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Developing efficient catalysts is vital for the application of electrochemical sensors.
Metal–organic frameworks (MOFs), with high porosity, large specific surface area, good
conductivity, and biocompatibility, have been widely used in catalysis, adsorption,
separation, and energy storage applications. In this invited review, the recent advances of
a novel MOF-based catalysts in electrochemical sensors are summarized. Based on the
structure–activity–performance relationship of MOF-based catalysts, their mechanism as
electrochemical sensor, including metal cations, synthetic ligands, and structure, are
introduced. Then, the MOF-based composites are successively divided into metal-based,
carbon-based, and other MOF-based composites. Furthermore, their application in
environmental monitoring, food safety control, and clinical diagnosis is discussed. The
perspective and challenges for advanced MOF-based composites are proposed at the
end of this contribution.
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INTRODUCTION

With the development of science and technology, the demand for substance detection is becoming
more selective (Sharma and Mutharasan, 2013). Sensors can effectively respond to an electrical,
optical, or other signal in the presence of the analyte, and then, it will convert the physical parameters
to complete the detection of the substance (Justino et al., 2015). The sensor system includes an
identification element, a sensor, and a detector, which can be divided into several sensors (Chiu et al.,
2017; Gogotsi et al., 2017; Zhou et al., 2017; Li S. et al., 2018; Shankar et al., 2018; Liu et al., 2021; Lin
et al., 2022; Lu et al., 2022; Zamzami et al., 2022). Among them, electrochemical sensors, with
simplicity, strong selectivity, and high sensitivity, have attracted wide attention (Yang S et al., 2021).
Recently, nanomaterials with the advantages of high specific surface area, excellent catalytic
performance, conductivity, and biocompatibility, can help the electrochemical sensors amplify
signals and improve the sensitivity of the sensors as well as reduce the detection range (Yang Q et al.,
2017). An efficient electrochemical sensor requires two requirements: high specificity of the signal tag
and an electrode with superior sensitivity and stability (Yang ZH et al., 2017; Yang et al., 2022).

Metal–organic frameworks (MOFs) are known as coordination polymer networks or porous
coordination polymers (Rosi, 2003; Zhang and Lin, 2014). The structure of different target molecules
can be designed by selecting metal coordination nodes and organic junctions. Importantly, a metal-
center (e.g., electrical, catalytic, or magnetic), an organic ligand (e.g., luminescent, fluorescent, or
chiral), or a combination of bothmay produce a universal framework function that exceeds the accessible
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porosity (Liu et al., 2018). However, the slow mass transfer, low
conductivity, and instable structure of MOF as catalysts limit their
practical application (Ma and Zhu, 2020). MOF-based composites
present higher surface area and richer active sites and exhibit highly
ordered pore-like arrangement, which can expose active sites to a
greater extent and make them have higher catalytic activity (Qin
et al., 2018; Ma et al., 2020a; Ma et al., 2020b).

Recently, different effective strategies have been proposed to
modify MOFs for improved electrocatalytic behavior, mechanical
properties, and stability. Generally, metal nanoparticles, with the
advantages of superior conductivity and high surface area, can be
used to increase the electron transfer rate (Samadi-Maybodi et al.,
2015; Da Silva et al., 2016). Thus, MOF–metal nanocomposites
present versatility, high stability, and dispersibility. As a result,
MOF composite with metal particles is an effective route to design
the superior electrochemical sensors (Meng et al., 2018). MOFs
composited with noble metals, transition metals, and two different
metal cations are regarded as effective strategies to prepare sensing
materials with higher stability and catalytic efficiency (Nan et al.,
2020; Yang et al., 2020). Furthermore, MOFs show low electronic
conductivity, electrical reactivity, and stability in aqueous media,
which limit their applications in electrochemical sensors.
Assembling MOFs with conductive materials, such as graphene,
carbon nanotubes, carbon blocks, and carbon nanofibers, is an
effective strategy (Wang et al., 2017; Lai et al., 2019; Li L et al., 2019;
Zhou Y. et al., 2020). In addition, doping graphene with
heteroatom can further improve the catalytic activity of MOF-
based carbon materials (Deng et al., 2020a). Similar to carbon
nanomaterials, conductive polymers present excellent electrical
conductivity, low cost, and ease of polymerization that are ideal
materials to overcome poor electrical conductivity of MOFs (Liu
et al., 2020). The introduced nonnatural polymers, such as new
functional groups, can significantly improve the structure and
properties of MOFs. Moreover, by integrating heme into MOFs,
the dimerization and oxidative self-destruction of heme are
improved, contributing to their optimum detection performance
and stability (Zhang et al., 2015).

In this review, advances of MOF-based catalysts in
electrochemical sensors are comprehensively summarized. Based
on the structure–activity–performance relationship of MOF-based
catalysts, we introduce the mechanism of MOF-based catalysts as
electrochemical sensors, including metal cations, synthetic ligands,
and structure. Then, the MOF-based composites are successively
divided into metal-based, carbon-based, and other MOF-based
composites. Furthermore, their application in environmental
monitoring, food safety control, and clinical diagnosis is
discussed. The perspective and challenges for advanced MOF-
based composites are proposed at the end of this contribution.

MECHANISM OF METAL–ORGANIC
FRAMEWORKS-BASED CATALYSTS IN
ELECTROCHEMICAL SENSOR
MOFs, with high porosity, biocompatibility, and superior specific
surface area, have been widely applied in catalysis, adsorption,
separation, and energy storage (Jiawen et al., 2019). The

mechanism of MOFs in electrochemical sensors is as follows:
1) Signal amplification: loading different functional materials and
signal molecules on MOFs is beneficial to the electrochemical
detection (Yi et al., 2016; Liu et al., 2020). 2) Catalysts and signal
probes: MOFs present periodic porous structure by coordination
of metal cations and organic ligands, which can induce rich catalytic
activity and redox activity centers, attributing to superior
electrochemical properties (Liu et al., 2018). 3) Size selection: the
macroporous structure of MOFs is helpful to easily introduce the
guest materials and perform the size selection of substance
molecules (Zhu and Xu, 2014; Zhang et al., 2019). 4) MOFs can
generate interaction forces with analytes (including Van der Waals
force, covalent bond, and p–p interaction), resulting in the improved
selectivity for electrochemical detection (Carrasco, 2018).

In this review, the mechanism of MOFs in catalysts and signal
probes, including the effects of catalytic active centers and redox
active centers on electrochemical sensors, is mainly discussed (Liu
et al., 2018). MOF materials with metal cations and ligands can
provide the desired active sites, which deserve high catalytic activity
for various detectionmolecules. In the electrochemical sensors, metal
ions can be used as charge carriers. The interaction between the
sensing material and target analyte is beneficial to enhance its
selectivity at room temperature (Li et al., 2021). Furthermore, the
active metal ions in MOF-based nanomaterials can be used as the
catalysts, which can improve the activity of the oxidation–reduction
reaction, resulting in the amplified electrochemical signals and the
improved sensitivity (Liu et al., 2018). Furthermore, themetal cations
in MOFs also act as coordination centers to form an infinite crystal
network. For example, common active metal nodes, such as Co, Cu,
Zn, and Cr, and their redox activity can enhance the catalytic ability
of MOFs (Liu et al., 2020). In addition, organic ligands with redox
activity are also attributed to the catalytic active sites of MOFs (Yang
et al., 2022). In general, the organic ligands for MOFs can be divided
into chemical ligands and biological ligands (Smaldone et al., 2010).
For instance, porphyrin, heme, and amino acids are common organic
ligands, which present affinity to metal cations and combine well
with them.

The superior structure of MOFs also plays an important effect
on the boosted electrochemical activity. Their flexible and highly
porous structure can be helpful to the easy diffusion of analyte
molecules, facilitating the interaction between the host and analyte
(Liao et al., 2018; Yang et al., 2022). Furthermore, MOFs, with a
porous structure and superior specific surface area, act as a good
carrier to form composite materials, resulting in the improved
electrochemical activity (Kitagawa et al., 2004; Cui et al., 2013;
WangC et al., 2018; Li D et al., 2019;WangY et al., 2020). Therefore,
regulating the structure of MOFs is an effective route to adjust its
composition and structure, leading to larger surface area, higher
porosity, and better electrochemical activity (He et al., 2021).

METAL–ORGANIC FRAMEWORK-BASED
COMPOSITES

MOFs, with the merits of diverse chemical combinations, rich
metal active sites, and adjustable structure, have attracted wide
attention (Li et al., 2020). However, the slow mass transfer, low
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conductivity, and instable structure of MOFs as catalysts limit
their practical application (Ma and Zhu, 2020). Various strategies
are adopted to improve the electrocatalytic behavior, mechanical
properties, and stability of MOFs. Designing MOF–metal,
MOF–carbon, and other MOF-based nanocomposites is an
effective strategy to induce MOFs with high porosity and
ordered crystal pores (Bradshaw et al., 2012; Moon et al.,
2013; Qiang et al., 2013; Falcaro et al., 2014; Li et al., 2016).

Metal–Organic Framework–Metal
Nanocomposites
Due to the limited pore size of MOFs, the size of synthesized
particles will be confined to nanoscale. Metal nanoparticles,
with the advantages of superior conductivity and high surface
area, can be used to increase the electron transfer rate (Ghaffari
et al., 2015; Da Silva et al., 2016). Generally, MOF–metal
nanocomposites present versatility, high stability, and
dispersibility. Therefore, MOF composite with metal particles
is an effective route to design the superior electrochemical
sensors (Meng et al., 2018).

The size and morphology of noble metal nanoparticles can
reduce the overpotential of oxidation and reduction, which can
effectively regulate the electrocatalytic properties (Azad and
Ganesan, 2010; Gupta and Ganesan, 2015; Sonkar and
Ganesan, 2015). Recently, grafting noble metal nanoparticles
on MOFs is widely applied as new electrode materials for
various electrochemical and biochemical sensors (Turner et al.,
2008; Sabo et al., 2007; Zhu et al., 2017; Mosleh et al., 2017). For
instance, a porous rhombic dodecahedron structure of Ag@
zeolitic imidazolate framework-67 is synthesized, which
presents a strong electrocatalytic activity and low detection
limit toward H2O2 reduction (Dong et al., 2019). Interestingly,
combined with photocatalytic technology and electrochemical
sensing, a novel synthetic method of Ag/MIL-160 hybrid is
developed to detect p-nitrophenol (Figure 1A) (Liu Q. et al.,
2019). The generated charge carrier in the Ag/MIL-160 organic
molecule initiates its photocatalytic functionality (Figure 1B), the
high sensitivity for pollutant reduction is dictated by the
photocatalytic activity of Ag nanoparticles, and selective
electron migration on the electrode interface (Figure 1C). In
another example, Ag/MIL-101 composite-modified GCE is
reported to be useful for monitoring tryptophan (Peng et al.,
2016). The existed p–p accumulation between the ligands of MOF
and tryptophan increases the diffusion of analyte molecules.
Furthermore, the electromagnetic field generated by the noble
metal nanoparticles promotes the accumulation of tryptophan
molecules on the surface of MIL-101 (Yang J et al., 2015).

Transition metals, such as Cu, Fe, Co, Ni, Zn, and Mg, present
the merits of low price and high efficiency; they have been widely
introduced to composites with MOF (Li et al., 2019; Hosseini
et al., 2016). For instance, Cu(II)-anchoredMOFs are constructed
as signal probes (Figure 1D) (Zhang et al., 2020). This prepared
composite presents an excellent glucose oxidation activity and
amplified electrochemical signal, which can be ascribed to the
oxidation of glucose by the generated Cu(III) from the oxidation
of Cu(II) (Figure 1E). Furthermore, ionic conductive

metal–organic framework sensor arrays act as charge carriers,
which can directly and selectively interact with analytes (Lu et al.,
2020). For example, a series of IC-MOF sensor arrays are
constructed by modulating various metal nodes (Cu, Co, Ni,
Zn, and Mg) and organic ligands (H2TCPP, H2THPP, and
H4BTEC) (Figure 1F) (Li et al., 2021). Due to the strong
interaction between H2S and Cu2+, the synthesized material
can generate CuS during the detection process, resulting in an
irreversible reaction, which can be adopted to detect volatile
sulfide (Figures 1G,H).

The bonding between two different metal cations can
increase electrical conductivity and improve the
electrocatalytic efficiency, which is ascribed to different
oxidation potentials and associated electron configurations
(Yang et al., 2018). Therefore, a unique synergistic effect
between two different metal elements is helpful in obtaining
higher stability and efficiency (Wen et al., 2015; Jiang et al.,
2018). Recently, bimetallic nanoparticles, including Fe, Co, Ni,
or Cu, with a cooperative effect have been developed to
optimize the performance of MOFs (Tang et al., 2016;
Wang Z. et al., 2018). For instance, Au@Cu MOF
nanomaterials with unique structures can effectively
increase the number of binding sites on the polymer
network, obtaining a more sensitive electrochemical sensor
(Hatamluyi et al., 2020). The advanced core–shell
heterostructure is introduced to fabricate composites by
encapsulating metal oxides or metal nanoparticles as a core
and MOFs as a shell (Paolo et al., 2016; Wengert et al., 2017;
Yang Q. et al., 2017). The metal oxides or metal nanoparticle
cores (e.g., magnetic, electrical, and catalytic properties, etc.)
act as a catalyst, and MOFs shells (e.g., multiple coordination
sites, ordered crystalline pores, structural adaptability
advantages, and flexibility, etc.) act as a recognition agent
for analog molecular sieves, may be combined. These advanced
structures can greatly improve their anti-aggregation stability
and avoid undesirable dissolution or corrosion in the
photocatalytic process, resulting in boosted catalytic and
adsorption properties (Liu and Tang, 2013;
Kempahanumakkagari et al., 2018). For instance, Fe-MOF@
Fe3O4@C core–shell nanostructured composite is composed of
iron-based MOF and mesoporous Fe3O4@C (Zhang et al.,
2017). Specific aptamer metal ions (e.g., Pb2+ and As3+) are
attached to the constructed nanocomposites by
supramolecular stacking and hydrogen bond interactions,
exhibiting good anti-interference characteristics and
detection of Pb2+ and As3+ ions in spiked river water.

Metal–Organic Framework–Carbon
Nanomaterial Composites
The weak electronic conductivity, electrical reactivity, and low
stability in aqueous media of MOFs limit their applications in
electrochemical sensors. To overcome these technical
shortcomings, they can be assembled with conductive
materials, such as graphene, carbon nanotubes, carbon blocks,
and carbon nanofibers, which are introduced to be assembled
with MOFs (Wang et al., 2017; Lai et al., 2019; Li Y et al., 2019;
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Zhou et al., 2020). Among which, graphene oxide/reduced
graphene oxides/carbon nanotubes as unique conductive
additives can improve the electrical conductivity and
mechanical strength of MOFs (Zhang et al., 2014; Liu et al., 2016).

The simplest way to improve the conductivity of MOF
materials is to mix them with highly conductive carbon paste
electrodes (Yang et al., 2014; Wang et al., 2013). The pore
structure of carbon paste electrode-modified MOFs composite
can allow the analyte to be pre-concentrated from the bulk
solution onto the electrode surface, which helps to improve
the selectivity of the analyte (Doménech et al., 2007). For
instance, Co-based metal–organic coordination polymer-
modified carbon paste electrodes are developed to analyze the
electrocatalytic performance of redox glutathione (Figure 2A)
(Yuan et al., 2014). This constructed composite exhibits excellent

electrocatalytic oxidation–reduction and high selectivity of
glutathione (Figures 2B,C). Furthermore, carbon paste
electrodes modified with MOFs can be used for the
electrocatalytic oxidation and detection of nitrite (Zhou et al.,
2014). The modified material demonstrates improved sensitivity
and selectivity. However, high background currents and
continuous use of the electrode material will lack stability and
reproducibility. Carbon nanotubes, with the advantages of the
high aspect ratio, large specific surface area, and good mechanical
properties and electrical properties, are widely used as electrode
materials (Chen and Dai, 2013). Single-walled carbon nanotubes
(SWCNTs) are covalently functionalized with benzoic acid and
transition metal ions, which can form a 3D porous
inorganic–organic hybrid framework, resulting in good
electrochemical performance and reproducibility. Therefore,

FIGURE 1 | (A) Synthetic process of Ag/MIL-160; (B) UV–vis diffuse reflectance spectra of prepared composites; (C) CV curves of different electrodes at a scan
rate of 50 mV s−1 in an electrolyte with p-NP. Reproduced with permission (Liu et al., 2019). Copyright 2019, ACS. Scanning electron microscope (SEM) image (D) and
DPV responses without and with 4 mM glucose (E) of Cu(II)-anchored MOFs. Reproduced with permission (Zhang et al., 2020). Copyright 2020, Elsevier. Scheme (F),
normalized capacitance response (G) of the Cu-TCPP IC-MOF sensor and (H) Cu-X IC-MOF sensors to 5 ppm H2S and 50 ppm CH3SH. Reproduced with
permission (Li et al., 2021). Copyright 2020, Wiley.
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SWCNT–MOF composite is an effective electrochemical sensor
material for organophosphorus pesticides.

Similarly, graphene is a well-known advanced two-
dimensional nanomaterial with advantages of large specific
surface area and ultrafast carrier mobility (Chen et al., 2013).
Therefore, MOF/graphene (or graphene oxide) composites have
been developed in various electrochemical sensing applications. A
copper-based MOF is proposed by combining with graphene for
electrochemical sensing of H2O2 and ascorbic acid (Yang T et al.,
2015). Due to the hydrogen bond between Cu-MOF and
graphene, p-p stacking, and Cu-O coordination, the
synthesized nanocomposites exhibit high stability and good
anti-interference properties detect H2O2 and ascorbic acid in
various carbohydrates. Furthermore, rGO can be introduced to
the composite with MOF for detection of nitrite 1 (Figure 2D)
(Saraf et al., 2016). rGO can greatly improve the conductivity of

MOF in the composite. The positive synergistic effects exist
between Cu-MOF crystals and rGO nanosheets (Figure 2E),
and these can be attributed to the improved electrocatalytic
performance of the prepared electrochemical sensor electrode
(Figure 2F).

In general, nitrogen-doped graphene can present more defect
sites and lower aggregation of graphene sheets, which is beneficial
to increase the biocompatibility of graphene sheets and
functionalize easily with noble metal nanoparticles (Chen
et al., 2016). A signal amplification strategy is developed to
construct AuNPs-functionalized nitrogen-doped graphene as
capture probes, and PdNPs@Fe-MOFs as nanocarriers
(Figures 2G,H) (Li et al., 2018). This assembled structure can
initiate the next reaction process, which induces numerous tracer
indicators anchored onto the sensing interfaces, contributing to
the superior specificity and recovery in spiked serum samples. In

FIGURE 2 | (A) Illustration of the structure of metal–organic coordination polymers with 1,3,5-tris (1-imidazolyl) benzene and transition element Co2+ (Co-MOCP),
CVs (B), and interference test (C) of the Co-MOCP/carbon paste electrode in the different solution. Reproduced with permission (Yuan et al., 2014). Copyright 2014,
Elsevier. Schematic structure (D), transmission electron microscope (TEM) images (E), and CV curves at different nitrite concentrations (F) of the Cu-MOF/rGO hybrid.
Reproduced with permission (Saraf et al., 2016). Copyright 2016, RSC. (G) Synthetic route of different composites; (H) field emission scanning electron
microscope image of PdNPs@Fe-MOFs. Reproduced with permission (Li et al., 2018). Copyright 2018, Elsevier.
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addition, black phosphorus can bind with antibodies and enhance
electron transfer; thus, the black phosphorus electrochemical
sensor based on magnetic covalent organic frameworks is
developed to detect prostate-specific antigens, which can be
widely applied in detecting biomarkers of cancer (Pandey
et al., 2021).

Other Metal–Organic Framework-Based
Composites
Similar to carbon nanomaterials, conductive polymers present
excellent electrical conductivity, low cost, and ease of
polymerization that are ideal materials to overcome poor
electrical conductivity of MOFs (Liu et al., 2020; Deng et al.,
2020b). For instance, MOF–polyaniline composite (UiO-66-
NH2@PANI) was synthesized by polymerizing a conductive
PANI in the presence of pre-synthesized UiO-66-NH2 (Wang

et al., 2017). The composite exhibited excellent electrochemical
redox performance of Cd2+ ions, which is related to the
synergistic effect between UiO-66-NH2 and PANI (Figures
3A–C). Furthermore, the large surface area and the existing
chelating groups in MOF increase the number of conduction
paths and increase the electron transfer rate between the solution
and the composite electrode surface. The introduced nonnatural
polymers, such as new functional groups, can significantly
improve the structure and properties of MOFs. MIL-53(Fe), a
flexible material consisting of iron oxides and phthalate, is
functionalized by polymethyl methacrylate and can be used to
make electrochemical sensor materials for detecting melamine in
milk samples (Yang Z et al., 2021). In addition, MOFs have the
merits of abundant pores, large surface area, and good
biocompatibility, which can effectively prevent the aggregation
and leakage of enzymes and improve the biological activity and
stability of enzymes (Liu et al., 2020). Therefore, MOFs are

FIGURE 3 | TEM images (A), CV in 0.1 mol L−1 KCl solution with 1 mmol L−1 Fe(CN)6
3−/4− at different scan rates (B), and differential pulse voltammograms of

100 μg L−1 Cd(ii) (C) of prepared UiO-66-NH2@PANI. Reproduced with permission (Wang et al., 2017). Copyright 2017, RSC. (D) Schematic representation of the route
and coordinatively unsaturated grafted MIL-100(Fe); (E) comparison of the peroxidase-mimic activity of different samples; (F) time-dependent fluorescence intensities.
Reproduced with permission (Valekar et al., 2018). Copyright 2018, Elsevier.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8811726

Chen et al. MOFs-Based Catalysts in Electrochemical Sensors

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


usually used to immobilize enzyme and other
biomacromolecules.

Heme is a famous natural metalloporphyrin, which acts as the
active center of hemoglobin. Due to the reversible conversion of
Fe(III)/Fe(II), heme presents significant peroxidase-like catalytic
activity (Reuillard et al., 2017). However, its catalytic life is limited
due to dimerization and oxidative self-destruction in the aqueous
medium (Li et al., 2018). Anchoring hemin on a suitable carrier
material is an effective strategy to remedy these shortcomings
(Wang et al., 2016). MOFs with a regular porous structure are
ideal candidates for hemin fixation (Zhang et al., 2015). By
integrating heme into MOFs, the dimerization and oxidative
self-destruction of heme are improved, contributing to the
optimum catalytic performance and chemical stability of
MOFs. For instance, a novel amine-grafted MOFs is designed
as a promising alternative to peroxidase enzyme (Figure 3D)
(Valekar et al., 2018). The synergetic effect of the enhanced
negative potential and tuned molecular size of the grafted
diamine are attributed to the improved fluorescent assay of
choline and acetylcholine, which effectively detect choline and
acetylcholine levels in real samples of milk and serum
(Figures 3E,F).

APPLICATION OF METAL–ORGANIC
FRAMEWORK-BASED CATALYSTS IN
ELECTROCHEMICAL SENSORS
Environmental Monitoring
With rapid urbanization and industrialization, the ecological
environment is suffering from serious damage (He et al.,
2021). Developing satisfactory electrochemical sensors is an
effective route to detect harmful chemicals, especially the
detection of toxic gases with low concentrations and heavy
metal ions in water (Dorda et al., 2003; Aslam et al., 2014;
Zhang et al., 2017). MOF-based composites can be used to
transform harmful chemicals in air and water into
electrochemistry as fine-sensing materials. However, the
formation of MOF inorganic clusters is highly dependent on
the geometry, length, and connectivity of building organic linkers
(Bai et al., 2016; Cho et al., 2019). Therefore, expanding the
diversity and properties of MOFs is critical to their applications in
environmental monitoring.

For instance, a layered porous Cu–benzene-1,3,5-tricarboxylic
acid MOF is constructed for the glyphosate detection (Cao et al.,
2019). The response current of the synthetic material is
significantly increased, which can be ascribed to the strong
affinity between chelate groups on the glyphosate with Cu2+.
In another example, gold-modified MoS2/rGO and AuPd@Fe-
MOFs are constructed as an electrochemical adapter sensor for
detecting Pb2+ (Wang Z et al., 2020). The combination of catalytic
chain and base complementary is contributed to the improved
detection performance. Interestingly, the hinge-like organic
ligand is obtained by the desymmetrization strategy (Feng
et al., 2019). MOF materials are modified at the molecular
level, which can realize the coexistence of acidic sites and
alkaline sites in the material. This synthetic mesoporous

composite with a functional structure is beneficial to the
transformation of cascade catalytic, achieving high activity of a
two-step efficient series catalytic reaction (Figure 4A).

MOF-based composites with the merits of excellent gas
adsorption/separation capability can be adopted as electrically
transduced gas sensors (Yao et al., 2021). Integrating MOFs onto
capacitive sensors based on interdigitated electrode chips is an
effective route to improve their detection performance. For
example, an in situ growth strategy is adopted to synthesize
fumarate-based fcu-MOF thin film on an interdigitated
electrode (Figure 4B). This constructed sensor presents a
remarkable detection sensitivity (down to 100 ppb) and lower
detection limit (around 5 ppb) for H2S (Figure 4C).
Furthermore, the Langmuir–Blodgett method is used to
deposit MIL-96(Al) MOF thin films on the interdigitated
electrode chips (Figure 4D) (Andrés et al., 2020). These
prepared films achieve superior selective and short response/
recovery for water and methanol (Figure 4E), which can be also
extended to the detection of methanol, toluene, and
chloroform, etc.

Food Safety Control
Electrochemical (biological) sensors are one of the most sensitive,
simple, and selective chemical sensors, which have been widely
used in rapid and reliable food safety control (Otles and Yalcin,
2012). MOFs, with the merits of uniform structures, ultrahigh
porosity, and tunable composition, act as the promising sensor
for food safety control. Nevertheless, the reuse and long-term
storage of electrochemical sensormaterials fabricated fromMOFs
in complex sample matrices remain a challenge. Inexpensive
microbial sensors are designed for single use to avoid
degradation of biosensor elements in complex matrices (Semih
Otles, 2012).

In a recent study, Pt nanoparticles were decorated on a glassy
carbon electrodes-modified Fe-based MOFs, and this designed
MOF-based composites acted as a sensitive label-free
electrochemical aptasensor to detect aflatoxin M1 (Figure 5A)
(Jahangiri-Dehaghani et al., 2020). The fabricated aptasensor was
successfully applied to measure AFM1 concentration in powder
and pasteurized milk samples. Furthermore, molecularly
imprinted mMOFs was synthesized by layer–layer
modification to detect turtotomycin (Li et al., 2021). The
magnetic pole in molecularly imprinted mMOFs is beneficial
to form an electrochemical sensing interface, and its imprinted
cavity can serve as electronic channels for probes for label-free
detection of over-the-counter drugs.

In general, when food with packaging is stored for a long time,
foodborne pathogen infection will occur, resulting in many
health-related problems (Jahangiri-Dehaghani et al., 2020).
This MOF-based luminescent sensor can be adopted to detect
these foodborne pathogens. For instance, a fluorescent MOF
[NH2-MIL-53(Fe)] with a target-specific bacteriophage was
synthesized for the detection of Staphylococcus aureus
(Figure 5B) (Bhardwaj et al., 2017). The advanced structure of
MOF can offer a precise control on particle size distribution
(Figures 5C,D), which is helpful to construct a better structural
compatibility with bacteriophages, contributing to the high
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FIGURE 4 | (A) One-pot tandem reaction of benzaldehyde dimethylacetal and malononitrile by bifunctional mesoporous catalyst. Reproduced with permission
(Feng et al., 2019). Copyright 2019, Wiley. (B) Schematic of the prepared approach of the fumarate-based fcu-MOF; (C) detection of H2S with concentrations of
1–100 ppm. Reproduced with permission (Yassine et al., 2016). Copyright 2016, Wiley. (D) Illustration of the structure of the used IDEs showing the MOF LB film
characterization by SEM; (E) normalized capacitive response of IDEs to water and methanol. Reproduced with permission (Andrés et al., 2020). Copyright
2020, ACS.
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stability, specificity, reusability, and wider linear range of the
bacteriophage sensor (Figure 5E). In addition, CeO2/CuOx@MC
nanocomposite is introduced as a carrier to detect the
microtobramycin in milk (Cheng et al., 2021). The
combination of different materials presents a strong biological
affinity for the adaptor chain, contributing to a wide linear range
and low detection limit of tobramycin.

Clinical Diagnosis
MOF materials, with the advantages of selective composition,
adjustable pore size, and large surface area are widely used as

electrochemical sensor materials in biomedical fields, including
cancer diagnosis (e.g., cancer markers, microRNA, and live
cancer cells) and glucose detection (Chen et al., 2013; Qin
et al., 2016; Xie et al., 2018; Petrosillo et al., 2020).
Nevertheless, it is difficult to construct the nanoparticles and
active biomolecules in the same MOF-based structure. Recently,
many strategies, such as functional MOFs and combination with
bionic enzyme, as well as utilization of biosensing and molecular
recognition technology, have been developed to improve the
photoelectric and catalytic properties of MOF materials (Liao
et al., 2017; Shen et al., 2018).

FIGURE 5 | (A) Schematic diagram for the preparation schematic diagram and electrochemical test of PtNP/MIL-101(Fe). Reproduced with permission (Jahangiri-
Dehaghani et al., 2020). Copyright 2020, Elsevier. (B) Schematic of NH2-MIL53(Fe)-bacteriophage biosensor; TEM image of (C) NH2-MIL-53 MOF and (D)
bacteriophage-loaded NH2-MIL-53 MOF; (E) specificity of the proposed biosensor. Reproduced with permission (Bhardwaj et al., 2017). Copyright 2017, ACS.
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For instance, a multifunctional homologous MOF hybrid
material is designed with enhanced therapeutic effect on
hypoxic tumor cells by the in situ growth method (Liu et al.,
2019). Black phosphorus quantum dots and catalase were
precisely assembled into the inner and outer layers of a
layered MOF to form a multifunctional MOF heterostructure

(Figure 6A). This advanced heterostructure converts excess H2O2

into O2 by catalase wrapped in its outer shell, improving the
hypoxic microenvironment of tumor cells (Figure 6B). An
innovative MOF-on-MOF method is adopted to construct Zn-
MOF-on-Zr-MOF composite for detecting protein tyrosine
kinase-7 (Nan et al., 2019). The synthetic Zn-MOF-on-Zr-

FIGURE 6 | (A) Assemble process of synthetic material and its mechanism against hypoxic tumor cells; (B) immunohistochemistry and immunofluorescence
staining of HIF-1α in tumor slices of different composites. Reproduced with permission (Liu et al., 2019). Copyright 2019, Wiley. (C) Fabrication process of the biosensor
and the target-catalyzed hairpin assembly for target recycle; amperometric curves (D) of the proposed biosensor incubated with different concentrations of miR-122
containing 1 mM 3,3′,5,5′-tetramethylbenzidine and 20 μM H2O2. Reproduced with permission (Li et al., 2018). Copyright 2018, Elsevier. (E) Structures of the
constructed material; CV curves (F) and amperometric response (G) of the constructed material with varied glucose concentrations. Reproduced with permission (Zhou
et al., 2020). Copyright 2020, ACS.
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MOF composite presents hierarchical cross leaves and multilayer
nanosheet structures, which demonstrate excellent sensing
capabilities for the detection of protein tyrosine kinase-7. This
improved performance is mainly ascribed to the presence of Zr-
MOF, which significantly facilitates aptamer fixation and
stabilizes the formed G-tetrexes, providing a new avenue for
the application of bimetallic MOFs in the early cancer diagnosis.
Interestingly, multifunctional iron-based MOFs, with the
advantages of superior peroxidase-like activity, are developed
as a sandwich-type biosensor (Figure 6C) (Li et al., 2018). The
biosensor demonstrates a low detection limit (0.003 fM) and wide
detection range (0.01 fM to 10 p.m.) for detecting miR-122 in
human serum (Figure 6D). This strategy can be adopted to detect
drug-induced liver injury at an early stage.

Recently, commercial glucose sensors are mainly based on
glucose oxidase-assisted electrooxidation. In order to avoid
low reproducibility, complex immobilized enzyme process,
and decreased enzyme activity of commercial glucose
sensors, based on the direct electrocatalysis of electrode
materials, the application of MOFs in nonenzymatic sensors
has been designed and developed (Burke and Gorodetsky,
2012). Nevertheless, the existing small detection range, low
sensitivity, and poor stability of MOFs in nonenzymatic
glucose electrochemical sensors limit their commercial
application (Al-Zoubi et al., 2020). Therefore, it is vital to
develop MOF-based composites with good stability and high
activity for glucose detection. For example, the Au/Cu MOFs
coupled with a capture probe and a convertase form a
bioconjugate (Liu et al., 2020). This modified electrode is
incubated in sucrose solution, which can effectively detect
glucose. Furthermore, coordinating metals with the

functional tetrathiafulvalene core is an insightful route to
modulate the catalytic performance of MOF-based
composites. For instance, nickel bis(dithiolene-dibenzoic
acid) as a redox-active linker is constructed for functional
MOFs (Figure 6E) (Zhou et al., 2020). This synthetic
composite presents high sensitivity, wide detection range,
and low detection limit for the detection of glucose
(Figures 6F,G), which is ascribed to the oxidation of
glucolactone by several reversible and stable oxidation states
of nickel bis(dithiolene) compounds.

PERSPECTIVE AND PROSPECT

Developing efficient catalysts is vital for the application of
electrochemical sensors. MOFs, with high porosity, large specific
surface area, good conductivity, and biocompatibility, have been
widely used in catalysis, adsorption, separation, and energy storage
applications. In this review, based on the
structure–activity–performance relationship of MOF-based
catalysts, the mechanism of MOF-based catalysts as
electrochemical sensors, including metal cations, synthetic ligands,
and structure, is introduced. Then, the MOF-based composites are
successively divided into metal-based, carbon-based, and other
MOF-based composites. Furthermore, their application in
environmental monitoring, food safety control, and clinical
diagnosis is discussed (Figure 7). Recently, many efforts have
been devoted to constructing high efficiency MOF-based
catalysts. However, there still exist some challenges to achieve
superior MOF-based catalysts for electrochemical sensors.

First, MOF materials with an excellent redox and catalytic
activity in electrochemical sensors are still an urgent need. Due to
the large surface area of MOFs, the nonspecific adsorption of
coexisting substances will occur in the complex matrix, which will
negatively affect the sensing performance. The fine regulation of
the pore structure of MOFs can provide precision for the selective
adsorption of the target. Furthermore, most MOFs with weak
mechanical properties are unstable in water. Surface modification
can be adopted to hydrophobic materials or introduce surface
functional groups, which is a good method to improve the
stability of MOFs in water.

Second, MOF-based catalysts for peroxidase-like enzymes have
much lower catalytic activity than natural enzymes. Construction of
MOF-based catalysts with higher surface area and richer active sites
can alleviate this problem. Furthermore, the catalytic activity of
MOFs can also be improved by reasonable selection of multivalent
ligands and metal nodes. The weak binding force between the target
analyte andMOFs affects the detection sensitivity. Surface functional
group modification is an effective strategy to provide stronger
binding sites for the adsorption of the target analyte. In addition
to carbonizing MOFs and introducing highly conductive species to
the host MOFs, in situ or posttreatment of doped conductive
impurities to MOFs is an alternative to improve their
conductivity, resulting in the improved performance.

In addition, during the synthetic and detection process,
developing advanced observation techniques will be helpful to
understand the structure–activity–performance relationship of

FIGURE 7 | Mechanism and application of MOF-based catalysts as
electrochemical sensors.
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MOF-based catalysts for electrochemical sensors. Moreover, the
electrochemical sensors based on MOF catalysts still have
limitations under laboratory conditions. Further research on
MOF-based catalysts is needed to improve their electrochemical
properties and pave the way for further application. With the
development of nanoscience and biotechnology, it is believed that
MOF-based electrochemical sensors will bring a broader development
prospect in environmental, food safety, and clinical aspects.
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