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Abstract

The coordinated regulation of protein kinases is a rapid mecha-
nism that integrates diverse cues and swiftly determines appropri-
ate cellular responses. However, our understanding of cellular
decision-making has been limited by the small number of simulta-
neously monitored phospho-regulatory events. Here, we have esti-
mated changes in activity in 215 human kinases in 399 conditions
derived from a large compilation of phosphopeptide quan-
tifications. This atlas identifies commonly regulated kinases as
those that are central in the signaling network and defines the
logic relationships between kinase pairs. Co-regulation along the
conditions predicts kinase–complex and kinase–substrate associa-
tions. Additionally, the kinase regulation profile acts as a molecular
fingerprint to identify related and opposing signaling states. Using
this atlas, we identified essential mediators of stem cell differenti-
ation, modulators of Salmonella infection, and new targets of AKT1.
This provides a global view of human phosphorylation-based
signaling and the necessary context to better understand kinase-
driven decision-making.
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Introduction

Cells need to constantly adapt to internal and external conditions in

order to maintain homoeostasis. During cellular decision-making,

signal transduction networks dynamically change in response to

cues, triggering cellular state-defining responses. Multiple mecha-

nisms exist to transfer this information from sensors to the corre-

sponding molecular responses, one of the fastest being the

reversible posttranslational modification of proteins (PTMs).

Through these targeted modifications, such as phosphorylation, the

cell can quickly alter enzymatic activities, protein interactions, or

subcellular localization in order to produce a coordinated response

to a given stimulus (Pawson, 2004). Protein phospho-regulation

constitutes a highly conserved regulatory mechanism relevant for

a broad set of biological functions and diseases (Beltrao et al,

2012).

Over the past decades, our view of cellular signaling has

advanced from an idea of isolated and linear cascades to highly

complex and cooperative regulatory networks (Jordan et al, 2000;

Gibson, 2009). Different perturbations in cellular conditions often

activate different sets of interconnected kinases, ultimately trigger-

ing appropriate cellular responses. The complete understanding of

such cell fate decisions would require the systematic measurement

of changes in kinase activities under multiple perturbations, but the

small number of quantified regulatory events (i.e. tens) that were

possible to date has limited our knowledge of cellular decision-

making and its molecular consequences (Garmaroudi et al, 2010;

Bendall et al, 2011; Kim et al, 2011; Niepel et al, 2013).

Advances in mass spectrometry and enrichment methods now

allow measuring changes in thousands of phosphorylated peptides

at a very high temporal resolution (Olsen & Mann, 2013; Humphrey

et al, 2015; Kanshin et al, 2015). Recent studies on human quantita-

tive phosphorylation include responses at different cell cycle stages

(Dephoure et al, 2008; Olsen et al, 2010), after DNA damage (Beli

et al, 2012), EGF stimulation (Olsen et al, 2006; Mertins et al,

2012), prostaglandin stimulation (de Graaf et al, 2014) and different

kinase inhibitions (Hsu et al, 2011; Kettenbach et al, 2011; Weber

et al, 2012; Oppermann et al, 2013) among many others. More

recently, improvements in experimental and computational methods

have fostered the study of differential regulation of phosphosites

and kinases in different cancer types (Casado et al, 2013), the

modeling of drug resistance (Wilkes et al, 2015) and inference of

more precise pathway models (Terfve et al, 2015). We suggest that

the integrated analysis of phosphoproteomic responses after a wide

panel of heterogeneous perturbations can expedite our understand-

ing of cell decision-making processes.

In this study, we have compiled condition-dependent changes in

human protein phosphorylation derived from 2,940,379 phospho-

peptide quantifications in 435 heterogeneous perturbations. After

quality control and normalization, we infer and benchmark the

changes in 215 kinase activities in 399 conditions. We show that the

similarity of kinase regulatory profiles can be used as a fingerprint to

compare conditions in order to, for example, identify perturbations
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that modulate the kinase activity changes of a condition of interest.

The large number of conditions analyzed allowed us to identify the

kinases that are broad regulators (i.e. generalist kinases), found to

be central kinases of the signaling network. Individual kinase pro-

files across conditions were also informative to recapitulate known

kinase–kinase interactions and to identify novel co-regulated

complexes and phosphosites acting as potential effectors.

Results

Landscape of kinase activity responses under perturbation

To extensively study the heterogeneity and specificity of the human

signaling response, we compiled and standardized 41 quantitative

studies reporting the relative changes in phosphopeptide abundance

after perturbation (see Materials and Methods). From the detected

peptides, we collected identifications for 119,710 phosphosites in

12,505 proteins, 63% of which were already reported in phosphosite

databases (Fig EV1). For these sites, we normalized a total of

2,940,379 quantitative changes in phosphopeptide abundance in a

panel of 435 biological conditions covering a broad spectrum of

perturbations including targeted kinase inhibition, induced hESC

differentiation, or cell cycle progression, among many others

(Appendix Fig S1, Table EV1). Only 1% of all phosphorylated sites

were reported in more than 60% of the studies, whereas 52% of the

sites were quantified in one single study (Fig EV1). The observed

data sparsity, a common problem in shotgun proteomics, is

frequently derived from the accumulation of technical and biological

variants. To prevent the aggregation of false positives, only phos-

phosites observed in two or more independent studies were consid-

ered in downstream analysis.

In order to circumvent the problem of incomplete coverage due

to the different sets of quantified sites in each study, we avoid

analyzing individual phosphosites. Instead, we predicted the

changes in kinase activity by testing the enrichment on differentially

regulated phosphosites among the known substrates of each kinase

(Fig 1A). Using a modified version of the weighted kinase set enrich-

ment analysis (KSEA) (Subramanian et al, 2005; Casado et al,

2013), we quantified the regulation of 215 kinases in a range

between 10 and 399 perturbations (Fig 1A, Table EV2, Materials

and Methods). To verify the ability of KSEA to quantitatively

measure the changes in kinase regulation, we performed a series of

benchmark tests based on prior knowledge.

The known mechanism of action of certain biological processes

or compounds suggests different perturbations in which specific

kinase regulation is expected. For instance, the ATM (ataxia telang-

iectasia, mutated) and ATR (Ataxia Telangiectasia and Rad3-related)

kinases display direct regulation corroborated by the KSEA activities

under DNA damaging conditions (Fig 1B). Similarly, the kinases in

the MAPK/Erk pathway accurately display activation 10 min after

EGF stimulation (Fig 1B). Conversely, the KSEA estimates also

report decrease in kinase activities as in the case of the epidermal

growth factor receptor (EGFR) inhibition mediated by erlotinib and

gefitinib or mTOR inhibition by Torin1 (Fig 1B). Overall, the KSEA

activity shows predictive power to discriminate expected regulation

in 132 kinase–condition pairs (Fig 1C, Table EV3, area under the

ROC curve = 0.75).

To further validate the kinase regulation inference, we compared

the KSEA activities across conditions with the corresponding

changes in kinase regulatory phosphosites collected in the atlas. For

example, phosphorylation of the activation loop residue threonine

287 (T287), known to result in an increased catalytic activity of

AURKA, presents a significant co-regulation with the AURKA KSEA

activity (Spearman’s q = 0.6, P = 0.02). Phosphorylation of T287

and KSEA activity derived from AURKA substrates are both

decreased as AURKA inhibitor MLN8054 concentration increases

(Fig 1D). Overall, we observe a significantly higher correlation

between the KSEA activities and the changes in kinase auto-

regulatory sites (Student’s t-test, P ¼ 1:7� 10�4) (Fig 1E). Finally,

we compared the kinase regulation with those assayed in a previous

study using phospho-specific antibodies under similar conditions

(Hill et al, 2016). As an example, the KSEA activities 10 min after

EGF stimulation significantly correlate (q = 0.53, P = 0.008) with

the antibody-based quantified phospho-regulation 15 min after EGF

stimulation (Fig 1F). Despite the differences of both assays, the pro-

file of inferred changes based on 26 phospho-dependent antibodies

and the MS-based KSEA activities for the equivalent kinases present

significantly higher correlations when cells are stimulated with simi-

lar EGFR activating conditions (Fig 1G, Student’s one-sided t-test

P ¼ 2:7� 10�5, Appendix Fig S2).

Together, these results not only validate the activity inference for

individual kinases but strongly suggest the profile of kinase activity

changes can serve as molecular barcodes of the cellular signaling

state.

Inhibition of inferred regulatory kinases impairs state transition
during PMA-induced hESC differentiation

To further validate the inferred KSEA activities, we experimentally

measured the activity changes of 10 kinases using immunohisto-

chemistry (Table EV4) during human embryonic stem cell (hESC)

differentiation induced by Phorbol 12-myristate 13-acetate (PMA), a

perturbation compiled in the phosphoproteomic atlas (Rigbolt et al,

2011; Fig 2A and B). Immunofluorescence and KSEA substrate-

derived activities 30 and 60 min after PMA treatment agree in their

regulatory effect—activatory or inhibitory—for 14 out of the 20

quantifications (Figs 2C and EV2). Several of the concordant

changes are expected to occur during differentiation such as for PKC

(PRKCA) (Feng et al, 2012), Erk2, RSK (RPS6KA1), GSK3A, and

GSK3B (Kinehara et al, 2013). For CDK1, the predicted activities

were corroborated using an antibody targeting cyclin B1 pS126

(CycB1/CCNB1), a phosphorylation required for the activation of

the CDK1-cyclin B1 complex.

Not all regulated kinases may be functional relevant for the

process under study. To discriminate driver regulatory kinases from

secondary kinases activated as a consequence of the differentiation

process, we monitored the PMA-induced transition in the presence

of kinase inhibitors (Table EV5). Using immunofluorescence, we

quantified the cytoplasmic abundance of Oct4 and Erg1 as respec-

tive early and late markers of PMA-driven differentiation (Niwa

et al, 2000; Kinehara et al, 2014; Fig EV3, Appendix Fig S3). Inter-

estingly, Erk2 inhibition induced the strongest disruption of Erg1

expression. Inhibition of CDK1 also appears to delay the increase in

Erg1 expression and, potentially, the differentiation process. On the

other hand, the inhibition of RSK (RPS6KA1) shows the strongest
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Figure 1. Kinome-wide activity regulation derived from known substrates and 41 quantitative phosphoproteomic studies.

A Schematic of the data compilation effort and kinase activity prediction using Kinase Set Enrichment Analysis (KSEA).
B Expected kinase response after activation or inhibition. When available (n ≥ 2), error bars represent standard deviation over the mean KSEA activity.
C Receiver operating characteristic (ROC) representing the discriminative power of the KSEA activity to separate a set of 132 kinase–condition pairs expected to display

regulation. As negatives, 1,000 random sets were generated containing the same number of kinase–condition pairs from the same set of kinases and conditions.
Curve displays average ROC curve and bars standard deviation. AUC, area under the ROC curve.

D Regression analysis between Aurora kinase A (AURKA) regulatory site T287 and AURKA KSEA activity across all quantified conditions. Labeled conditions correspond to
different concentrations of the AURKA inhibitor MLN8054 under mitosis.

E Comparison between Spearman correlation coefficients obtained between KSEA-inferred kinase activities, quantifications of regulatory sites susceptible of auto-
phosphorylation (n = 56), or other regulatory sites in kinases (n = 395). The boxes represent the 1st, 2nd (median) and 3rd quartiles and the whiskers indicate 1.5 times
the interquartile range (IQR). Two-sided Student’s t-test *P = 1.7 × 10�4.

F Linear regression between KSEA activities 10 min after EGF stimulation and activities measured with RPPA targeting regulatory phosphorylations 15 min after
adding EGF.

G Spearman correlation coefficients between the profile of 24 kinase activities estimated with KSEA 10 min after EGF stimulation (n = 40) and the activities of the
same kinases measured with RPPA after stimulating the cell with different ligands. EGFR ligands, EGF or NRG1; other growth factors (GF), HGF, IGF, insulin, or FGF
(n = 70); or control conditions, serum or PBS (n = 40). The boxes represent the 1st, 2nd (median) and 3rd quartiles and the whiskers indicate 1.5 times the IQR. Two-
sided Student’s t-test **P = 0.005. ***P = 0.004.
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induction of Erg1 expression after treatment, suggesting a possible

role of its activity in the maintenance of the pluripotent state. The

inhibition of GSK and S6 (RPS6KB1) kinases results in a small

increase in PMA-induced Erg1 expression only during the early time

points. Overall, these results show how the KSEA-based inference

can predict regulated kinases and therefore predict those that are

more likely to be functionally relevant in specific conditions. This

illustrates how the kinase atlas can serve as a useful cell signaling

resource.

Kinase regulation profiles as molecular fingerprints of cellular
signaling states

The diversity of the compiled perturbations as well as the extent of

the kinases for which regulation is inferred constitutes a resource to

study fundamental aspects of cell signaling. To demonstrate that the

biological variation dominates over the technical variation, we

tested whether related kinases display co-regulation across condi-

tions and, similarly, related conditions show similar patterns of

kinase regulation. We observed that significant correlations between

the KSEA activities were more frequent between kinases one or two

steps away in the pathway than between those farther away (Fig

EV4A). This observation remains true when excluding kinase pairs

sharing substrate sites (Fig EV4B). Similarly, we confirmed that

pairs of related conditions measured in different studies tend to

have similar profiles of KSEA activities (Fig EV4C). Furthermore,

the correlation of kinase regulatory profiles is a very strong predic-

tor of related conditions assayed in different studies (Fig EV4D,

AUC = 0.93), but not of pairs of conditions from studies conducted

in the same laboratory (AUC = 0.499), with the same cell line

(AUC = 0.546) or with the same labeling method (AUC = 0.475).

These results strongly suggest that the variation in kinase activities

across conditions is primarily driven by biological effects rather than

technical variation.

In order to explore the space of different signaling responses, we

performed a principal component analysis (PCA) using the kinase

regulation profiles derived from 58 well-characterized kinases

(Fig 3A, Materials and Methods, Appendix Fig S4). The first two

components separate related EGF conditions based on their

expected signaling similarities and opposite to the EGFR pathway

inhibitors (Fig 3A, symbols). The separation of perturbations in the

reduced space is again independent of the publication of origin,

reflecting instead the similarities in the signaling response. The

systematic exploration of conditions in the reduced space also

allows us to investigate commonalities in the decision-making

process. Kinase loadings driving the sample separation in the PCA

space reflect systematic differences on the regulation of different

kinases (Appendix Fig S4C). In this way, we can identify different

types of kinase logic relationships that apply to nearly all conditions

(Fig 3B). Some kinase pairs are co-regulated—such as BRAF and

A C

B

Figure 2. Inhibition of inferred regulatory kinases impairs PMA-induced differentiation of hESC.

A Representative images of differentiation marker MAPK (pT202/Y204) expression in hESCs stimulated with PMA. Scale bars: 30 lm.
B Time course quantification of MAPK activation levels after PMA stimulation in the presence or absence of MAPK inhibitor (PD184352). Bars represent mean � SD

(n > 1,000).
C Relative changes in kinase activities using Kinase Set Enrichment Analysis (KSEA) benchmarked against antibody-measured reporter phosphosites in the intervals

0–30 and 0–60 min.
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PRKG1 (Fig 3B, AND)—or anti-correlated—such as CDK2 and CHEK

(Fig 3B, OR). Alternatively, we also identify pairs of kinases that

display exclusive regulation, whereby one is never regulated at the

same time as the other. For example, AKT1 is regulated when CDK1

is not and vice versa (Fig 3B, NOT).

The results above show how extreme similarities or dissimilari-

ties between profiles of activity changes facilitate the interpretation

and generate hypothesis about the signaling in specific conditions.

For example, perturbations under DNA damaging conditions display

similar KSEA activity profiles that can be summarized as a signature

of marker kinases (Fig EV5). Among the most similar conditions to

two DNA damage conditions (ionizing radiation and etoposide) are

compounds that are known to cause DNA damage and a sample

under G1-S transition obtained using a thymidine block that likely

resulted in DNA damage. Conversely, cells treated with the inhibitor

VE-821 targeting the DNA damage response kinase ATR show

changes in activities anti-correlated with DNA damaging conditions

(Fig EV5C). Therefore, kinase regulatory profiles can be used to

identify perturbations that may mimic or modulate the kinase regu-

lation occurring in a condition of interest. We further explored this

notion in the study of two related Shigella and Salmonella infection

states (Fig 3E). Among the anti-correlated conditions are 4

compounds that could potentially interfere with the infection

process or the host response: SB202190 (p38 MAP kinase inhibitor),

mesalazine (anti-inflammatory), trichostatin A (HDAC inhibitor),

and verapamil (an efflux pump inhibitor). To validate the effect of

A B

C D E

Figure 3. Kinase activity profiles as fingerprints of the cell signaling state.

A Perturbation scores on the first two PCA components based on KSEA activity profiles of 52 well-characterized kinases. Symbols represent EGF-related perturbations
in different studies.

B Boolean logic relationships between kinase responses. Samples in two first components are colored by different KSEA activities. Vectors display kinase loadings.
C Network displays significantly correlated or anti-correlated conditions in the context of early responses after bacterial infection. The strength of the correlations

(blue) and anti-correlations (red) is displayed as the edge width.
D, E Infection rate at 0 h (D) and bacterial proliferation after 20 h (E) when adding different concentrations of compounds displaying anti-correlated KSEA activity

profiles with early responses after bacterial infection (4 biological replicates). Displayed significant ANOVA P-values evaluate differences between three drug
concentrations and the DMSO control. The horizontal lines represent the median baseline value for the Infection + DMSO control.
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these compounds, we have measured their impact on the invasion

and proliferation of Salmonella enterica serotype Typhimurium

(STm) in human cells (Fig 3D, Materials and Methods). Mesalazine

showed no effect on either invasion or proliferation (data not

shown). Trichostatin A and higher doses of SB202190 tend to

promote invasion. SB202190 showed a consistent decrease in long-

term STm proliferation while trichostatin A showed a trend for

increase in STm proliferation that was clearer for lower doses of the

drug. Verapamil had a significant effect on proliferation that was

not consistent across different concentrations. These results show

how modulators of signaling states of interest can be identified by

comparing kinase regulatory profiles found in the atlas.

Activity signatures reveal generalist and specialist kinases

The large panel of estimated changes in kinase activity across condi-

tions allows us to classify kinases according to their degree of speci-

ficity. Some kinases, such as AKT or CDK1, are very often regulated

across all conditions and can be defined as generalist kinases. Other

kinases such as ATM and ATR are more narrowly regulated and can

be considered specialist kinases. To study these two classes of

kinases, we correlated the number of conditions in which kinases

show changes in activity with the functional importance of the

kinases measured in genetic experiments. Functional importance

was scored as either the degree of essentiality from a CRISPR screen

(Wang et al, 2015) or by the number of phenotypes from a compila-

tion of RNAi screens (from www.genomernai.org) (Fig 4A and B).

Kinases that have changes in activity in many conditions (e.g.

generalist kinases) are not more likely to be functionally important

than specialist kinases. For example, ATR or PLK1 are regulated in

few conditions but tend to be essential. We observed however that

generalist kinases, such as AKT and CDK1, are more central in the

kinase signaling network as measured by the number of shortest

paths that traverse them in the directed kinase–kinase network (Fig

4C, q = 0.506, P ¼ 9:8� 10�3, excluding kinases with 0 between-

ness). Kinases that are often regulated tend to occupy positions in

the network where signaling is very likely to flow through based on

the wiring of the network. Understanding the properties of general-

ist and specialist kinases may allow us to better understand the

specificity of the signaling response, as well as to propose novel

therapeutic targets and inform on the potential consequences of

kinase inhibition.

Kinase co-regulation identifies novel molecular effectors

The conditional depth of the kinase regulation atlas facilitates the

search for co-regulated kinases and potential molecular effectors.

Protein complexes are common signaling effectors that often display

coordinated phospho-regulation with regulatory kinases. To search

for kinase–complex co-regulation, we quantified the enrichment of

regulated phosphosites within stable human complexes. We then

correlate this enrichment with the KSEA activities across the panel

of biological perturbations (Materials and Methods). Kinase–

complex associations were validated if at least one subunit in the

complex was a known substrate of the kinase. Overall, we found a

very strong enrichment for known kinase targets among the kinase–

complex associations predicted from co-regulation (Fig 5A,

Table EV6). Using CDK1 as an example, we found a significant

number of co-regulated complexes validated as direct substrates of

CDK1 based on previous evidence, even though the actual substrate

sites in the complex were not used to predict their association (Fig

5B). We have also identified examples of complex subunits func-

tionally related to CDK1, but with no evidence yet of direct regula-

tion. The chromatin assembly complex (CAF-1 complex), for

instance, delivers newly synthesized H3/H4 dimers to the replica-

tion fork during the DNA synthesis (S) phase, shifting to secondary
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Figure 4. Relevance of generalist or specialist kinases.

A Genetic relevance of generalist and specialist kinases. Number of conditions where the kinase is regulated (absolute estimated kinase activity > 1.75) for each kinase
with more than 10 known substrates against the depletion score from CRISPR essentiality screen (Wang et al, 2015). A lower depletion score is indicative of kinases
that cause severe fitness defects when knocked-out.

B Same number of conditions in which a kinase is regulated against the number of phenotypes shown by the knocked-down kinase (from a compilation of RNAi
screens www.genomernai.org).

C Same number of conditions in which a kinase is regulated against kinase centrality (betweenness) in signaling network. In the inner panel, a diagram illustrates the
relationship between betweenness and the signaling network connectivity. Generalist kinases with more than 10 known substrates tend to have also high
betweenness scores (Spearman’s q = 0.506, P = 9.8 × 10�3). Kinases without shortest paths going through them were excluded.
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functions during other stages of the cell cycle (Volk & Crispino,

2015). Although no specific site in the complex has been validated

as CDK1 substrate, the observed co-regulation of CAF-1 and CDK1

(r = 0.27, FDR ¼ 5� 10�4) was partially validated in vitro as CDK

inhibition prevents the replication-dependent nucleosome assembly

in human cell extracts (Keller & Krude, 2000).

As an additional application of this approach, we tested whether

co-regulation can also be predictive of novel AKT1 kinase target
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Figure 5. Kinase co-regulation reveals candidate molecular effectors.

A Systematic evaluation of the kinase–complex associations based on the known direct interactions between kinases and complexes. The positive predictive value (PPV)
is displayed against the false discovery rate (FDR). The baseline random expectation (in gray) represents the PPV of a random predictor trying to estimate associations
between kinases and complexes.

B Protein complexes showing correlated phospho-regulation with the activity of CDK1. The complexes marked in green contain at least one substrate of CDK1. Only the
top correlated complexes are shown for the sake of clarity. Missing activities are displayed in white.

C Experimental workflow to study phosphoproteome dynamics under AKT (AKT1) inhibition in insulin-stimulated HeLa cells.
D Quantification of known kinase substrates after AKT inhibition of insulin-stimulated cells for all kinases with at least 14 known sites (top left) and their respective

KSEA enrichment after 10,000 permutations (bottom left). Regulation under AKT inhibition of the top 24 unknown sites (number of quantified AKT known substrates)
ranked based on their motif similarity, co-regulation with the known substrates or the combination of both (top right) and their corresponding enrichment on
regulated sites after inhibition (bottom right).

E List of high-confidence AKT substrates fulfilling the following criteria: down-regulation on AKT inhibition log2 L/H < �0.9, positive co-regulation P < 0.01, motif
similarity log-weights > 0.8, mss > 0.6, and all sites reported as in vitro substrates of AKT (Imamura et al, 2014).
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sites. In order to validate these predictions, we measured the phos-

phorylation changes of 15,255 phosphosites in insulin-stimulated

HeLa cells in the presence or absence of the AKT inhibitor VIII (Fig

5C, Table EV7). As expected, previously known AKT targets are, on

average, down-regulated in the presence of the inhibitor (Fig 5D).

Additionally, the substrates of downstream related kinases, such as

mTOR or GSK, are also regulated. When predicting the same

number of AKT targets as either sites strongly matching the AKT

sequence preference or sites showing the most significant co-

regulation with AKT across conditions, the latter showed much

stronger down-regulation after AKT inhibition (Fig 5D).

In order to propose a list of new bona fide AKT targets, we short-

listed those that are strongly co-regulated with the AKT activity

(P < 0.01), match the AKT sequence preference, are down-regulated

after AKT inhibition (log2L/H <�0.9), and were also reported as

in vitro AKT substrate sites (Imamura et al, 2014). We identified 12

AKT target phosphosites matching these stringent criteria (Fig 5E,

Table EV8). S588 of TBC1D4 was previously described to be a

potential AKT target sites, despite it not being present in our training

set (Berwick et al, 2002; Kane et al, 2002). The tumor suppressor

PDCD4 has also been shown to be regulated by AKT but at position

S67 controlling its localization (Palamarchuk et al, 2005). We identi-

fied S76 as an AKT target, a residue important for PDCD4 degrada-

tion (Galan et al, 2014; Matsuhashi et al, 2014) that is

phosphorylated under EGF stimulation (Matsuhashi et al, 2014).

This suggests that AKT activity may directly control the protein

levels of PDCD4. Another interesting target site is S801 of the

kinesin KIF4A, a motor protein involved in the control of micro-

tubule stability. The nearby position T799 is a target of Aurora B

and the double alanine mutant T799A/S801A has impaired function

(Nunes et al, 2013). In addition, both AKT and KIF4A regulate

microtubule stability during cell migration (Onishi et al, 2007;

Morris et al, 2014). Taken together, these results suggest that AKT

directly targets KIF4A S801 and that this interaction plays a role in

microtubule stabilization during migration.

Discussion

Changes in internal or external conditions are sensed by cells which

rapidly make decisions on how to mount an appropriate response.

Difficulties in measuring activities and downstream consequences

for a large number of kinases have limited the comprehensive

understanding of the decision-making process. Here, we have

compiled the changes in the human phosphoproteome across 399

perturbations, in order to create an atlas of regulation for 215

kinases, as well as the phospho-regulatory status of hundreds of

effector protein complexes.

One of the main limitations preventing the integration of MS

quantitative data has been the stochasticity of the peptide discovery.

In this study, we have demonstrated how the analysis of sets of

phosphosites (e.g. all kinase substrates) can help overcome the lack

of coverage on phosphosite quantifications. The enrichment on

biologically meaningful sets of sites also increases the robustness

against technical variability, mostly due to differences in experimen-

tal protocols and analysis pipelines. Several results suggest the vari-

ation in kinase activities along conditions in our compendium is

driven by biological factors: Related conditions have similar profiles

of kinase regulation (Fig EV4C and D); pairs of related kinases

are co-regulated across the conditions (Fig EV4A and B); and co-

regulation between kinase activity and effectors is predictive of

kinase–target interactions (Fig 5). These results strongly indicate

that this compendium constitutes a resource to identify novel

biological associations. The measured changes in phosphorylation

were not normalized for the changes in total protein abundance for

the conditions compiled for this study. In particular, for longer time-

scales this could be a confounding effect that should also be miti-

gated by the analysis of sets of sites. The described analysis can be

periodically updated as new kinase targets are characterized and

new human perturbation experiments refine the map of signaling

responses. As such, we will maintain a growing online application

(http://phosfate.com), where the community can explore the signal-

ing regulation of all conditions in the atlas and analyze and compare

their own phosphoproteomic datasets.

The larger number of perturbations identifies the possible

roles of kinases and how they relate to each other. We have

shown that generalist kinases do not tend to be more essential

than specialist kinases but, instead, tend to be more central in the

signaling network. One interpretation would be that generalist

kinases are often regulated simply because they are located in the

network where signals flow through more often. Recent phospho-

proteomic studies of high temporal resolution have indicated that

changes in phosphorylation occur in a timescale of seconds

(Humphrey et al, 2015; Kanshin et al, 2015). Some fraction of the

later changes in phosphorylation may be non-functional and poten-

tially be consequence of the signaling propagating through the

kinase signaling network (Kanshin et al, 2015). An alternative

hypothesis could be that generalist kinases, central to the signaling

network, can be robust to perturbation and the signal modulated

by other kinases.

By comparing kinase and complex regulation in different signal-

ing contexts, we have shown tight co-regulation between regulators

and effectors that served to prioritize candidate interactions.

However, regulation of substrate phosphosites or protein complexes

is just one of the several potential consequences of a signaling

response. Given the ease in collecting cellular phenotypes or large-

scale biological measurements such as gene expression and metabo-

lites, we propose this approach can be generalized to globally study

the diversity of cellular molecular states. Additionally, as data from

specific genetic backgrounds (e.g. cancer cell lines or primary

tumors) become available, this research could help to interpret the

actionable signaling consequences derived from specific sets of

mutations, drawing a much more complete diagnostic of the cellular

state.

Materials and Methods

Compilation of human quantitative phosphoproteomic data

The atlas integrates a compilation of 41 selected publications report-

ing human MS-derived changes in phosphopeptide abundance

under 435 perturbations. In order to consider a dataset for the atlas,

we required peptide sequences, phosphorylation identifications, and

detailed description of the biological perturbation and control for a

minimum of 1,000 phosphopeptides (Table EV1). From the 41
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studies included, only the raw spectra derived from 16 studies were

made available in public repositories. Three additional studies were

deposited in the no longer available Tranche. The different labeling

methodologies make difficult the processing of the public spectra

with a common pipeline. Additionally, due to the poor metadata

annotation of some of the conditions, reprocessing the spectra

would not be possible for some of the datasets. For these reasons,

we relied on the original MS identifications performed by the experi-

mental groups. We collected all quantifications from the supplemen-

tary data available in each of the 41 studies, including both

significant and not significant changes. To standardize the peptide

sequences and site positions across studies, we mapped all peptides

to the same reference proteome using Ensembl v73 (Cunningham

et al, 2015). For data storage purposes, we mapped the peptide

quantifications to all matching protein isoforms and transformed all

quantifications into log2 ratios. Finally, the remapped 2,940,379

phosphopeptide quantifications and all their metadata were stored

in a MySQL database that is publicly available in the Downloads

section of http://phosfate.com.

Data preprocessing and normalization

To standardize and further compare the datasets, we applied a

series of quality control criteria. (i) We restricted the analysis to

peptides mapped in the Ensembl canonical transcripts, resulting in

12,427 canonical phospho-modified proteins. According to Ensembl,

the canonical transcripts correspond to the longest Consensus CDS

(CCDS) model in each gene (Pruitt et al, 2009). (ii) The quantified

changes of peptides with the same set of modifications but different

sequences were merged into one single entry, therefore increasing

the conditional coverage. On those cases where more than one

quantified peptide contains the same set of modifications for the

same condition, their ratios were averaged. (iii) The conditional

ratios between technical replicates were averaged, while remaining

separated for biological replicates. (iv) Only monophosphorylated

peptides were considered for all subsequent analysis requiring

quantifications at single positions. (v) To prevent the accumulation

of false-positive sites, modified positions identified only in one

single study were excluded. (vi) We quantile-normalized the quan-

tifications across conditions and excluded all conditions with

< 1,000 peptide quantifications. After applying all these quality

control criteria, the size of the final set of conditions was reduced

from 435 to 399 perturbations (Appendix Fig S1). On this reduced

set of conditions, we considered for further analysis a total of

1,238,987 quantifications for 43,028 more reliable monophosphory-

lated peptides.

Kinase set enrichment analysis

To estimate the kinase regulation from the differential regulation of

their known substrates, we modified the original kinase set enrich-

ment analysis to incorporate the principles of the weighted Gene Set

Enrichment Analysis (Subramanian et al, 2005; Casado et al, 2013).

This modified KSEA uses the Kolmogorov–Smirnov statistical test to

assess whether a predefined set of kinase substrates is statistically

enriched in phosphosites that are at the two of extremes of a ranked

list defined by their differential regulation. This algorithm is particu-

larly helpful to detect changes on phosphosite regulation in the

context of all site quantifications, even though the changes in site

quantifications could be small. Moreover, the algorithm do not

require any arbitrary threshold to define which phosphosites are

significantly regulated or not. As in the GSEA algorithm, all site

quantifications are considered in order to search for enrichments

within the extreme fold changes. The KSEA algorithm proceeds as

follows: (i) The Enrichment Score (ES) is calculated by walking

down the ranked site quantifications and rescoring a running-sum

statistic. The statistic is increased by the site quantification when it

encounters a substrate of the kinase and decreases when the site is

not a substrate. Both increases and decreases are normalized by the

total number of known and not known substrates and proportional

to the observed fold change. Finally, the ES corresponds to the

maximum deviation from zero—either positive or negative—

encountered in the walking down. The metric is equivalent to a

weighted Kolmogorov–Smirnov-like statistic. (ii) The null distribu-

tion of ES is calculated by randomizing the sites but preserving the

same distribution of site quantifications. (iii) The statistical signifi-

cance of the observed ES is calculated using the empirical P-values

calculated from the ES null distribution based on the same number

of known substrates and the same distribution of quantifications.

An R package implementing the novel KSEA described above is

provided at https://github.com/evocellnet/ksea.

Predicting kinase activities using KSEA

In order to collect a comprehensive list of regulatory relationships,

we merged all the interactions reported in PhosphoSitePlus

(Hornbeck et al, 2015), HPRD (Keshava et al, 2009) and Phos-

pho.ELM (Dinkel et al, 2011) in June 2014. After excluding kinase

auto-phosphorylations, we compiled a total of 7,815 interactions

between 306 kinases and 5,617 individual sites. Using the above

described regulatory information and the collected quantitative

phosphoproteomic data, we applied the KSEA algorithm with a null

distribution of 1,000 permutations per kinase and condition. In

order to use the enrichment significance as a proxy of kinase

activity, the resulting P-values were log10-transformed and signed

based on the average sign of all substrates. If the predominant

change of all substrates is an increase in phosphorylation, the

kinase is predicted as activated. If the majority of the substrates

present reduced phosphorylation, the kinase is predicted as

inactivated.

Kinase activity validation using kinase regulatory sites

To corroborate the kinase activity inference, KSEA activities were

compared with the phosphorylation changes observed in kinase

regulatory sites across conditions. From the total list of 941 human

regulatory sites reported in PhosphoSitePlus, 150 were quantified in

at least 10 perturbations. To evaluate the concordance between the

KSEA activities and the quantitative changes in the regulatory phos-

phorylations, we performed a linear regression analysis across all

available perturbations. Additionally, the results with those derived

from the Spearman correlations between the kinase activities

and the regulatory sites susceptible of auto-phosphorylation and

other sites not reported to regulate the enzymatic activity. We

discarded all kinase activity profiles under no regulation (absolute

log P-value > 1 in at least 1 condition).
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Kinase activity validation using RPPA data

We compared the predictions based on the collected quantitative

phosphoproteomic data with the antibody-based kinase activities

from a previous study (Hill et al, 2016). We used the BT20 cell line

as reference, showing the most responsive quantitative profiles after

EGF receptor stimulation. We scaled the antibody-based measure-

ments to make them comparable across conditions and antibodies.

We quantile-normalized per antibody to assure equal final distribu-

tions. Next, we standardized each individual combination of cell

line, inhibitor, stimulus, and time point by calculating the z-score of

each of the measurements based on the mean and standard deviation

of the unstimulated conditions. Replicates were averaged. The final

dataset contains 26 quantifications reporting changes in regulatory

phosphosites in kinases. In order to use only the most reliable activ-

ity predictions, kinases with a number of known substrates smaller

than 5 were excluded. To circumvent the effect of protein abun-

dances, we restricted the analysis to the first hour after EGF stimula-

tion. The normalized quantifications clustered together based on the

sample similarities, with no apparent batch effects (Appendix Fig

S1). The DREAM conditions were classified depending if they acti-

vate EGFR—EGF and NRG1—other growth factors that eventually

could have a similar downstream effects—HGF, IGF1, FGF1, and

insulin—or non-stimulating conditions—serum and PBS.

Maintenance and treatment of human embryonic stem
cells (hESCs)

Human embryonic cells, H1 and H9 (WA01, WA09 from WiCell),

were maintained on Matrigel (BD Biosciences)-coated dishes in

mTeSRTM1 medium (StemCell Technologies). Differentiation of

hESCs was induced by supplementing mTeSRTM1 with PMA 50 nM.

Differentiation time course experiments were typically 0, 30 min, 1,

6 and 24 h. Kinase inhibition experiments were performed by

supplementing mTeSR1 medium with pharmacological inhibitors

1 h before PMA treatments (Table EV8). In order to avoid inhibitor’s

degradation during 24-h experiment, fresh mTeSR1 medium with a

50 nM of PMA was changed after 10 h.

hESC immunofluorescence and image analysis

For each time course experiment, hESCs were fixed for 10 min with

a 4% paraformaldehyde, permeabilized for 5 min with 0.3% Triton

X-100, and incubated with a blocking solution (10% fetal bovine

serum (FBS) and 3% bovine serum albumin (BSA) in PBS) for 1 h.

Primary antibodies (Table EV7) were incubated overnight at 4�C in

antibody dilution buffer (1% bovine serum albumin (BSA), 0.1%

Triton X-100 in PBS) at the indicated concentrations. Primary anti-

bodies were visualized by using a secondary antibody conjugated to

Alexa 488. Samples were counterstained with DAPI to facilitate

analysis. Images were acquired using a high-content, widefield

inverted microscope, Olympus ScanR System equipped with a

sCMOS Flash 4.0 camera (Hamamatsu), universal plan semi-

apochromat 20× objective (NA 0.7), and a SpectraX LED light

source. Image analysis was performed using MATLAB or CellPro-

filer (Carpenter et al, 2006). Briefly, a low-pass Gaussian filter was

first applied to each image. The local background value of each

pixel was then determined by searching for a surrounding ring area,

with the outer and inner radii of the ring being 10 and 5 times the

approximate nuclear radius, respectively. The lowest 5th percentile

value of the ring area was used as the background intensity of the

center pixel. Cell nuclei were identified using fluorescent DAPI

images as masks. When needed, cytoplasmic mask consisted of a

ring around the nucleus. The MATLAB function regionprops was

then used to label each nucleus and to retrieve the xy coordinates of

all pixels in specific nuclei. The level of immunofluorescence stain-

ing in each cell was calculated as the average value of the intensities

from each pixel of the specific nucleus. At least 2,000 cells were

used for analysis per each indicated condition.

PCA based on kinase activity profiles

To restrict the analysis to consistently estimated kinases, only

those inferred in at least 75% of the perturbations were consid-

ered. Conditions displaying extreme redundancies were also

excluded, reducing the matrix of kinase activities to 58 kinases and

387 conditions. For the 7.43% of the matrix containing missing

values, the data were imputed using the regularized iterative PCA

algorithm implemented in the imputePCA function contained in the

R package missMDA. Using the resulting complete matrix, principal

components analysis (PCA) was performed using the rda function

in the R package vegan without any additional scaling. The

expected (baseline) percent variance in each PC stemming from

noise in data was estimated using the stringent “broken stick"

method and the relaxed average eigenvalue (Kaiser–Guttman crite-

rion) (Jackson, 1993).

Salmonella strains used for infection

Salmonella enterica serovar Typhimurium 14028s (STm) trans-

formed with the constitutive GPF expressing plasmid pDiGc

(Helaine et al, 2010) were cultivated in LB broth (Miller) containing

100 lg/ml ampicillin by incubating on a rotating wheel at 37�C.
HeLa cells (ATCC) were cultivated in DMEM 4.5 g/l glucose (Gibco

cat. 41965-039), pyruvate (100 mM, Gibco), 10% FBS at 5% CO2 in

a 37�C incubator. Stock drug solutions were dissolved in DMSO:

trichostatin A (Sigma cat. T8552) and SB202190 (Sigma cat. S7067),

or methanol: (�)-verapamil hydrochloride (Sigma cat. V4629). Final

drug concentrations used trichostatin A: 1.5, 1.0, and 0.5 lM;

SB202190: 15, 10, and 5 lM; (�)-verapamil hydrochloride: 15, 10,

and 5 lM. 100 mg/ml stock solution of gentamicin was dissolved in

water (Sigma cat. G1914). Bacteria were prepared for HeLa cell

invasion as previously described (Helaine et al, 2010) with the

following modifications: Overnight cultures of GFP expressing STm

were diluted 1:33 into fresh LB broth and cultured for 3.5 h at 37�C
prior to infection.

HeLa cell preparation and infection

At 80% confluency, 3,000 HeLa cells per well were seeded into a

384-well clear-bottom plate (Greiner cat. 781090) using a cell

seeder (Thermo, Multidrop Combi) followed by an 18-h incubation

overnight to allow cell attachment. Cells were then exposed to

indicated drug concentrations in the presence of DMEM 1 g/l

glucose + 10% FBS for 6 h. Prior to infection, cells were then

washed two times with DMEM or PBS, followed by media
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replacement with fresh DMEM 1 g/l glucose + 10% FBS. Infection

was carried out as previously described [16] using a liquid handler

(Biomek FXP). STm was added directly to HeLa cells at an MOI of

100 in PBS. STm was then allowed to invade HeLa cells by incu-

bating for 30 min at 5% CO2 in a 37�C incubator. Extracellular

STm were then removed by washing three times with warm PBS,

followed by treatment with 100 lg/ml gentamicin in DMEM 1 g/l

glucose + 10% FBS for 1 h. Media were then replaced with

10 lg/ml gentamicin in DMEM 1 g/l glucose + 10% FBS for the

remainder of the experiment n.b. This step was considered t = 0.

At the indicated time points, cells were then washed with

prewarmed PBS prior to fixation and permeabilization in 5%

formaldehyde/0.2% Triton X-100 in PBS for 45 min. Fixing solu-

tion was then removed by washing with PBS and cells were

stained using 2.5 lg/ml Hoechst33342 (Molecular Probes cat.

H3570) and 80 ng/ml Phalloidin-Atto700 (Sigma cat. 79286) over-

night at 4�C. Prior to imaging, cells were washed three times in PBS.

Salmonella microscopy and image analysis

384-well plates were imaged using a Molecular Devices, IXM XL

microscope where six sites per well were imaged at 20× magnifi-

cation. CellProfiler was used to analyze the images. Nuclear regions

were determined by setting a manual intensity threshold for the

DAPI channel. Nuclei were expanded using the actin staining to

determine the cellular regions. Salmonella colonies were determined

by manual thresholding. Segmented cells were classified as infected

or non-infected depending on the presence or the absence of a

Salmonella colony in a cell region. For every site imaged, the

number of infected and non-infected cells was determined, along

with the integrated Salmonella fluorescence intensity inside infected

cells. To determine the percentage of infected cells per well, the

number of infected and non-infected cells from the six sites of every

well was summed up and the ratio of infection was calculated. In

addition, the mean integrated intensity of Salmonella in infected

cells was determined for every site, and the average value for the

six sites in a well was calculated to obtain the mean integrated

intensity of Salmonella in infected cells per well as a measure of

Salmonella intracellular proliferation.

Co-regulation between driver kinases and effector complexes

We first quantified the phospho-regulation of stable human

complexes [from the CORUM database (Ruepp et al, 2010)] in each

condition. We limited the complex redundancy by subsetting the

interactions in which only one copy of the homologous protein

complexes is included. For each of the 1,331 complexes and for each

condition, we compared the distribution of absolute changes in

phosphosite abundance in the complex against all phosphosites

using the Kolmogorov–Smirnov (KS) test. The resulting P-values

were log-transformed and signed based on the average fold change

of all sites in the complex. We then fitted a linear regression to esti-

mate those responses in protein complex phosphorylation that

correlate with changes in kinase activity across conditions. For vali-

dation purposes and in order to avoid potential biases, the kinase

substrates used to predict the kinase activities were excluded from

the complex regulation estimates. The Pearson correlation P-values

were corrected for multiple testing.

SILAC labeling, protein extraction, and digestion

HeLa cells were passaged in DMEM (-Arg, -Lys) with penicillin–

streptomycin, 10% dialyzed FBS at 37�C, 5% CO2, supplemented

with either normal L-lysine and L-arginine (light K0, R0) or
13C6-

15N2 lysine and 13C6-
15N4 arginine (heavy K8, R10). Both popu-

lations of cells were deprived of serum overnight. “Light" labeled

cells were treated with 1 lM Akt inhibitor VIII for 30 min prior to

stimulation with 100 nM insulin for an additional 30 min. “Heavy”

labeled cells were stimulated with 100 nM insulin for 30 min. At the

time of harvest, cells were washed three times with ice-cold PBS

and flash frozen over liquid nitrogen. Cells were scraped into ice-

cold urea buffer (8 M urea, 75 mM NaCl, 50 mM Tris–HCl pH 8.2,

complete protease inhibitor cocktail (Roche), 50 mM sodium fluo-

ride, 50 mM beta-glycerophosphate, 1 mM sodium orthovanadate,

10 mM sodium pyrophosphate). Protein concentration was assayed

using the BCA method and lysates from “light" and “heavy"

cultures were mixed in a 1:1 ratio. Protein lysates were reduced with

5 mM DTT for 30 min at 55�C, alkylated with 10 mM iodoac-

etamide for 15 min at room temperature, and quenched with

10 mM DTT. Proteins were diluted twofold with 50 mM Tris pH 8.8

and digested with Lys-C (Wako) overnight at room temperature.

The resulting peptides were desalted over a tC18 Sep-Pak cartridge

(Waters) and dried by lyophilization.

Strong cation exchange (SCX)/Immobilized metal affinity
chromatography (IMAC)

Approximately 3 mg of peptides was resuspended in 50 mM Tris pH

8.2 and further digested with trypsin (Promega) overnight at 37�C.
The resulting tryptic peptides were desalted over a C18 Sep-Pak

cartridge (Waters) and dried by vacuum centrifugation. They were

separated by strong cation exchange into 12 fractions using a vola-

tile binary solvent system (A: 10 mM NH4HCO2 + 25% MeCN +

0.05% FA, B: 500 mM NH4HCO2 + 25% MeCN + 0.05% FA). Frac-

tions were dried and desalted by vacuum centrifugation. Fractions

were resuspended in 100 ll IMAC loading solution (80%

MeCN + 0.1% TFA). To prepare IMAC slurry, Ni-NTA magnetic

agarose (Qiagen) was stripped with 40 mM EDTA for 30 min,

reloaded with 10 mM FeCl3 for 30 min, washed three times, and

resuspended in IMAC loading solution. To enrich phosphopeptides,

50 ll of 5% bead slurry was added to each fraction and incubated

with rotation for 30 min at room temperature, washed three times

with 150 ll 80% MeCN, 0.1% TFA, and eluted with 60 ll 1:1

MeCN:1% NH4OH. The eluates were acidified with 10% FA and

dried by vacuum centrifugation for LC-MS/MS.

LC-MS/MS

Phosphopeptide-enriched samples were resuspended in 4% formic

acid and 3% MeCN and subjected to liquid chromatography on an

EASY-nLC II system equipped with a 100-lm inner diameter ×

40 cm column packed in-house with Reprosil C18 1.9 lm particles

(Dr. Maisch GmbH) and column oven set to 50�C. Separations were

performed using gradients of 9–32% MeCN in 0.125% formic acid

ranging in length from 55 to 105 min and were coupled directly with

a LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher) config-

ured to conduct a full MS scan (60k resolution, 3e6 AGC target,

ª 2016 The Authors Molecular Systems Biology 12: 888 | 2016

David Ochoa et al An atlas of human kinase regulation Molecular Systems Biology

11



500 ms maximum injection time, 300–1,500 m/z) followed by up to

20 data-dependent MS/MS acquisitions on the top 20 most intense

precursor ions (3e3 AGC target, 100 ms maximum injection time,

35% normalized collision energy, 40-s dynamic exclusion).

LC-MS/MS data processing

Raw data files were converted to mzXML and searched using Comet

version 2015.01 against the human SwissProt database including

reviewed isoforms (April 2015; 42,121 entries) allowing for binary

(all or none) labeling of lysine (+8.0142) and arginine (+10.0083),

and variable oxidation of methionine, protein N-terminal acetyla-

tion, and phosphorylation of serine, threonine, and tyrosine resi-

dues. Carbamidomethylation of cysteines was set as a fixed

modification. Trypsin (KR|P) fully digested was selected allowing

for up to two missed cleavages. Precursor mass tolerance was set to

50 ppm and fragment ion tolerance to 1.0005 Daltons. Search results

were filtered using Percolator to reach a 1% false discovery rate at

the PSM level. Peak area heavy/light ratios were calculated using an

in-house quantification algorithm. Phosphosite assignment was

performed using an in-house implementation of Ascore, and sites

with Ascore ≥ 13 were considered localized (P = 0.05). Phospho-

peptides in the database with multiple non-localized instances span-

ning the same sequence were only considered to correspond to the

minimum number of phosphosites that explain the data. Finally, the

dataset was additionally filtered to reach a site-adjusted false discov-

ery rate of 1%.

Co-regulation between AKT and potential new substrates

For all human phosphorylated residues compiled in the atlas, a

series of evidences were generated in order to weight their potential

role as substrates of AKT. Firstly, all sites in the atlas were matched

against the position weight matrixes (PWM) generated from all the

known substrates of AKT. To weight the motif—PWM similarity,

two algorithms were compared with similar results: the sum of the

log weights of the matched residues and the MSS score provided by

MATCH, which incorporates the information content of the PWM

(Kel et al, 2003; Wasserman & Sandelin, 2004). Secondly, the afore-

mentioned inference of kinase activities based on the known kinase

substrates was used to find sites co-regulated with the known

substrates of AKT. The response of all sites in the atlas across the

panel of conditions was correlated with the estimated activity of

AKT in the same conditions. We also included as an additional vali-

dation the set of 1,778 AKT in vitro substrates described by

Imamura et al (2014). Finally, as a fourth independent evidence, we

included the differential regulation of each of the candidate AKT

sites under inhibition by AKT inhibitor VIII in insulin-stimulated

HeLa cells described above.

Expanded View for this article is available online.
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