age a has not yet attempted to transmit the disease along
a given edge:

∫ ∞
a τ(x) dx

ξq (a) The survival function of the recovery process. The probability that an
infected node reaches at least age a before recovering:

∫ ∞
a q(x) dx

ζ(a) The hazard function of the transmission process. The probability of an
edge of age a transmitting in a small interval of time (a, a + �a): τ(a)

ξτ (a)

ρ(a) The hazard function of the recovery process. The probability of an infected

node of age a recovering in a small interval of time (a, a + �a): q(a)
ξq (a)

f (a) The probability that, in a small interval, an infectious contact is made by an
infected node of age a :τ(a)

∫ ∞
a q(x) dx

g(a) The probability that, in a small interval, an infectious node of age a
recovers, without attempting to transmit the disease to a given neighbour:
q(a)

∫ ∞
a τ(x) dx

Before writing down the new edge-based compartmental model it is worth intro-
ducing and explaining the structure of its equations. The message Θ is monotonically
decreasing, and it depends on the density and age of infected neighbours, φI (t, a),
and the hazard rate ζ(a). We must consider the possibility of an infected neighbour of
any age up to time t transmitting the disease, hence, we have

dΘ(t)

dt
= −

∫ t

0
ζ(a)φI (t, a) da.

Given Θ(t) it follows that 	S(t) = zG1(Θ(t)). Since the test node is in a cavity
state, the probability of a neighbour being susceptible is the probability of it escaping
infection from its other contacts averaged over the excess degree distribution.

The rate at which susceptible neighbours are infected is the boundary condition for
infected neighbours, i.e.

φI (t, 0) = −	̇S(t) = (1 − z)δ(t) + zG2(Θ(t))
∫ t

0
ζ(a)φI (t, a) da,

where the first term represents the introduction of the disease at time t = 0, and is zero
everywhere else. As these neighbours age, they may attempt to transmit the disease,
and will eventually recover from it. These events depend on the calendar time and the
age of infection, and so we have a von Foerster-type equation

(
∂

∂t
+ ∂

∂a

)
φI (t, a) = − [ζ(a) + ρ(a)]φI (t, a), 0 < a ≤ t.
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Table 2 The list of variables in the EBCM

Variable Definition

Θ(t) The probability that the initially susceptible test node has not received a
transmission from a random neighbour by time t

	S(t) The probability that a random neighbour of the test node u is still
susceptible

	I (t) The probability that a random neighbour of the test node u is infected, but
has not transmitted to u

φI (t, a) The probability a random neighbour of the test node u to be infected, have
not transmitted to u by time t and have age of infection a,
	I (t) = ∫ t

0 φI (t, a) da

	R(t) The probability a random neighbour of the test node u has been infected
and recovered without transmitting to u

S(t) The density of susceptible nodes

I (t) The density of infected nodes

i(t, a) The density of infected nodes with age of infection a

R(t) The density of recovered nodes

G1(x) The generating function of the excess degree distribution:
1

〈k〉
∑∞

k=0 pkkx
(k−1)

G2(x) The derivative of the generating function of the excess degree distribution:
1

〈k〉
∑∞

k=0 pkk(k − 1)x(k−2)

The density of nodes in each state depends on Θ and φI . By the same logic seen
in the MP model, the density of susceptible nodes is S(t) = zG0(Θ(t)). The rate
at which susceptible nodes become infected gives the boundary condition of newly
infected nodes. Therefore, infected nodes are replenished according to

i(t, 0) = −Ṡ(t) = (1 − z)δ(t) + 〈k〉zG1(Θ(t))
∫ t

0
ζ(a)φI (t, a) da,

where the first term represents the introduction of the disease. As infected nodes age,
they recover according to ρ(a); these dynamics depend on t and a, and we have a
second partial differential equation in the model

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −ρ(a)i(t, a), 0 < a ≤ t.

These equations together form the EBCM for general but independent transmission
and recovery processes,

dΘ(t)

dt
= −

∫ t

0
ζ(a)φI (t, a) da, (8a)

	S(t) = zG1(Θ(t)), (8b)

φI (t, 0) = −	̇S(t),

= (1 − z)δ(t) + zG2(Θ(t))
∫ t

0
ζ(a)φI (t, a) da, (8c)
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(
∂

∂t
+ ∂

∂a

)
φI (t, a) = − [ζ(a) + ρ(a)]φI (t, a), 0 < a ≤ t, (8d)

	I (t) =
∫ t

0
φI (t, a) da, (8e)

	R(t) = Θ − 	S − 	I , (8f)

S(t) = zG0(Θ(t)), (8g)

i(t, 0) = −Ṡ(t),

= (1 − z)δ(t) + 〈k〉zG1(Θ(t))
∫ t

0
ζ(a)φI (t, a) da, (8h)

(
∂

∂t
+ ∂

∂a

)
i(t, a) = −ρ(a)i(t, a), 0 < a ≤ t, (8i)

I (t) =
∫ t

0
i(t, a) da, (8j)

R(t) = 1 − S(t) − I (t). (8k)

The new edge-based compartmental model (8) offers an alternative way to derive a
system of equations that are able to characterise the dynamics of an epidemic outbreak.
Although it seems more complex than the MP model, the EBCM is perhaps more
intuitive, as many of the variables it involves relate directly to densities of nodes in
different states and to the transitions between different states. The EBCM has also
proven to be quite versatile and easily extendable to account for different scenarios.
For instance, Miller et al. (2012) extended the original EBCM for static networks to
dynamic networks where edges are deleted, created or rewired. It may be possible
to use similar techniques to extend (8) to model diseases spreading through dynamic
networks. To our knowledge, theMPmodel has so far not been extended beyond static
networks, although it may be possible.

As the MPmodel (5) and the non-Markovian edge-based compartmental model (8)
are based on the same underlying stochastic epidemic, it is natural to question how
accurate and how similar they are. Karrer and Newman (2010) showed that the MP
model (5) is exact on the ensemble of CM networks. Therefore, proving that the
EBCM and MP model are equivalent will imply that the EBCM is exact under the
same circumstances.

2.3 Model equivalence

We now present and prove the main result of this paper, that the edge-based compart-
mental and MP model are equivalent for any suitable choices of τ(a) and q(a).

Theorem 1 If τ(a)andq(a)are independent, integrable probability density functions,
then the MP model (5) and the EBCM (8) are equivalent, and will produce identical
trajectories for any shared initial conditions.

Proof The proof consists of showing equivalence for twomain elements: themessages
for the respective models H1(t) and Θ(t), and the densities of nodes in each state.
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We first show that H1 and Θ satisfy the same evolution equation. To do this,
H1(t) (4) is differentiated using Leibniz’s rule, which yields

dH1

dt
= − f (t)[1 − zG1(H1(0))] −

∫ t

0
f (a)

[
−zG2(H1(t − a))

dH1(t − a)

dt

]
da

= − f (t)[1 − zG1(1)] +
∫ t

0
f (a)

[
zG2(H1(t − a))

dH1(t − a)

dt

]
da

= − f (t)(1 − z) +
∫ t

0
f (a)

[
zG2(H1(t − a))

dH1(t − a)

dt

]
da. (9)

The dynamics of Θ are governed by the following equation

dΘ

dt
= −

∫ t

0
ζ(a)φI (t, a) da.

From (8d), one can use the integrating factor exp
(∫ a

0 [ζ(â) + ρ(â)] dâ)
to find

φI (t, a) = φI (t − a, 0)e
−

∫ a

0
[ζ(â) + ρ(â)] dâ

(10)

where

φI (t − a, 0) = (1 − z)δ(t − a) − zG2(Θ(t − a))
d�(t − a)

dt
.

As an alternative, we offer a graphical explanation of (10) in Fig. 1.

u v w
(t−a)ξτ(a)

Fig. 1 Consider the node labelled u as the test node and thus in a cavity state. For its link with node v

to contribute to φI (t, a), it must be the case that v received transmission from some neighbour w at time
(t − a). If t − a = 0, then this is equal to the initial proportion of infected nodes. Otherwise, we take
the probability of a transmission event a time ago, which is d�(t−a)

dt . For v to have been successfully
infected at this time, it must have been susceptible until that point, since two of its neighbours will not have
transmitted before this time (u is in a cavity state and w will transmit at (t − a)). The probability of this
is zG2(H1(t − a)) for t > a, illustrated by the dashed lines. The probability of v not transmitting to u
before time t is ξτ (a). Finally, the neighbour v must still be infected at age a, which is given by the survival
function ξq (a)
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Introducing f̂ (a) := ζ(a)e
−

∫ a

0
[ζ(â) + ρ(â)] dâ

, we have

d�

dt
= −

∫ t

0
f̂ (a)

[
(1 − z)δ(t − a) − zG2(�(t − a))

d�(t − a)

dt

]
da

= − f̂ (t)(1 − z) + z
∫ t

0
f̂ (a)G2(�(t − a))

d�(t − a)

dt
da. (11)

Thus, H1 and � have the same dynamics if one can show that f (a) = f̂ (a). From
the definition of f (a) in (1) and using (7), we obtain

f (a) = ζ(a)ξτ (a)ξq(a) = ζ(a)e
−

∫ a

0
[ζ(â) + ρ(â)] dâ

= f̂ (a).

Since H1 and Θ have the same initial condition, this implies that H1(t) and �(t)
will exhibit identical dynamics for general but independent transmission and recovery
processes. As a direct consequence, this means that the dynamics of susceptibles are
the same in both models, since S(t) in (8g) and 〈S〉(t) in (5) differ only in that � is
replaced by H1, which are identical and thus interchangeable.

All that remains is to show that the evolution equations for 〈I 〉(t) in (5) and 〈I 〉〈t〉
in (8j) are identical. From the EBCM we have that

I (t) =
∫ t

0
i(t, a) da,

which can be differentiated with respect to t

d I

dt
=

∫ t

0

∂i(t, a)

∂t
da + i(t, t)

= −
∫ t

0

∂i(t, a)

∂a
da −

∫ t

0
ρ(a)i(t, a) da + i(t, t)

= i(t, 0) −
∫ t

0
ρ(a)i(t, a) da,

making use of (8i). The density of infected individuals of age a is the same as the den-
sity of infected individuals created at time t − a multiplied by the survival probability
for the duration of infection, ξq(a), i.e.

i(t, a) = ξq(a)i(t − a, 0) = ξq(a)Ṡ(t − a).

Utilising this substitution and the second identity in (6) gives

d I

dt
= −dS

dt
−

∫ t

0
q(a)

dS(t − a)

dt
da. (12)
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From the MP model (5) we can see that

d〈I 〉
dt

= −d〈S〉
dt

− d〈R〉
dt

= −d〈S〉
dt

−
∫ t

0
q(a)

d〈S〉(t − a)

dt
da − q(t)(1 − z). (13)

This final term describes the rate at which the initially infected individuals recover;
this term is implicitly considered in the EBCM in (8h) and so d I/dt ≡ d〈I 〉/dt . This
completes the proof. ��

An implicit analytical relation for the final epidemic size can be found directly
from (8). This result corresponds towell-known results based on tools frompercolation
theory (Newman2002;Kenah andRobins 2007;Miller 2007), and to the final epidemic
size obtained for MP models (Karrer and Newman 2010). It is given in the following
corollary.

Corollary 1 The final size of the epidemic r∞ = R(∞) in the EBCM (8) with a
vanishingly small proportion of infected nodes at time t = 0 is given by

r∞ = 1 − G0(�∞),

where �∞ solves the equation

�∞ = 1 − T̃ + T̃ G1(�∞),

and T̃ = ∫ ∞
0 f (a) da = ∫ ∞

0 ζ(a) exp(− ∫ a
0

[
ζ(â) + ρ(â)

]
dâ) da is the transmissi-

bility of the disease, i.e. the probability that the disease is transmitted along an edge
(in isolation) before recovery.

Proof From (8g), for z → 1 and t → ∞, it immediately follows that

r∞ = 1 − S(∞) = 1 − G0(�(∞)).

Furthermore, we have

�(∞) = 1 −
∫ ∞

0

∫ t

0
ζ(a)φI (t, a) da dt.

Interchanging the order of integration yields

�(∞) = 1 −
∫ ∞

0

∫ ∞

a
ζ(a)φI (t, a) dt da.

Setting u = t − a and noting from (10) that φI (t, a) = φI (u, 0) exp
( − ∫ a

0

[
ζ(â) +

ρ(â)
]
dâ

)
yields

�(∞) = 1 −
∫ ∞

0

∫ ∞

0
φI (u, 0)ζ(a)e− ∫ a

0 [ζ(â)+ρ(â)] dâ du da
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= 1 −
[∫ ∞

0
φI (u, 0)du

] ∫ ∞

0
ζ(a)e− ∫ a

0 [ζ(â)+ρ(â)] dâ da

= 1 +
[∫ ∞

0
	̇S(u) du

] ∫ ∞

0
ζ(a)e− ∫ a

0 [ζ(â)+ρ(â)] dâ da

= 1 + (	S(∞) − 	S(0))T̃

= 1 + T̃ G1(�(∞)) − T̃ . ��
Now that the equivalence between the edge-based compartmental and MP mod-

els has been established, we consider the special cases resulting from making extra
assumptions about the network (e.g. fully connected and regular) and the infection
(e.g. Markovian) and recovery processes (e.g. Markovian or infectious periods of
fixed length). This is motivated by the observation that many earlier epidemic models
are based on τ(a), q(a) and/or pk having the specific forms listed above.

In the following section we aim to produce amodel hierarchy by recasting/reducing
the EBCM or MP models to earlier models. However, it is not straightforward to see
how such earlier models can be derived directly from the EBCM or MP model. This
problem can be solved by a re-parametrisation of theMPmodel in the spirit of pairwise
models, and, as a result, one can begin to build a hierarchy of models starting from
the most general formulation.

3 Model hierarchy

Different model families (pairwise, effective degree, MP, EBCM etc.) emerge from
different considerations of the same underlying stochastic process. In this section we
aim to produce amodel hierarchy onCMnetworks by showing that for specific choices
of network topology or recovery process, many well-known models can be derived
from the more general MP model. In particular, we will focus on deriving pairwise
models (Wilkinson et al. 2017; Volz 2008; Keeling and Grenfell 1997; Kiss et al.
2015). In order to do this, we first present a general re-parametrisation of the MP
model (5), and this will act as stepping stone or interpolation between the EBCM/MP
and the well-known earlier models. Since all earlier models use a Markovian infection
process, the re-parametrisation also uses this assumption.

Pairwise models are based on differential equations for the expected number of
nodes in each state. These depend on the number of edges connecting susceptible and
infected nodes, and so differential equations are constructed for the expected number
of such edges, which themselves depend on the numbers of triples in certain states
(e.g. susceptible-susceptible-infected). To break this dependence, a moment closure
approximation is commonly used to express the number of triples in terms of pairs
and individuals (Keeling 1999).

Recently, Wilkinson and Sharkey (2014) and Wilkinson et al. (2017) have shown
that for regular tree networks exact pairwisemodels can be derived from theMPmodel
when the transmission process is assumed to be Markovian. Here we use similar
methods and the notation from Sect. 2.1 to extend this result to the class of CM
networks.
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Firstly, we define the new variable 〈SI 〉(t) as the proportion of edges in the network
which connect a susceptible node to an infected one at time t . This can be defined
in terms of existing quantities from the MP model. The susceptible node must have
been initially susceptible and escaped infection from all other neighbours until time
t , given by zG1(H1(t)). This must be multiplied by the probability that the remaining
neighbour of the susceptible node is infected and has not yet transmitted the disease to
this neighbour. To find this probability it is easier to calculate all other possibilities and
subtract them from one. These possibilities are: (i) the neighbour is still susceptible,
(ii) the neighbour has already transmitted the disease, (iii) the neighbour was infected
but has recovered without transmitting the disease. Combining these gives

〈SI 〉(t) = zG1(H1(t))

[
1 − zG1(H1(t))

−
∫ t

0
{ f (a) + g(a)} [1 − zG1(H1(t − a))] da

]
, (14a)

= zG1(H1(t))

[
H1(t) − zG1(H1(t))

−
∫ t

0
g(a) [1 − zG1(H1(t − a))] da

]
, (14b)

where

g(a) := q(a)

∫ ∞

a
τ(x) dx, (15)

is the probability of an infected node recovering in the interval (a, a + �a) without
transmitting to a givenneighbour. The correspondingpopulation-level quantity is given
by

[SI ](t) = 〈k〉N 〈SI 〉(t), (16)

where N denotes the total size of the population.
The transmission process is τ(a) = βe−βa which can be substituted into (4).

Introducing the change of variable t ′ = t − a, and using the Leibniz rule gives

dH1

dt
= −β

[
1 − zG1(H1(t)) −

∫ t

0
q(t − t ′)e−β(t−t ′) [

1 − zG1(H1(t
′))

]
da

−
∫ t

0
βe−β(t−t ′)

(∫ ∞

t−t ′
q(x)dx

) [
1 − zG1(H1(t

′))
]
dt ′

]

= −β

[
1 − zG1(H1(t)) −

∫ t

0
{ f (a) + g(a)} [1 − zG1(H1(t − a))] da

]

= −β
〈SI 〉(t)

zG1(H1(t))
(17)

= −β
[SI ]

z〈k〉NG1(H1(t))
. (18)
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For the infected population, using (5) and identities, such as [S](t) = N 〈S〉(t),
leads to

˙[I ] = − ˙[S] − ˙[R] (19)

= β[SI ] − β

∫ t

0
q(a)[SI ](t − a)da − q(t)N (1 − z). (20)

The majority of pairwise epidemic models retain an explicit differential equation for
the infected population (House and Keeling 2011; Wilkinson et al. 2017). However,
we choose to integrate (20) to reduce the number of differential equations that have
to be integrated numerically. By noting that [SI ] = β

∫ t
0

˙[SI ](t − a)ξq(a) da and
q(a) = −ξ ′

q(a), we have

˙[I ] = β

∫ t

0

( ˙[SI ](t − a)ξq(a) + ξ ′
q(a)[SI ](t − a)

)
da − q(t)N (1 − z),

which is the result of differentiating

[I ] = β

∫ t

0
[SI ](t − a)ξq(a) da + N (1 − z)ξq(t). (21)

Whilst (20) facilitates easier comparison to existing models, its equivalent represen-
tation (21) offers greater computational efficiency.

For the variable 〈SI 〉 the calculation is more laborious; working term-by-term
from (14b) and using the new relation (18) one obtains

˙〈SI 〉 = −zG2(H1)

(
β

[SI ]
z〈k〉NG1(H1(t))

)[
·
]

− β
[SI ]
〈k〉N + zβ[SI ]G2(H1(t))

〈k〉N − q(t)e−βt (1 − z)zG1(H1(t))

− zβ
∫ t

0
q(a)e−βa[SI ](t − a)G2(H1(t − a))

G1(H1(t))

N 〈k〉G1(H1(t − a))
da,

where [·] denotes the large bracket in (14b), and the Leibniz rule has been used again
to resolve the integral term. Finally, based on (14), [·] = 〈SI 〉

zG1(H1)
, which allows us to

eliminate [·] and replace it with a term involving 〈SI 〉. Then, multiplying through by
〈k〉N one obtains ˙[SI ] in (22a) below.

Ḣ1 = −β
[SI ]

z〈k〉NG1(H1)
, (22a)

˙[SI ] = −β[SI ]2 G2(H1)

z〈k〉N [G1(H1)]2 − β[SI ]
+ zβ[SI ]G2(H1) − q(t)e−βt (1 − z)zG1(H1)〈k〉N (22b)
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− zβ
∫ t

0
q(a)e−βa[SI ](t − a)G2(H1(t − a))

G1(H1(t))

G1(H1(t − a))
da,

[I ] = β

∫ t

0
[SI ](t − a)ξq(a) da + N (1 − z)ξq(t). (22c)

At any time t the expected number of susceptibles can be found as [S](t) =
zNG0(H1(t)). System (22a) has been derived directly from the MP model, and thus
it becomes exact under the same conditions - on the ensemble of CM networks as
the network size tends to infinity. Moreover, retaining the concept of the message,
H1, has meant that system (22a) does not depend on higher order arrangements of
nodes (e.g. triples). Therefore, unlike most pairwise models, no further approxima-
tions are required to close the model. Similar results have been achieved in the past
using heuristic arguments (House and Keeling 2011).

This re-parametrised system (22a) is the first crucial step in being able tomove from
general to specific models on CM networks, with special focus on unifying various
approaches by considering different models from the same perspective.

As one would expect, earlier population-level models were constructed based on
some more restrictive assumptions on network and epidemic dynamics. We will show
that when these are applied to system/model (22a), earlier models can be easily recov-
ered. The simplifying assumptions refer either to the network [e.g. fully connected
or regular (Wilkinson et al. 2017)], or the distribution of the infectious period [e.g.
Markovian (Volz 2008), fixed length (Kiss et al. 2015)]. The remainder of this section
is devoted to the explicit derivation of the relationships between models as illustrated
in Fig. 2.

3.1 Degree-regular networks

The first of these reductions concerns the special case of regular networks. For a k-
regular (homogeneous) network, all nodes have the same degree, i.e. ku = 〈k〉 = k,
and so the generating functions from (3) simplify to

G0(x) = xk, G1(x) = xk−1, and G2(x) = (k − 1)xk−2.

We also introduce two new variables

[S](t) = zNG0(H1(t)) = zN [H1(t)]k,
[SS](t) = 〈k〉N (zG1(H1(t)))

2 = kN
(
z[H1(t)]k−1

)2
,

(23)

that represent the expected number of susceptible individuals and the expected number
of edges connecting two susceptible nodes, respectively. [S](t) follows directly from
(5), and [SS](t) is defined as the number of edges connecting two nodes who were
both initially susceptible at time t = 0 and have escaped infection from their (k − 1)
other neighbours.

Now we return to the system (22a) and the differential equation for [I ] (20). Sub-
stituting the simpler generating functions yields
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Pairwise-like
model (22)

Message passing
model on CM
networks
(Karrer and
Newman,
2010) (5)

Non-Markovian
edge-based compart-
mental model (8)

Model of Volz
(2008) (32)

Markovian
Mass-action
SIR model

Model of Röst
et al. (2016) (33)

Model of Kiss
et al. (2015)

Model of
Wilkinson et al.

(2016) (28)

General transmission
and recovery processes

Markovian
transmission

Regular
network

Fixed period
of infection

Markovian
infectious period

Fully connected
network

Regular
network

Fig. 2 Diagram showing the relationship between the various models discussed in the paper. Labels on
each branch state the necessary assumptions in order to reach the model at the end of the arrow

Ḣ1 = −β
[SI ]

zkN Hk−1
1

,

˙[I ] = β[SI ] − β

∫ t

0
q(a)[SI ](t − a)da − q(t)N (1 − z),

˙[SI ] = −β[SI ]2 (k − 1)Hk−2
1

zkN [Hk−1
1 ]2 − β[SI ]

+ zβ[SI ](k − 1)Hk−2
1 − q(t)e−βt (1 − z)zHk−1

1 kN

− zβ
∫ t

0
q(a)e−βa[SI ](t − a)(k − 1)[H1(t − a))]k−2 [H1(t)]k−1

[H1(t − a)]k−1 da.

(24)

This can be simplified further using (23), firstly noting that

[SS]
[S] = Nkz2H2(k−1)

1

NzHk
1

= kzHk−2
1 , (25)
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and, from Ḣ1 we see that

d(Hk−1
1 )

dt
= −β(k − 1)

[SI ]
zkN Hk−1

1

Hk−2
1 = −β

(k − 1)

k

[SI ]
[S] Hk−1

1 . (26)

Solving for Hk−1
1 using separation of variables gives

Hk−1
1 (t) = exp

(
−β

∫ t

0

(k − 1)

k

[SI ](a)

[S](a)
da

)
. (27)

The result of this is that the system no longer requires the message H1, as one
can calculate the time derivatives of [S] and [SS] directly from (23). Using the new
relations (25) and (27), system (24) can be rewritten to give

˙[S] = −β[SI ],
˙[I ] = β[SI ] − β

∫ t

0
q(a)[SI ](t − a)da − q(t)N (1 − z),

˙[SS] = −2β
(k − 1)

k

[SS][SI ]
[S] ,

˙[SI ] = −β
(k − 1)

k

[SI ][SI ]
[S] − β[SI ] + β

(k − 1)

k

[SS][SI ]
[S]

− kNq(t)e−βt (1 − z)z exp

(
−β

∫ t

0

(k − 1)

k

[SI ](a)

[S](a)
da

)

− β

∫ t

0
q(a)e−βa (k − 1)

k

[SS](t − a)[SI ](t − a)

[S](t − a)
F(t)da,

(28)

where

F(t) = exp

(
−β

∫ t

t−a

(k − 1)

k

[SI ](u)

[S](u)
du

)
. (29)

This is identical to the system proposed by Wilkinson et al. (2017). Recently, Röst
et al. (2016) have considered the same problem, namely, an SIR epidemic with Poisson
transmission and an arbitrary distribution of the infectious period on a regular network.
By constructing an age-structured system of PDEs they were able to reach a very
similar, albeit a more compact model. We have, therefore, shown that (22a) extends
these recent models by allowing general degree distributions to be modelled.

3.2 Special distributions of the infectious period

As mentioned previously, a popular choice for the duration of infection is to assume
an exponential distribution, i.e. q(a) = γ e−γ a for γ > 0, where 1/γ is the mean
duration of infection. We briefly explain how this assumption simplifies the model
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and leads to familiar or well-known models. When this choice for q(a) is substituted
into (20), we have

˙[I ] = β[SI ] − γ

[∫ t

0
e−γ aβ[SI ](t − a)da + e−γ t N (1 − z)

]
. (30)

Note that e−γ a is the probability of an infected node not recovering before age a, and
since the number of infected nodes created a time ago is β[SI ](t − a) for a < t and
N (1 − z) for a = t , (30) can be rewritten as

˙[I ] = β[SI ] − γ [I ]. (31)

A similar result is reached in (22b). In this case the extra terms in the integral describe
the probability for the susceptible node of an [SI ] edge to have survived until age
a without receiving transmission, either along this edge or from another infected
neighbour. Therefore, by the same logic one can replace the final two terms in (22b)
with γ [SI ]. This leads to a model, which, although formulated differently, is similar
to models of Volz (2008) and House and Keeling (2011), namely,

Ḣ1 = −β
[SI ]

z〈k〉NG1(H1)
,

˙[I ] = β[SI ] − γ [I ],
˙[SI ] = −β[SI ]2 G2(H1)

z〈k〉N [G1(H1)]2 − (β + γ )[SI ] + zβ[SI ]G2(H1).

(32)

If one further assumes that the degree is regular, repeating the steps used to derive
system (28) recovers the early pairwise model (Keeling and Grenfell 1997).

We examine one final special case, when the duration of infection is a fixed period
of time, σ , so that q(a) = δ(a − σ). This means that as soon as a node is infected
at time t1, it is known that this node will recover at exactly t2 = t1 + σ . Therefore,
the integral terms are non-zero only at the point a = σ . In this case the system of
integro-differential equations (22a) simplifies to a delay differential equation model,
as stated below

Ḣ1 = −β
[SI ]

z〈k〉NG1(H1)
,

˙[I ] = β[SI ] − β[SI ](t − σ) − δ(t − σ)N (1 − z),

˙[SI ] = −β[SI ]2 G2(H1)

z〈k〉N [G1(H1)]2 − β[SI ]
+ zβ[SI ]G2(H1) − δ(t − σ)e−βt (1 − z)zG1(H1)〈k〉N
− zβe−βσ [SI ](t − σ)G2(H1(t − σ))

G1(H1(t))

G1(H1(t − σ))
.

(33)

Thismodel generalises the recentwork ofKiss et al. (2015) to heterogeneous networks,
and once again the original model in that paper can be retrieved when q(a) is chosen to
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be a delta distribution in (28) (although that original model did not explicitly account
for the recovery of initially infected nodes).

Finally, it is worth briefly noting that in the case of a fully connected network,
corresponding to a homogeneouslywell-mixed populationwe have that [SI ] = [S][I ],
and thus, the Markovian mass-action SIR model, which assumes that the population
is unstructured, is recovered. Moreover, with the proper conditions, Wilkinson et al.
(2017) proved that the message passing model is equivalent to the mass action model
of Kermack and McKendrick (1927) for general transmission and recovery processes.

4 Numerical simulation results

In order to illustrate the accuracy of (22a), we compare the numerical solution of
this model to results of direct stochastic network simulation. A common approach
for simulating traditional Markovian models has been to use the Gillespie algorithm
(Gillespie 1977). However, as modelling started to move away from the purelyMarko-
vian models, novel stochastic simulation methods have been derived (Anderson 2007;
Boguná et al. 2014) which provide efficient simulation algorithms that are able to
generate true sample paths of the stochastic process.

In this section we take advantage of the fact that in the system (22a) transmission
is a Poisson process in order to use an algorithm similar to those described by Barrio
et al. (2006). This approach is sometimes known as the rejection method and was
proven to be stochastically exact by Anderson (2007). The transmission process is run
as in the standard Gillespie algorithm; whenever a node becomes infected, a duration
of infection is drawn from the distribution q(a); at each time step the time of next
transmission is randomly generated, but if an infected node is scheduled to recover
sooner, then the transmission event is rejected, and time is updated to the next recovery
time (for full details see Anderson 2007).

In the very early stages of an outbreak stochastic effects dominate the dynamics of
the epidemic spread,whichmeans that numerical simulations can often produce results
that significantly differ from deterministic predictions. In this situation, methods such
as branching process approximations (Heesterbeek 2000) are more appropriate. To
ensure that this does not affect our results, we allow every iteration of the algorithm
to reach a point where the stochastic effects are no longer a concern, and the infected
population behaves deterministically. In practice this is achieved by running each
individual realisation of the epidemic from a single initial seed until a specified level
of infectivity is reached, at which point time is reset to zero in both the simulation and
the mean-field model.

A sufficient number of individual simulations are averaged to ensure that the mean
behaviour of the stochastic model is correctly captured and is suitable for comparison
with results derived from the deterministic models.

In Fig. 3 the results of numerical simulations are shown for three different distri-
butions of the infectious period all having the same mean: a normal distribution, an
exponential distribution, and a fixed infectious period. Two important observations can
be made. Firstly, the excellent agreement between the average of simulations (mark-
ers) and the mean-field model (lines) provides empirical validation of the mean-field
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Fig. 3 Comparison between system (22a) and the average of numerical simulations. All tests are carried
out on randomly generated, truncated scale-free networks of 1000 nodes with exponent 2.5, and the degree
bounded between 3 and 60. The transmission rate is set to β = 0.3 in all cases. Results are plotted where
the infectious period is exponentially distributed with parameter γ = 0.5 (solid line, circles), normally
distributed with mean 2 and standard deviation 0.75 (dashed line, squares), and a fixed duration σ = 2
(doted line, diamonds). Themean duration of the infectious period is equal to 2 for all cases. The differences
between the epidemics show that the shape of the distribution of the infectious period can have a significant
effect on the dynamics of the epidemic

model. Secondly, Fig. 3 shows marked differences between the epidemics despite the
mean of the infectious periods being the same. In particular, the exponential distri-
bution leads to the slowest epidemic growth (and smallest epidemic peak) with the
infectious periods of fixed length leading to the fastest growing epidemics (and largest
epidemic peak). These results highlight the potential risks of using inaccurate mod-
elling assumptions. The results also suggest that the variance in the duration of the
infectious period has a significant effect on the time evolution of the epidemic: a
decrease in variance leads to an increase in the initial growth rate (Kiss et al. 2015).

Changes to the degree distribution, transmission and infectious processes will all
have an impact on the final epidemic size, as determined by Corollary 1. In the tests
shown in Fig. 3 only the distribution of the infectious period changes. Whilst this will
affect the final epidemic size, it is not possible to tell which of the epidemics is going
to produce the largest final epidemic size purely from examining the time evolution
of the epidemic in Fig. 3. Indeed, it is possible for two epidemics with different time
evolutions to have the same final epidemic size. For example, if the degree distribution
remains the same, different choices for the distributions of the time to infection and
infectious periods can produce identical values for the transmissibility, and the same
final epidemic size.

5 Discussion

In this paper we have reviewed the message passing formalism for SIR epidemics on
networks, and introduced a novel extension of the edge-based compartmental model to
the case of general but independent transmission and recovery processes. Both of these
models are capable of accurately describing the expected dynamics of non-Markovian
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epidemics on tree networks. The main result of the paper is the complete and rigorous
of equivalence between these models, and, as a result, the non-Markovian EBCM (8)
is exact on the ensemble of infinite-size CM networks.

Adapting recent methods (Wilkinson and Sharkey 2014; Wilkinson et al. 2017)
enabled us to re-parametrise the MP model for the special case of a Markovian trans-
mission process but arbitrary CM networks. The compact model (22a) remains exact
and is, in fact, a hybrid between MP and classical pairwise models.

Many pairwise models are defined heuristically (Eames and Keeling 2002; Gross
et al. 2006; House and Keeling 2011), but by deriving model (22a) as a re-
parametrisation of the MP model we have developed a general model from which
existing pairwise models can be extracted. By demonstrating this we hope to provide
some intuition for how these newer models work and to illustrate that they build on
existingmodelswhilst providing amodern twist. It is encouraging that suchmean-field
models remain relatively compact, highlighting that the SIR epidemic can bemodelled
quite effectively, as long as a small number of key characteristics of the network and
the epidemic process are known.

The results fromour numerical simulations illustrate the dangers of using inaccurate
or overly simplistic data to make predictions, in particular, the common assumption
of fully Markovian dynamics. The MP and non-Markovian edge-based compartmen-
tal models are, therefore, crucial if we are to develop accurate epidemic models on
networks.

Numerous extensions of the present work are possible. For example, the implemen-
tation of an efficient solver of the novel EBCM is still outstanding. Efficient numerical
methods to solve such age-structured models exist, but this was outside the scope of
our study. In some sense the novel EBCM is themost completemean-fieldmodel when
one considers SIR epidemics on CM networks. This is due to the model being able
to handle arbitrary degree distributions, as well as general independent transmission
and recovery processes. Additionally, it could be refined to account for dynamic or
adaptive contacts. Dynamic networks have already been incorporated in edge-based
modelling in the purely Markovian setting (Miller et al. 2012), and it may be possible
to extend this to a more general framework to allow for a more unified treatment of
models that include the concurrent spread of the disease and link turnover.
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