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Abstract: Vascular diseases are major causes of death worldwide, causing pathologies including
diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the
vascular system to a variety of stressors and inducers has been implicated in the development of
various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant
enzymes form the first line of defense against oxidative stress. Recently, extensive research into the
beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly
used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including
vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on
antioxidant enzymes in vascular diseases.
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1. Introduction

Vascular diseases are responsible for numerous deaths annually worldwide. The
pathogenesis of vascular disease involves the activation of pro-inflammatory signaling
pathways, expression of cytokines/chemokines, and elevated oxidative stress. Exposure
to oxidative stress may directly injure the vasculature and induce vascular dysfunction
by producing dysregulation of the immune response. Oxidative stress is caused by an
imbalance between the production and accumulation of reactive oxygen species (ROS) and
the capacity of antioxidant defense mechanisms favoring oxidants [1]. ROS generation
may lead to cellular necrosis by damaging the mitochondria and stimulating pro-apoptotic
signaling. ROS play a vital role in the progressive pathology of vascular diseases, including
inflammatory responses, apoptosis, cell growth, and endothelial dysfunction [2,3]. Hence,
strategies that target oxidative stress may have enormous therapeutic potential for the
prevention of vascular diseases. The oxidative balance in the vasculature is tightly regulated
by a wealth of pro- and antioxidant systems that contain antioxidant enzymes. A better
understanding of oxidative stress and modulation of antioxidant enzymes is necessary for
the broader use of pharmacological and regenerative therapies for vascular diseases. Here,
we summarize the critical roles of antioxidant enzymes in vascular diseases and discuss
the potential therapeutic roles of phytochemicals that target antioxidant enzymes.

2. Role of Antioxidant Enzymes

Escalated oxidative stress has been implicated in numerous human diseases, and
is associated with disease severity. Vascular structures contain antioxidant defense sys-
tems that scavenge ROS [4]. Antioxidant enzymes are important as part of the cellular
defense mechanism against free radical generation and in the prevention and repair of
free-radical-produced molecular damage in a variety of situations [5]. Under physiological
and pathophysiological conditions, various enzymes are responsible for modulating re-
dox balance. Thus, antioxidant enzymes are vital for the maintaining the homeostasis of
oxidants. Such antioxidant enzymes include catalase (CAT), glutathione reductase (GR),
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thioredoxin reductase (TrxR), heme oxygenase-1 (HO-1), superoxide dismutase (SOD),
glutathione peroxidase (GPx), peroxiredoxin (Prx), paraoxonases (PON), and NAD(P)H:
quinone oxidoreductase 1 (NQO1) (Figure 1).

Figure 1. Signaling pathways involved in antioxidant enzymes.

2.1. Catalase (CAT)

CAT, a heme-containing tetrameric protein, is a normal component of cellular perox-
isomes. CAT converts hydrogen peroxide (H2O2) into water and molecular oxygen and
protects cells against excessive ROS production as well as inhibiting the accumulation of
H2O2. CAT is universally expressed but is primarily located in the peroxisomes of all types
of mammalian cells [6] and human vascular cells [7]. CAT is also universally expressed by
neurons and glial cells in the central nervous system. Altered antioxidant enzyme activity,
including decreased catalase activity in neutrophils, has been described [8,9]. Parastatidis
et al. demonstrated that altered H2O2 signaling as a result of reduced CAT activity in the
vasculature could be an early insult that leads to aortic dilatation [10]. Similarly, Wang et al.
reported the anti-atherosclerotic effect of pterostilbene (a natural dietary compound) on
experimental atherosclerosis via regulation of CAT/PTEN signaling [11].

2.2. Glutathione Reductase (GR)

Glutathione plays a fundamental antioxidant intracellular role [12] and is implicated
in several metabolic processes. Oxidized glutathione molecules form disulfide bonds with
each other until they are converted to reduced glutathione by GR. GR is a crucial enzyme
in gene regulation, the maintenance of high rates of reduced glutathione (GSH)/oxidized
disulfide (GSSG), intracellular signal transduction, elimination of free radicals and reactive
oxygen species, and the preservation of intracellular redox status [13].

2.3. Thioredoxin Reductase (TrxR)

The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR),
and nicotinamide adenine dinucleotide phosphate (NADPH), which mainly regulates
intracellular redox homeostasis [14]. The three mammalian genes encode different TrxR
isoforms. In mice, Txnrd1 encodes cytosolic TrxR1, Txnrd2 encodes mitochondrial TrxR2
(also called TR3), and Txnrd3 encodes thioredoxin glutathione reductase (TGR), which is
primarily expressed in the spermatids of the testis and seems to play a significant role in
spermatogenesis [15,16].

2.4. Heme Oxygenase-1 (HO-1)

HO is the first, rate-limiting enzyme in the catalysis of cellular heme degradation
and the production of carbon monoxide, biliverdin, and free iron [17]. Two functional HO
isoforms have been identified in mammals: HO-1 and HO-2 [18,19]. HO-1 is ubiquitously
distributed and highly inducible by a wide variety of inducers, including endotoxins,
metals, oxidants, cytokines, and phytochemicals [20–22]. There is ample evidence to
suggest that HO-1 can protect against vascular remodeling and atherogenesis [23].

2.5. Superoxide Dismutase (SOD)

SODs are widespread and are primary regulatory enzymes used by microorganisms
to catalyze the conversion of superoxide into oxygen and H2O2 [24]. Mammals express
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three SODs isoforms: the cytoplasmic copper/zinc-dependent SOD (SOD1; Cu/ZnSOD is
a 32 kDa homodimeric enzyme), the mitochondrial manganese-dependent SOD (SOD2;
MnSOD is an 88 kDa homotetrameric enzyme), and the extracellular Cu/ZnSOD (SOD3; is
also dependent upon copper and zinc, contains a signaling peptide sequence, and exists as
a homotetramer of 135 kDa) [25,26]. Several studies have reported a relationship between
SOD3 and pathological conditions that involve vascular dysfunction, such as diabetes and
cardiovascular disease [26,27].

2.6. Glutathione Peroxidase (GPx)

The GPx family comprises three evolutionary groups arising from a Cys-containing
ancestor that catalyzes the reduction of H2O2. Eight isoforms of GPx have been identified,
of which five are selenoproteins (GPx1-4 and GPx6). The three selenium-independent GPx
enzymes rely on thiol rather than selenol chemistry. Among the GPx enzymes, GPx1 is the
most abundant and ubiquitous isoform, whereas GPx6 is found as a selenoprotein only in
humans [28]. The anti-atherosclerotic properties of GPx-1 in endothelial cells [29] and an
inhibitory potential against lipid peroxidation of GPx-4 in mice have been reported [30].
GPx2 was first found in gastrointestinal tissues, and GPx3 is mainly synthesized in the
proximal convoluted tubule cells of the kidney.

2.7. Peroxiredoxin (Px)

Prxs are a family of thiol-dependent peroxidases that neutralize reactive oxygen/nitr
ogen species and protect against oxidative and inflammatory stress [31]. Prx enzymes are
able to form disulfide linkages following oxidation, and return to their active form following
reduction by an additional enzyme, thioredoxin [32]. Six mammalian Prx isozymes (Prx1-6)
have been classified based on the mechanism and the number of cysteine residues involved
during catalysis [33]. Six Prx isoforms are expressed in mammals: the cytosolic isoforms
Prx1, Prx2, and Prx6; the mitochondrial isoform Prx3; the secreted isoform Prx4; and Prx5,
which is localized in multiple organelles [34]. Schreibelt et al. suggested that vascular Prx1
functions as an endogenous defense mechanism [35]. Guo et al. found that Prx4 is an
anti-atherogenic factor that suppresses oxidative damage and apoptosis [36].

2.8. Paraoxonase (PON)

There are three different isoforms of PON: PON1, PON2, and PON3, which have
multifunctional roles in numerous biological pathways, including protection against ox-
idative damage [37]. Among these, increasing attention has been focused on the role of
PON1, which is a key functional constituent of high-density lipoprotein (HDL) particles in
various human diseases, including diabetes, cardiovascular disease, cancers, aging, and
several neurological disorders [38]. PON2 is an intracellular enzyme with antioxidant
effects in major vascular cells [39]. Mechanistically, PON3 seems similar to PON2 [40], and
transgenic PON3 expression lowers atherosclerosis and adiposity [41].

2.9. NAD (P) H: Quinone Oxidoreductase 1 (NQO1)

NQO1 is a broadly distributed FAD-dependent flavoprotein that stimulates obligatory
two-electron reductions of various exogenous and endogenous quinones, quinoneimines,
nitroaromatics, and azo dyes [42]. These reductions decrease quinone levels, thereby
diminishing the chances of producing reactive oxygen intermediates by redox cycling and
for the attenuation of intracellular thiol pools. Several studies have shown that NQO1 has
been implicated in the pathogenesis of several diseases [43–46].

3. Modulation of Antioxidant Enzyme Expression

In general, oxidative stress is defined as an imbalance between pro-oxidant and
antioxidant systems. Excess oxidative stress results in cellular damage due to the oxidation
of innumerable essential host macromolecules. Phase II cytoprotective and detoxifying
enzymes are responsible for serving as cellular guardians. To date, various signaling
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pathways, which mediate antioxidant enzyme regulation, have been identified, including
protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), ER-localized pancreatic
endoplasmic reticulum kinase (PERK), mitogen-activated protein kinases (MAPKs), c-Jun
NH2-terminal kinase (JNK), AMP-activated protein kinase (AMPK), nuclear factor E2-
related factor 2 (Nrf2), activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and cyclic
adenosine monophosphate-response element-binding protein (CREB) [47–56] (Figure 2).

Figure 2. Antioxidant enzymes in vascular protection. Oxidative stress and inflammation in the
vascular system response to multiple kinds of inducers, subsequently leading to several patholog-
ical conditions. This review supposed that induction of antioxidant enzyme expression provides
cytoprotection against vascular injury and preserves vascular function.

Numerous cytoprotective genes for detoxifying and antioxidative enzymes in the
xenobiotic detoxification and antioxidative response pathways are induced upon exposure
to oxidative stress. Nrf2 and the Kelch-like ECH-associated protein 1 (Keap1) system play a
central role in antioxidant enzyme regulation [57,58]. Nrf2 is one of the best-characterized
antioxidative transcription factors, with an oxidant/electrophile-sensor function. Under
resting conditions, Keap1, a cytosolic repressor protein of Nrf2, binds to Nrf2 in the
cytosol [59]. Upon exposure to oxidative stress, Nrf2 is separated from the Nrf2-Keap1
complex and translocates into the nucleus, where it induces transcriptional activation of
cell defense genes [60]. After translocation to the nucleus, Nrf2 binds to the antioxidant or
electrophile response element (ARE/EpRE) in the target gene promoter [61] as do a battery
of antioxidant enzymes, including NQO1 [62], HO-1 [63], TR [64], and the Prx [65].

4. Effect of Antioxidant Enzyme Expression by Dietary Phytochemicals

Antioxidant enzymes have multifunctional roles in the development and progression
of a variety of human diseases, including vascular diseases.

Dietary phytochemicals, which are abundant in fruits and vegetables, have been re-
ported to promote health by enhancing antioxidant and anti-inflammatory abilities, as well
as for their capacity for regulating a myriad of signaling mechanisms [66]. Modern scientific
approaches have been utilized to identify and study various phytochemicals and have
shown the potential value of phytochemicals in the field of pharmacology [67–70]. Nu-
merous phytochemicals are recognized as inducers of antioxidant enzymes and, therefore,
represent attractive candidates for use in healthcare (summarized in Table 1). However,
although many studies have been conducted on the physiological activity of phytochemi-
cals in humans, most studies have used animal subjects that have differences in applicable
concentrations or metabolism. Therefore, there is an increasing demand for studies into
the chemical instability, potential toxicological effects, pharmacokinetics, and pharmaco-
dynamics of the target material to determine the appropriate concentration applicable to
humans and to validate the physiological and pharmacological activity.
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Table 1. Summary of phytochemicals with modulating Nrf2 activity and antioxidant enzymes.

Phytochemical Effects Altered Antioxidant enzyme

Anthocyanin
Prevent eye disease SOD, CAT, GPx [71]
Anti-diabetic effect CAT, SOD [72]
Hypotensive effect HO-1, SOD [73]

Baicalein
Anti-ischemic effect HO-1 [74]

Cardiopulmonary protective effect GPx, SOD [75]

Berberine
Anti-inflammation effect NQO-1, HO-1 [76]
Anti-atherosclerotic effect HO-1 [77]

Anti-diabetic effect GR [78]

Curcumin

Anti-atherosclerotic effect HO-1 [79]
Cardio-protective effect SOD [80]

Anti-inflammation effect HO-1 [81]
Vasculoprotective effect CAT [82]
Cardio-protective effect GPx, GR [83]
Cardio-protective effect GR, SOD [84]

Anti-diabetic effect PON1 [85]

EGCG
Neuroprotective effect SOD, GPx [86]

Anti-inflammation effect HO-1 [87]

Fisetin
Anti-inflammation effect HO-1 [88]

Neuroprotective effect SOD, CAT [89]
Anti-hypertrophic effect SOD, CAT, HO-1 [90]

Myricetin Anti-inflammation effect HO-1 [91]
Anti-oxidative effect SOD, GPx [92]

Quercetin Anti-diabetic effect SOD, CAT [93]
Vasculoprotective effect HO-1 [94]

Resveratrol

Vasculoprotective effect SOD, GPx [95]
Neuroprotective effect SOD, HO-1 [96]

Vasculoprotective effect HO-1 [97]
Anti-atherosclerotic effect PON [98]

Sulforaphane
Cardio-protective effect GPx, SOD, TrxR [99]

Anti-inflammation effect TrxR, HO-1 [100]
Anti-ischemic effect HO-1 [101]

4.1. Anthocyanin

Fruits and vegetables are worthy sources of dietary phytochemicals, such as polyphe-
nols, flavonoids, and carotenoids. In particular, anthocyanins, a class of flavonoids syn-
thesized through the phenylpropanoid pathway, have pronounced antioxidant capacities
in vitro and in vivo [102,103]. Anthocyanins stimulate optimal platelet function and exert
antithrombotic effects [104]. They have protective effects on visual signal transduction
and preclude age-related blindness by reducing the oxidative burden in mouse retinal
pigment epithelium (RPE) cells [105]. Huang et al. determined the beneficial effect of
anthocyanin on the increase in the levels of the antioxidant enzymes SOD, CAT, and GPx,
which might have the potential to be applied to prevent eye diseases such as age-related
macular degeneration (AMD) in human retinal capillary endothelial cells [71]. Another
study showed that anthocyanins could ameliorate human retinal capillary endothelial
function by decreasing ROS and increasing the enzyme activity of CAT and SOD and,
therefore, might have the potential to avert the progression of diabetic retinopathy [72].
A recent study indicated that anthocyanins protected rodent endothelial function against
high-glucose injury through antioxidant and vasodilatory mechanisms, so anthocyanins
could be a promising hypotensive nutraceutical for diabetes [73].

4.2. Baicalein

Baicalein (5, 6, 7-trihydroxyflavone) is a natural flavonoid isolated from the root
of Scutellaria baicalensis, a traditional Chinese herbal medicine commonly used for the
treatment of bacterial infections [106]. Baicalein has innumerable biological properties,
such as scavenging of relevant toxic ROS in rodent cardiomyocytes [107], and inhibition of
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tumor-induced angiogenesis [108]. Chao et al. found that baicalein could protect against
retinal ischemia in a rat model because of its antioxidant and anti-apoptosis functions
and ability to induce HO-1 expression [74]. Shi et al. reported that baicalein ameliorates
pathological modifications such as pulmonary arterial remodeling via the MAPK/NF-
κB/GPx/SOD pathway in rats [75].

4.3. Berberine

Berberine is a well-identified Chinese herbal medicine, extensively used in the treat-
ment of a wide range of inflammatory diseases [109]. Berberine is present in the roots,
rhizomes, and stem bulk of plants. Berberine has a variety of biological effects, such as
antibacterial, anti-inflammatory, and antioxidant effects, and has been identified as a poten-
tial therapeutic candidate for diabetic nephropathy (DN) [110–112]. Recent studies have
demonstrated the importance of the Nrf2 pathway and expression of the Nrf2-targeted an-
tioxidative genes NQO-1 and HO-1 because of their anti-inflammatory role. These studies
suggest that berberine may be beneficial in the development of new therapeutic strategies
against inflammatory diseases, such as vascular diseases [76]. Yang et al. suggested that
berberine restrained lipid uptake and stimulated cholesterol efflux through Nrf2/HO-1
activation, which resulted in the repression of foam cells and the progression of atheroscle-
rotic plaques in a mouse model [77]. Paul et al. found that berberine has potential as a
therapeutic candidate for the treatment of pathologies associated with diabetes in mice [78].

4.4. Curcumin

Curcumin (diferuloylmethane) is a polyphenol found in turmeric that has the capacity
to treat several chronic diseases related to the cardiovascular system, nervous system, and
inflammatory conditions [113–115]. Curcumin plays a protective role in the endothelium
by inducing HO-1 in bovine aortic endothelial cells (ECs) [116]. Takano et al. found that
curcumin suppresses vascular aging and inflammation, which are associated with the
elevation of HO-1 in mice [79]. Similarly, Fleenor et al. provided evidence that dietary
curcumin supplementation (0.2% in chow) alters two clinically important markers of
arterial dysfunction with aging, including normalization of vascular superoxide production
and oxidative stress, in a mouse model [80]. Xiao et al. found that curcumin protects
against acute vascular inflammation through the activation of the HO-1/Nrf2/ARE/p38
MAPK signaling pathway in rabbits, and thus, may be useful in alleviating the vascular
damage that occurs as a result of acute coronary events [81]. The inhibitory effect of
curcumin supplementation in high fat diet-induced vascular dysfunction by increasing
antioxidant enzyme activities, thereby restraining inflammation and oxidative damage in
the vascular endothelium, has been reported in rats [82]. Several studies have reported that
the cardioprotective effect of curcumin in a rodent model is associated with the attenuation
of oxidant stress [83,84]. Supplementation with curcumin and carotenoids led to the
anticipation of low-density lipoprotein (LDL) oxidation, which can be related to an increase
in HDL levels and PON1 activity, thereby reducing these cardiovascular risk factors in
diabetic rats [85].

4.5. Epigallocatechin Gallate (EGCG)

EGCG belongs to the catechin family of polyphenols, and is found in fruits, vegetables,
chocolate, wine, and tea [117]. EGCG is the most abundant catechin and is associated
with the majority of green tea intake-related health benefits [118]. After traumatic brain
injury (TBI), immediate administration of EGCG suppresses edema formation and protect
against TBP-induced oxidative stress through the blockage of NADPH oxidase activation in
mice [86]. Zheng et al. demonstrated that EGCG provokes Nrf2 and HO-1 via the alteration
of caveolae function related to caveolin-1 displacement [87].
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4.6. Fisetin

Fisetin (3,3,4,7-tetrahydroxyflavone) is a small molecular flavonoid found in many
fruits, especially strawberries, and vegetables [119]. Fisetin has been shown to have
antioxidative effects mainly through activation of Nrf2/ARE in both rodent and human
umbilical vein endothelial cells [88,120,121], and has also been shown to prevent cell
proliferation and inflammation [122,123]. Another study revealed that fisetin ameliorated
hyperhomocysteinemia (HHcy)-induced endothelial dysfunction and vascular dementia
in rats, with the induction of antioxidant genes, such as SOD and CAT [89]. Dong et al.
found that fisetin protects against cardiac hypertrophy both in vivo and in vitro, and that
repression of oxidative stress is one of the critical underlying mechanisms [90].

4.7. Myricetin

Myricetin (3, 5, 7, 3, 4, 5-hexahydroxyflavone) is found in vegetables, fruits, teas, wines,
and medicinal plants, and has both anti-inflammatory and antioxidant activities [124,125].
The anti-inflammatory mechanism of myricetin may involve its ability to obstruct the
production of pro-inflammatory mediators via the inhibition of the NF-κB, STAT1, Nrf2, and
HO-1 pathways [91]. Guo et al. demonstrated that myricetin has a protective effect against
oxidative stress in choline-induced vascular dysfunction and liver injury in mice [92].

4.8. Quercetin

Quercetin is a bioactive plant flavonol-type flavonoid that is ubiquitous in vegeta-
bles and fruits [126]. Numerous human intervention studies have been conducted to
evaluate the efficacy of quercetin consumption in reducing the risk of cardiovascular dis-
eases [127–131]. Quercetin has prospective free radical scavenging properties, including
inhibition of cancer proliferation [132], neuroprotection [133], renoprotection [134], and
anti-thrombosis [135]. In in vitro models using rodent- and human-derived cells. Chis
et al. found that quercetin administration, in conjunction with modest exercise training,
decreased vascular complications and tissue injuries caused by diabetes in the rat aorta [93].
Likewise, vascular ROS formation and endothelial dysfunction were suppressed by dietary
quercetin in HFD-fed ApoE−/− mice, with valuable effects on atherosclerotic plaque
formation [94].

4.9. Resveratrol

Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a polyphenol found in plants such as
peanuts and different types of berries [136,137], which exerts antioxidant, anti-inflammatory,
and neuroprotective effects [138–140]. Several studies have shown that resveratrol is bene-
ficial for treating and preventing memory deficits in aged rats and has beneficial cardiovas-
cular effects [94,140–142]. Resveratrol upregulates the endogenous antioxidant systems,
such as the SOD enzymes, in endothelial cells and cardiac myoblasts, and further decreases
ROS production [95,143]. A recent study reported that resveratrol ameliorates endothelial
dysfunction, memory deficits, increased oxidative stress, inflammation, and impairment
of neurotrophin expression in a rat model of vascular dementia [96], and therefore, may
be beneficial in DM patients because of its vasculoprotective and neuroprotective effects.
In streptozotocin-induced diabetes, resveratrol ameliorates endothelial dysfunction by
reducing oxidative stress [97]. Supplementation with resveratrol diminished the presence
of atherosclerotic lesions and periarterial fat deposition in ApoE-deficient (apo E−/−)
mice [98].

4.10. Sulforaphane

Sulforaphane is a natural phytochemical found in cruciferous vegetables, such as
broccoli [144]. Sulforaphane is a potent inducer of phase II antioxidant and detoxifica-
tion enzymes with anticancer, antioxidant, and anti-inflammatory properties [145–147].
Sulforaphane plays a protective role in the injury of human cardiovascular cells by lysophos-
phatidylcholine by preventing the generation of intercellular ROS [99]. Shan et al. found
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that the action of sulforaphane depends on inflammatory injury in human vascular en-
dothelial cells, mediated by p38 MAPK/JNK, as well as by inducing phase 2 enzymes. [100].
Pretreatment with sulforaphane induces antioxidant defenses in the rat brain and signifi-
cantly mitigates functional and behavioral deficits after stroke [101].

5. Conclusions

Vascular diseases are the leading cause of death worldwide. The underlying mecha-
nisms of vascular disease are many and complex, including excessive generation of reactive
oxygen species, oxidative/nitrosative stress, inflammatory responses, and vascular dys-
function. Various aspects of vascular pathology reflect increased oxidative stress, leading
to adverse outcomes in the disease state. Mounting evidence indicates that oxidative stress
is a major pathological process leading to vascular disease. Increased levels of ROS have
been linked to the development and progression of vascular diseases. Cytoprotective
antioxidant enzymes are highly effective at diminishing toxicity following exposure to
several stressors and inducers, such as ROS.

Phytochemicals are bioactive compounds that are abundantly distributed in fruits and
vegetables. The last decade has seen an increase in interest in phytochemicals. Preclinical
studies have revealed several beneficial vascular effects of resveratrol, curcumin, and
berberine. The advantages appear to be predominantly dependent on the antioxidant,
anti-inflammatory, and antithrombotic activities of the compounds. A robust correla-
tion between specific classes of phytochemicals and modulation of antioxidant enzymes
was observed.

According to Nelson et al., natural products such as curcumin/curcuminoids, which
have various physiological activities, including anti-inflammatory and antioxidant func-
tions, are pharmacologically incompatible in human. They exhibit chemical instability;
have poor absorption, distribution, metabolism, excretion, and toxicology properties; and
potential toxicological effects in some studies [148]. Therefore, medicinal chemistry research
such as pharmacokinetic, pharmacodynamic, and biophysical orthogonal approaches, must
be addressed when studying natural bioactive compounds in vitro or in vivo to acquire
validated therapeutic efficacy.

This review focuses on understanding the role of antioxidant enzymes in the pathogen-
esis of vascular diseases. This review has shown that dietary phytochemicals can modulate
antioxidant enzyme signaling pathways and, thus, have potential therapeutic value against
various chronic diseases, including vascular diseases. A better understanding of the role of
antioxidant enzymes by dietary phytochemicals will provide a broader understanding of
the vascular system.
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