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Abstract

We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models
that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of
the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample
specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively
to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict
the pathological complete response (pCR) of patients borrowing strength across the genomic platforms. Posterior inference
is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of
121 breast cancer patients.
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Introduction

Biological Background
Copy number and arrayCGH. Human beings have two

copies of each gene, defined as a segment of DNA. The normal

copy number of a gene is therefore two. Copy number aberration

(CNA) refers to cytogenetic events in which the DNA replication

process is disrupted such that the gene either is replicated multiple

times (copy number gains) or loses one or both copies (copy

number loss) in newly generated cells. Comparative Genomic

Hybridization (CGH) has emerged as a dominant technique for

detecting CNA [1], especially when combined with microarrays.

The resulting arrayCGH techniques [2], [3], [4] and [5] measure

thousands or millions of genomic targets or ‘‘probes’’ that are

spotted or printed on a glass surface. These probes usually span the

whole genome with a resolution of the order ranging from 1 MB

(one million base pairs) for BAC (bacterial artificial chromosome),

to 50–100 kb (kilo base pairs) for more recent microarrays. In an

arrayCGH experiment, a DNA test sample of interest is labeled

with a dye (say Cy3) and then mixed with a diploid reference sample

labeled with a different dye (say Cy5). The combined sample is

then hybridized to the microarrays and intensities of both colors

are measured through an imaging process. The quantity of interest

is the log2 ratio of the two intensities for each color. The

collection of the intensity ratios then provide useful information

about genome-wide changes in copy numbers between the two

samples. Since the reference sample is presumed to be diploid, the

intensity ratio is determined by the copy number of the DNA in

the test sample. If the copy number of the test sample is also two,

then the theoretical log2 intensity ratio equals zero. If there is a

single copy loss in the test sample, the theoretical ratio is

log2 1=2~{1 assuming all the cells in the test sample lost one

copy of the DNA fragment. If there is a single copy gain, the

theoretical ratio is log2 3=2~0:58: Multiple copy gains are called

amplifications, and the corresponding theoretical intensity ratios are

log2 4=2 , log2 5=2 , etc. When both copies are lost, the

theoretical ratio is {? and a large negative value is usually

observed in experiments.

Integration of DNA copy number and RNA

expression. Expression microarrays measure RNA expression

which, by the central dogma of molecular biology, are resulted

from the transcription of DNAs. Microarray technology for

measuring RNA gene expression has been well known to the

statistical community, and its review is omitted here. Naturally, we

are prone to think that CNAs impact the intensities of the relative

RNA expressions in that more copies of DNA should lead to

higher levels of RNA expression. It is therefore of great interest to

study the intensity of such interaction, if there is any, between

aCGH and RNA expression measurements on different genes.

Gene expression and copy number variation data have been

broadly studied, to assess differential expression of genes [6] and to

find segments along the DNA that show CNAs [7], [8]. Statistical

and computational models for integrating different types of data

are becoming a popular topic in the recent literature, even though
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only few considered full model-based approaches. [9] was among

the earliest to investigate the direct association between the two

types of data in breast cancer cell lines and tissue samples, and

their approach was based mainly on descriptive statistics. Van

Wieringen and Van de Wiel [10], attempting to mitigate the high

noise in the raw expression measurements of the DNA and RNAs,

proposed a sampling model for RNA expression incorporating

estimated probabilities of corresponding CNAs. They subsequent-

ly developed nonparametric adaptive tests to study whether the

estimated copy number variations in the DNA level would induce

differential gene expression at the RNA level. More recently [11]

presented a double-layered mixture model (DLLM ) that directly

modeled segmental patterns in the copy number data to produce

CNA profiles, and simultaneously scored the association between

copy number and gene expression data. The DLMM assigned

high scores to elevated or reduced expression measurement only if

the expression changes are observed consistently across samples

with copy number aberration.

An important biological premise to the description of the model

is that by integrating DNA copy number and RNA expression

data, we will gain more knowledge about the underlying biological

process. For example, a high or low correlation between a copy

number aberration (CNA) for a gene marker and its abnormal

RNA expression would indicate different carcinogenic mechanism

and therefore different treatment selections [12] [13].

We describe a Bayesian Mixture Model that converts the noisy

raw intensity measurement of the DNA and RNAs into probability

of expression, which are subsequently modeled as latent param-

eters. Thus the integration of the two platforms is realized by joint

modeling the probabilities of expression through a probit

regression. Our aim, however, is not only to evaluate the relative

contribution of large genetic variants such as CNAs, to gene

expression but also make inference using both differential

expression of the genes and differential copy number variations

of the same set of genes. Moreover our full model-based approach

allows us, after new information on the patients in the study are

acquired, to exploit the latent integrated structure of our model

and achieve better predictive performances for the clinical

outcome of new patients coming into the study.

In the next paragraph we present a motivating example with

matched arrayCGH and microarray samples from breast cancer

patients. In the materials and methods section we introduce

probability models with a particular focus on the probit regression

that allows for integration of both platforms, along with some

simulation studies. Thus, in the result section, the focus is on

posterior inference of the interaction between the two platforms,

differential behaviour, which takes into account both differential gene

expression and differential CNA, and prediction of the pCR of

patients after treatment. A final remark is provided in the

discussion section.

Motivating Example

We consider data in breast cancer consisting of 121 patients

from three disease subgroups, ER+, HER2+, and triple negative

(TN). ER+ patients have present estrogen receptors – a protein

related to hormone and regulation of gene expression – in their

cancer cells. HER2+ patients are instead those whose tumor cells

test positive for a protein called human epidermal growth factor

receptor 2. Finally TN patients lack three ‘‘receptors’’ in their

cancer cells: ER, HER2, and progesterone receptors. ER+ and

HER2+ patients were therefore collapsed in the same group, in

order to compare TN patients versus others.

On a slightly reduced set of 116 patients we have a measure,

formalized as a dichotomous variable, on their positive or negative

pCR to treatment. Numerosities are specified in the table 1.

The mRNA expression data was obtained with Affymetrix

U133A gene chips. The data was normalized with MAS5

algorithm, scaled to target intensity of 600 and log2 transformed.

The expression profiles of the cancers are available at GEO

accession number GSE22093 [14]. The DNA copy number data

was generated with Agilent 4x44K CGH arrays, processed as log2

ratios of the intensities of the two colors, and is available at

ArrayExpress accession number E-TABM-584.

ArrayCGH and microarray RNA experiments have been

performed using the 121 breast samples to obtain the copy

number data on 22,944 probes and RNA expression data for

11,306 genes. We then mapped 22,944 probes to the 11,306

genes, which gave us a matching between the probe ids on the

aCGH and the gene ids on the microarrays.

Materials and Methods

Ethics Statement
All the research used public data, published in 2009 in the

following paper: ‘‘Molecular characterization of breast cancer with

high-resolution oligonucleotide comparative genomic hybridiza-

tion array’’ written by Andre F. et al. and published in Clinical

Cancer Research [14].

Sampling model for w and y
On arrayCGH, the experimental unit is probe b belonging to

gene g. On RNA microarray, the experimental unit is gene g.

Denote wbt the log2 intensity ratio for probe b at sample t, and

ygt the RNA expression level for gene g at sample t, b~1,:::B
g~1,:::,G, and t~1,:::T : Denoting fb [ gg the set of

arrayCGH probes corresponding to gene g, the matched copy

number and RNA expression data for sample t is then

f(wbt)b[g, ygtg:

We propose mixture models for w and y and introduce latent

variables representing the differential expression status of the DNA

and RNA, respectively. We then integrate the two models by

constructing a prior probit regression linking the latent variables

from both platforms.

We use a mixture model [15] to introduce trinary latent

indicator variables for the CNA state for each probe and the

differential expression (DE) state for each gene. Specifically, let ew
bt

take values in the set f{1,0:1g , respectively corresponding to the

copy-loss (v2 copy number), copy-neutral (~2 copy number),

and copy-gain (w2 copy number) states and e
y
gt take values in the

Table 1. Contingency table to classify patients with respect
to subgroup of breast cancer and pathological complete
response.

Triple Negative
Positive to ER,
HER2 or both TOT

Positive pCR 20 11 31

No pCR 33 52 85

Missing 3 2 5

TOT 56 65 121

doi:10.1371/journal.pone.0068071.t001
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set f{1,0:1g , respectively corresponding to the under-, normal-,

and over-expression states. Conditional on ew
bt and e

y
gt , the

sampling models for copy number log2 ratios wbt and for gene

expression ygt are given by

fw(wbtDew
bt)~d

U({w{
b ,0) if ew

bt~{1

N(0,n2
b) if ew

bt~0

U(0,wz
b ) if ew

bt~1

8>>><
>>>:

ð1Þ

fy(ygt{mg{atDe
y
gt)~d

U({y{
g ,0) if e

y
gt~{1

N(0,s2
g) if e

y
gt~0

U(0,yz
g ) if e

y
gt~1

8>>>><
>>>>:

ð2Þ

In (2), the mixture model for gene expression data ygt includes a

gene effect mg and a sample effect at . This is not the case in the

mixture model for aCGH data wbt . The main reason is because

wbt is already a log ratio between the cancer sample copy number

and the reference sample copy number and therefore the

Figure 1. Graphical representation of the model for assessment of gene differential behaviour (A) and the prediction model (B).
Boxes refer to variables in the model, where latent variables are represented by dotted line boxes. Circles refere to parameters, where the red ones
are the indicators used for posterior inference.
doi:10.1371/journal.pone.0068071.g001
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corresponding effects should have canceled out by taking the ratio.

The sampling model is indexed by n2
b and s2

g representing normal

ranges of variability in the observed measurements wbt and ygt .

The parameters w
z={
b and yz={

g define the tail overdispersion

with respect to normality, associated with copy losses or gains for

aCGH and under- or over-expression for microarrays.

Latent probit scores and probit regression
Anticipating the integration of both platforms using a regression

model, we further introduce latent Gaussian variables zw
bt and z

y
gt

to define a probit scores for the trinary indicators ew
bt and e

y
gt .

Specifically, define

ew
bt~

{1 if zw
btv{1

0 if {1ƒzw
btƒ1

1 if zw
btw1

8>>><
>>>:

and e
y
gt~

{1 if z
y
gtv{1

0 if {1ƒz
y
gtƒ1

1 if z
y
gtw1

8>>><
>>>:

ð3Þ

Before we introduce the probit regression for integration, we

present a prior for zw
bt that allows for inference of different CNAs

across different conditions, in our case of breast cancer data,

different subtypes of breast cancer. Let xt is a clinical categorical

covariate indicating which subgroups the patient belongs to, we

assume that

zw
btDz

w
b*N(zw

b zxtcdw
g

,s2
a)

where fxt~jg,j~1,0 respectively if the patient belongs to TN

subgroup or not, zw
b , a probe-specific mean, describes a baseline

CNA status (e.g., a reference subtype) and dw
g a trinary indicator

accounting for differential CNA in the two subtypes, following a

prior distribution given by

dw
g ~

{1 with prob: 0:2

0 with prob: 0:6

1 with prob: 0:2

8>>><
>>>:

The integration of the two platforms is easily done using the

latent probit scores and a linear model. First, we introduce a gene-

level score for the aCGH data, defined as zw
gt~

1

mg

X
b[g

zbt:

Keeping in mind that there is a natural biological causal

relationship between DNA copy number change and altered gene

expression for the corresponding RNAs, we assume that

z
y
gtDz

w
gt*N(agzxtcd

y
g
zzw

gtld
yw
g

,t2
1),

where xt is the clinical binary covariate mentioned above, while

dy
g and dyw

g trinary indicators accounting respectively for

differential gene expression in TN subgroup and interaction

between the two measurement for gene g , following similar prior

to the one mentioned above for dw
g .

Markov dependence across probes. A Markov depen-

dence is assumed across the probes and it is defined in the

following conditional prior on the probe specific effect. Define

zw~(zw
1 ,:::,zw

B): Assuming that the index b is ordered according to

Figure 2. Posterior probabilities of positive interaction between the two platforms (A), differential CNA (B) and differential joint
behaviour (C) after simulation 2. The red dots highlight posterior probabilities of genes which are claimed by the model to show respectively
positive interaction between the two platforms, differential CNA and differential joint behaviour.
doi:10.1371/journal.pone.0068071.g002

(3)
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Figure 3. Posterior probabilities of differential CNA (on the x-axis) and differential expression (y-axis) obtained respectively
through the marginal models on CNA data and gene expression data (A). Black dots highlight posterior probabilities of genes which are
claimed by the model to show joint differential behaviour (A). Comparison between differences in means of the gene expression data and posterior

Bayesian Models and Integration Genomic Platforms
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locus proximity on the chromosome, the dependence across

adjacent probes is described as follows. Let z1*N(0,1) and

zw
b Dzb{1

w,bb{1*N(bb{1zw
b{1,t2)

for b [ f2,:::,Bg: In this formulation the parameters

b~(b1,:::,bb{1) can be directly interpreted as partial correlation

coefficients, defining the strength of dependence between log2

ratios associated with probes that are adjacent on the chromo-

some.

Priors. The last step is the specification of the priors for the

set of parameters that index the sampling model. We assume

conditionally conjugate priors. Denoting G(a,b) a gamma

distribution with mean ab, we assume

n{2
b *G(an,bn),

1

w
z={
b

*G(a
wz={ ,b

wz={ ),

s{2
a *G(as,bs):

Particular attention is given to the formulation of the prior for

cdw
g

where

cdw
g
*

N({k1,s2
1) if dw

g ~{1

N(0,s2
2) if dw

g ~0

N(k1,s2
1) if dw

g ~1

8>>>><
>>>>:

with s1 much larger than s2 and k1 fixed at 1. The prior for b ’s

is given by

bb*N(
ffiffiffiffiffiffiffiffiffiffiffiffi
1{t2
p

,s2)

for b [ f1,2,:::,B{1g , with t2
v1 so that the marginal variance

of zb ’s is bounded above. Note that this model assumes that

adjacent probes are equally correlated, characterized by b ’s and

t2. Alternatively, one could model the correlation between probes

as a function of their genomics distances, and this can be easily

achieved by modeling bb{1 as a distance between probes b and

b{1, for example. Finally we assume conditionally conjugate

priors for the gene and slide specific effects

mg*N(hm,s2
m),

at*N(0,s2
a),

subject to
X

at~0 . Finally, the normal range of variability in

mRNA expression

s{2
g *G(as,bs),

the tail over-dispersion parameters

1

yz={
g

*G(a
yz={ ,b

yz={ ),

and the regression parameters

ag*N(0:1),

l
d

yw
g
*

N({k2,s2
1) if dyw

g ~{1

N(0,s2
2) if dyw

g ~0

N(k2,s2
1) if dyw

g ~1

8>>>><
>>>>:

,

c
d

y
g
*

N({k3,s2
1) if dy

g~{1

N(0,s2
2) if dy

g~0

N(k3,s2
1) if dy

g~1

8>>>><
>>>>:

with the same assumptions on s2
1 , s2

2 and k2 , k3 fixed at 1.

A summary of the model is given in the upper part of Figure 1.

Modified Probability Model for the prediction of pCR
The idea of this section raises from the question of whether or

not we could use the same latent structure underneath gene

expression and copy number variation data to make inference on a

clinical outcome of new patients in the study, in particular ut , the

pCR of patients to treatment.

The chosen approach is to state a model for ygt and wbt,

p(wbt,ygtDh) , and to assume a Bernoulli distribution for ut. This

leads us to the sought model p(utDwbt,ygt) and posterior

probabilities of ut being 1 give us a measure for the prediction

of the outcome of the new patient.

The advantages of our model with respect to, for example, a

simple logistic regression p(utDygt,wbt) are mainly the noise

probability of differential expression (B). Comparison between sample correlations and posterior probabilities of positive interaction between
platforms (C).
doi:10.1371/journal.pone.0068071.g003

Table 2. Numerosities in the training set and test set.

Training sample Test sample TOT

Positive pCR 20 11 31

No pCR 74 11 85

TOT 94 22 116

doi:10.1371/journal.pone.0068071.t002
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reduction achieved through the assumption of a latent structure

underneath our data, i.e. the latent POE scores for gene expression

and the natural variable selection allowed within the model itself;

indicators dwu
g and dyu

g in equation (4) and (5) (with Bernoulli

priors with probability 1{p and p very close to 1) allow for a

reduction of the number of covariates (genes) and avoid the

problem of overestimation.

In summary, as a new patient comes into a study and we have

measurements of his gene expression and copy number variation,

we run the model p(wbt,ygtDh) and assume for his clinical outcome

ut a Bernoulli distribution with probability p . Through MCMC

methods we obtain updated posterior probabilities of ut being 1

that give us a measure for the prediction of his outcome.

In this particular case the outcome refers to the pCR to the

Figure 4. Histograms of the posterior probabilities of positive pCR in the integrated model (A) and in the marginal models,
respectively on gene expression (B) and CNA data (C).
doi:10.1371/journal.pone.0068071.g004

Figure 5. Comparison between ROC curves obtained with the
marginal and integrated model.
doi:10.1371/journal.pone.0068071.g005

Figure 6. Comparison between ROC curves obtained with the
LASSO logistic regression, respectively using single or joint
platforms.
doi:10.1371/journal.pone.0068071.g006
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treatment of patients in a breast cancer study, which is defined as a

complete disappearance of the tumor with no more than a few

scattered tumor cells detected by the pathologist in the resection

specimen [16].

As before we use a mixture model (equations 1 and 2) [15] to

introduce a trinary latent indicator variables for the CNA state for

each probe and the expression level state for each gene, and latent

Gaussian variables zw
bt and z

y
gt to define a probit scores for the

trinary indicators ew
bt and e

y
gt (3).

The next two equations embody our assumption that positive or

negative clinical response of patients could be related to

differential behaviour of a small subgroups of the 11,306 genes,

i.e. copy number variation and gene expression. We assume

zw
btDz

w
b*N(zw

b zdwu
g pgut,s

2
a) ð4Þ

where ut is the clinical outcome mentioned above, measured on

the 116 patients, and dwu
g is a binary indicator introduced for

controlling the number of covariate in the regression.

The integration of the two platforms is implemented as a

regression with the probit scores,

z
y
gtDz

w
gt*N(agzdyu

g qgutzzw
gtllg ,1), ð5Þ

where llg characterizes the relationship between the two platform,

dyu
g is a binary indicator introduced for controlling the number of

covariate in the regression and ut is the same variable as above.

As new patients tz1,:::,tzn come into the study, and

supposedly they do not have an information on pCR, an

assumption on their outcome is made, as follows:

utzi*iid Bernoulli (p) , i~1,:::,n: ð6Þ

so that we can learn about ut through the above prior and

p(wbt,ygtDut,h) , using Bayes formula and MCMC methods. The

Figure 7. Comparison between ROC curves obtained with the
integrated model and LASSO logistic regression of pCR on
copy number data.
doi:10.1371/journal.pone.0068071.g007

Table 3. List of genes which jointly show over expression and
copy number amplification in TN group.

Symbol EntrezID Cytoband postprob

E2F3 1871 6p22 0.951

MYC 4609 8q24.21 0.954

PLCG2 5336 16q24.1 0.954

PEPD 5184 19q13.11 0.954

C12orf32 83695 12p13.33 0.954

C10orf10 11067 10q11.21 0.954

FOLH1 2346 11p11.2 0.955

GTPBP2 54676 6p21 0.956

KARS 3735 16q23.1 0.957

CD14 929 5q22-q32 0.958

SHCBP1 79801 16q11.2 0.959

CHD1L 9557 1q12 0.959

CCDC86 79080 11q12.2 0.962

SLAMF7 57823 1q23.1-q24.1 0.962

CTPS 1503 1p34.1 0.962

IRAK1 3654 Xq28 0.964

C1GALT1 56913 7p14-p13 0.965

STK38 11329 6p21 0.965

AK2 204 1p34 0.966

HEPH 9843 Xq11-q12 0.966

VIM 7431 10p13 0.967

CDH3 1001 16q22.1 0.968

TRIT1 54802 1p34.2 0.969

GAS1 2619 9q21.3-q22 0.971

HLA-DRA 3122 6p21.3 0.972

ST8SIA1 6489 12p12.1-p11.2 0.973

FXYD5 53827 19q13.12 0.975

C1S 716 12p13 0.975

RECK 8434 9p13.3 0.976

C11orf75 56935 11q21 0.976

MOBKL2B 79817 9p21.2 0.977

HLA-E 3133 6p21.3 0.978

FAM107A 11170 3p21.1 0.979

ICAM1 3383 19p13.3-p13.2 0.979

INSL4 3641 9p24 0.980

PRKD3 23683 2p21 0.982

SLC2A3 6515 12p13.3 0.983

PVR 5817 19q13.2 0.984

TPX2 22974 20q11.2 0.985

NDRG1 10397 8q24.3 0.985

NFKBIE 4794 6p21.1 0.985

TIMM44 10469 19p13.3-p13.2 0.986

C1orf38 9473 1p35.3 0.986

PDSS1 23590 10p12.1 0.986

SH2D2A 9047 1q21 0.986

USP25 29761 21q11.2 0.989

HMGN4 10473 6p21.3 0.989

CHODL 140578 21q11.2 0.990

POLR1E 64425 9p13.2 0.990

Bayesian Models and Integration Genomic Platforms
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Bernoulli probability p was set to be equal to the sample

proportion of patients with positive pCR.

Priors. Priors are defined as in section 2.4, with the only

exception of the regression parameters pg and qg , and the binary

indicators dwu
g and dyu

g . For both the first parameters an

informative prior is assumed

pg*N(p̂pg,s(p̂pg)2)

qg*N(q̂qg,s(q̂qg)2)

with p̂pg , q̂qg and the variances estimated using the data. While for

the two indicators

dwu
g *Bernoulli(1{p)

dyu
g *Bernoulli(1{p)

with p very close to 1 to allow for the selection of a very small

subgroups of genes as covariates in the two regressions.

A summary of the model is given in the lower part of Figure 1.

Bayesian Multiplicity Control
Posterior inference for the proposed model is carried out using

MCMC simulations by a Gibbs sampling scheme, iterating from

the complete set of full conditionals reported in the appendix.

Since the analysis deals with high throughput gene expression

data and our final aim is that of selecting interesting genes [17]

multiple comparison problems arise.

A useful generalization of frequentist Type-I error rates to

multiple hypothesis testing is the false discovery rate (FDR)

introduced in Benjamini and Hochberg [18], and reviewed in a

Bayesian framework by Storey [19], [20].

Let dg denote the indicator for gene g being differentially

expressed under two biological conditions of interest (in our case

we will be facing two different indicators dg1 and dg2 whether the

comparison is ER+ vs TN or HER2+ vs TN).

H0g : dg~0; H1g : dg~1:

Let dg denote an indicator for rejecting the g-th comparison and

D~
XG

g~1
dg denote the number of rejections; it is defined

FDR~
XG

g~1

(1{dg)dg=D

as the fraction of false rejections, relative to the total number of

rejections. As such it is neither Bayesian nor frequentist. Under a

Bayesian perspective, since the only unknown quantity is dg in the

numerator, it can be defined an expected FDR. Let

rg~P(dg~1DY ) , then

FDR~E(FDRDY )~
XG

g~1

(1{rg)dg=D:

It was proved by M€uuller et al. [21] that under several loss

functions that combine false negative and false discovery counts

the optimal rule is of the following form d�g~I(rgwt) . The

problem is now that of specifying t so that the FDR is controlled at

a desirable level.

An algorithm that allows us to compute FDR levels for number

of discoveries, and therefore to select differentially expressed genes

so that the FDR level is controlled at level a , consists in sorting,

from the lowest to the highest, the marginal posterior probabilities

pg~(1{rg) , to obtain (p(1),:::,p(G)) . Thus, if p(1)=1wa, we do

not reject any null hypothesis; otherwise, if (p(1)zp(2))=2wa, we

reject H(1) only. We iterate this procedure until the first timeXG

g~1
p(g)=Gwa , and reject H(1),:::H(G{1) .

Simulation Study
We perform a small simulation study and generate data in a way

that the last 50 (out of 1,000) genes show joint differential

behaviour in copy number and RNA expression. We firstly

generated two matrices for gene expression (ygt) and copy number

log2 ratios (wbt) , respectively of dimensions G|T and B|T ,

with B~2000 probes, G~1000 genes (exactly two probes per

gene) and T~50 samples. The clinical covariate xt is set to be 1

for the first 10 patients and 0 for the remaining 40 patients.

Sample and gene effects were generated from the corresponding

priors in the model, at*N(0,s2
a) subject to

X
at~0 and

mg*N(hm,s2
m) . Observed log2 ratios and expression values were

sampled from two Gaussian distributions, respectively centred at

atzmg and 0. To induce differential joint behaviour for the last

50 genes, we did the following:

for RNA expression, we generated ygt*U({10,0) for

g[f950,:::,1000g and t[f1,:::,10g;
for copy number, we generated wbt*U({2,0) for

b[f1900,:::,2000g and t[f1,:::,10g;
The second simulation study generates data from the proposed

mixture model. We started from setting ld
yw
g

to be 2 for the first 50

genes and 0 for the remaining 950. and generated the latent scores

from the corresponding priors in the model, bb*N(
3

4
,

1

16
) for

b [ f1,2,:::,1999g, s{2
a *G(5,1), z1*N(0,1) and

zb*N(bb{1zb{1,
1

4
) for b [ f2,3,:::,2000g, cdw

g
*N(1,

1

9
) for

g [ f1,2,:::,100g and cdw
g
*N(0,

1

400
) for g [ f101,:::,1000g,

zbt*N(zbzxtcdw
g
) for b [ f1,2,:::,2000g and t [ f1,2,:::,50g,

zw
gt~

P
b[g zbt

mg

, bd
y
g
*N(

4

5
,

1

100
) and bd

y
g
*N(0,

1

100
), randomly

with proportions respectively 30% and 70%, ag*N(0,1) for

g[f1,2,:::,1000g and z
y
gt*N(agzxtbd

y
g
zld

yw
g

zw
gt,1) . Once the

latent scores are generated, using (1 and 2), we generate gene

Table 3. Cont.

Symbol EntrezID Cytoband postprob

STIL 6491 1p32 0.992

BTG3 10950 21q21.1 0.992

MCM4 4173 8q11.2 0.992

doi:10.1371/journal.pone.0068071.t003
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expression and CNA measurements, setting the hyperparameters

as follows:

w
z={
b ~+2 and n2

b~
1

100
, b [ f1,2,:::,2000g;

yz={
g ~+10 and s2

g~1, g [ f1,2,:::,1000g:

In both cases roughly 2000 iterations were needed for

convergence of the MCMC chain.

For the sake of simplicity, we report only results for the second

simulation. In Figure 2 we show the posterior probabilities of

positive interaction between platforms (fdyw
g =0g ), differential

CNA (fdw
g =0g) and joint CNA and RNA differential expression

(fdy
g=0,dw

g =0g ). As we expected, posterior probabilities of

positive interaction between platforms for the first 50 genes and

posterior porbabilities of differential CNA and differential joint

behaviour for the first 100 genes are among the highest.

While these simulations merely show that our proposed models

achieve what is expected, we direct attention to selection of

differentially behaved genes with multiplicity control and then

data analysis based on breast cancer samples.

Results

We applied our model to the breast cancer data set. As

comparison, we also applied a simpler version of our models by

setting ld
yw
g

~0 for all the genes. The simpler models assume that

the gene expression and copy numbers are independent and

therefore there is no integration. We call these simpler versions

‘‘marginal models’’.

In the upper plot of Figure 3 dots refer to the posterior

probabilities of DNA copy number amplification,

P(dw
g ~1Dwb(g)t) , and over expression, P(dy

g ~1Dygt) , based on

the marginal models; black dots highlight the list of over-expressed

genes which jointly showed copy number amplification obtained

through the integrated model. As expected the joint model selects,

coherently, mostly genes in the upper right corner, but still

differently from the intersection between the marginal ones.

A simple model checking was achieved plotting posterior

probabilities of differential gene expression and difference in

means of the gene expression measurements for TN and non TN

group. Following the same criteria, we plotted posterior probabil-

ities of positive interaction between platforms and sample

correlations. Lower plots of Figure 3 show, respectively, a very

good match between no difference in sample means and low

posterior probabilities of differential expression, and between

strong positive sample correlations and high posterior probabilities

of positive interaction between platforms.

Our main focus was on five lists of interesting genes: under (over)-

expressed genes which jointly showed DNA copy number deletion

(amplification) in TN subgroup, under (over)-expressed genes

conditional on DNA copy number aberration only in TN

subgroup and genes which showed positive interaction between

the two platforms. We therefore respectively defined

N rg~P(dw
g ~{1,dy

g ~{1Dwb(g)t,ygt)

N rg~P(dw
g ~1,dy

g ~1Dwb(g)t,ygt)

N rg~P(dyw
g ~1,dy

g~{1Dwb(g)t,ygt)

N rg~P(dyw
g ~1,dy

g~1Dwb(g)t,ygt)

N rg~P(dyw
g ~1Dwb(g)t,ygt)

where t~1,:::T and b(g) indicates all the probes belonging to the

gene g.

FDR levels were computed with the algorithm presented in the

previous section for the distinct rg ’s, and genes were selected

choosing a cutoff a~0:05 The lists of selected genes could be of

greater interest for clinicians since they indicate which genes show

differential expression and copy number variation in TN patients

versus patients who tests positively for ER and HER2 receptors.

On the other hand, for prediction of pCR, we split the data sets

into a training set and a test set; the training set, consisting of 94

patients, was used to obtain samples from the posterior distribution

of the parameters while the test set, consisting of 22, to check for

prediction performances through the ROC curve. Both sets were

randomly selected, and numerosities with respect to pCR of

training and test samples are reported in table 2. We constrained

numerosities in order for the test sample to be equally balanced

between positive and negative pCR, and for the training sample to

respect proportions of the original data set.

The adopted method for the estimation of the smoothed ROC

curve is LLoyd and Yong’s one [22], which is proved to perform

better than the empirical estimation. They proposed to estimate

this curve from kernel smoothing of the distribution functions of

the diagnostic measurement underlying the binary decision rule,

i.e. the conditional posterior probabilities of positive pCR, and

showed the significant accuracy achieved by this method for

realistic sample size compared with the empirical estimation.

As mentioned above, the tests we performed were done on a

sample of 22 patients, for which we had previously measured their

pCR, and are based on the posterior probabilities of the clinical

outcome being 1, P(ut~1Dwb(g)t,ygt) , obtained running the Gibbs

Sampler for 30.000 iterations. We performed the same analysis

using marginally the two platforms and obtaining respectively

posterior probabilities P(ut~1Dwb(g)t) and P(ut~1Dygt) . These

posterior probabilities, obtained through the joint and marginal

models, are showed in Figure 4.

The ROC curves are compared in Figure 5 and such

comparison confirms our choice of borrowing information

between the two genomic platforms, since the ROC curve

corresponding to the integrated model has by far the highest

Area Under the Curve, slightly below 0.9.

We finally tried and compared our method with a simple logistic

regression with LASSO variable selection (LLR) [23] [24], whose

corresponding ROC curves are plotted in Figure 6. We performed

the analysis using the package glmnet in R, and set the elastic net

mixing parameter a to 1. The penalty is defined as

(1{a)

2
DDbDD22zaDDbDD1

and a~1 correponds to the Lasso penalty, which in this case gave

the best prediction performances.

We therefore plotted in Figure 7 the smoothed ROC curves

based on posterior probabilities of pCR obtained through the

integrated model and on predictive probabilities obtained through

LLR using only copy number variation data. The AUC under the

curve obtained through our integrated model shows to be much

higher that the one under the curve obtained through LLR.
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Discussion

We have introduced a Bayesian hierarchical model to integrate

two types of genomics data, copy number and RNA expression.

The proposed model can be easily extended to multiple platforms,

with modification to the modeling of latent probit scores. Since the

entire statistical inference is based on a coherent probability

model, scientific questions can be addressed with probability

statements, allowing for reporting uncertainty measures such as

FDR. This is the main advantage of the proposed models over

existing ones.

In table 3 we reported the list of genes which show jointly over

expression and copy number amplification in TN patients, which

was of great interest for clinicians and was also the list associated

with the lowest FDR levels. Gene MYC appeared in the list and

the result is promising since MYC is a key regulator of cell growth,

proliferation, metabolism, differentiation, and apoptosis and MYC

deregulation contributes to breast cancer development and

progression and is associated with poor outcomes. Multiple

mechanisms are involved in MYC deregulation in breast cancer,

including gene amplification, transcriptional regulation, and

mRNA and protein stabilization, which correlate with loss of

tumor suppressors and activation of oncogenic pathways [25].

Breast cancer has been classified into 5 or more subtypes based

on gene expression profiles, and each subtype has distinct

biological features and clinical outcomes. Among these subtypes,

basal-like tumor is associated with a poor prognosis and has a lack

of therapeutic targets. MYC is overexpressed in the basal-like

subtype and may serve as a target for this aggressive subtype of

breast cancer. Tumor suppressor BRCA1 inhibits MYC’s

transcriptional and transforming activity [25]. Loss of BRCA1

with MYC overexpression leads to the development of breast

cancer, especially, basal-like breast cancer. As a downstream

effector of estrogen receptor and epidermal growth factor receptor

family pathways, MYC may contribute to resistance to adjuvant

therapy. Targeting MYC-regulated pathways in combination with

inhibitors of other oncogenic pathways may provide a promising

therapeutic strategy for breast cancer, the basal-like subtype in

particular [26].

As far as the model is concerned, there are a few possible

weaknesses in the procedure, mainly related to the prior

specification for parameters d
0

gs , related to differential expression

and prediction. We were dealing with highly parametrized models

and few observations data sets, reason why we chose some easier

shortcuts in order to achieve faster MCMC convergency. Some

interesting modifications of our prior specifications are now to be

implemented, since we found in literature new and more efficient

approaches to the issue of sparsity, such as the horseshoe prior

[27].

Also, it was very hard to compare our models’ performances

with other methods, either due to the lack of codes or to the

scarcity of works on the specific topic of prediction using

integrated genomic platforms; we therefore chose a simple LASSO

logistic regression which showed to be a poor fit for this particular

data and this is mainly due to the high correlation between them.

Future work includes the development of models for integration

of three or more platforms, and the extension to new type of

genomics data, such as next-generation sequencing (NGS) data. In

the latter case, the main challenge is the inclusion of a model for

the count data from the NGS experiment. The intuitive statistical

method for such an extension would be a graphical model, where

network priors will be considered treating each platform as a node,

and edges among the nodes will be interpreted as dependence

between platforms.

Finally, all this project was focused on a specific data set, with

rather particular features. The natural hierarchical structure and

correlation between DNA and RNA makes very hard to think of

the application of our methodology to different problems, though

an interesting path to follow could be that of demographical

sciences, where this hierarchical structure could be found for

example in data at country level and regional level.
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