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Abstract

Background: The fraction of inspired oxygen (FiO2) administered during general anaesthesia varies widely despite in-

ternational recommendations to administer FiO2 0.8 to all anaesthetised patients to reduce surgical site infections (SSIs).

Anaesthetists remain concerned that high FiO2 administration intraoperatively may increase harm, possibly through

increased oxidative damage and inflammation, resulting in more complications and worse outcomes. In previous sys-

tematic reviews associations between FiO2 and SSIs have been inconsistent, but none have examined how FiO2 affects

perioperative oxidative stress. We aimed to address this uncertainty by reviewing the available literature.

Methods: EMBASE, MEDLINE, and Cochrane databases were searched from inception to March 9, 2020 for RCTs

comparing higher with lower perioperative FiO2 and quantifying oxidative stress in adults undergoing noncardiac sur-

gery. Candidate studies were independently screened by two reviewers and references hand-searched. Methodological

quality was assessed using the Cochrane Collaboration Risk of Bias tool.

Results: From 19 438 initial results, seven trials (n¼422) were included. Four studies reported markers of oxidative stress

during Caesarean section (n¼328) and three reported oxidative stress during elective colon surgery (n¼94). Risk of bias

was low (four studies) to moderate (three studies). Pooled results suggested high FiO2 was associated with greater

malondialdehyde, protein-carbonyl concentrations and reduced xanthine oxidase concentrations, together with reduced

antioxidant markers such as superoxide dismutase and total sulfhydryl levels although total antioxidant status was

unchanged.

Conclusions: Higher FiO2 may be associated with elevated oxidative stress during surgery. However, limited studies have

specifically reported biomarkers of oxidation. Given the current clinical controversy concerning perioperative oxygen

therapy, further research is urgently needed in this area.
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Editor’s key points

� Recommendations to administer 80% oxygen

throughout anaesthesia remain controversial.
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� Systemic, detrimental effects of hyperoxaemia are

often thought to be mediated through increased
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� Despite broad searches, this review could only include

seven small single-centre RCTs comparing oxidative

stress at higher and lower FiO2 levels.

� High intraoperative FiO2 may be associated with

elevated oxidative stress during surgery but further

studies are needed to confirm this.

In 2016 the WHO recommended administering a fractional

inspired oxygen concentration (FiO2) of 0.8 to all intubated

patients undergoing surgery, in order to reduce instances of

surgical site infections (SSIs).1,2 In the first revision of these

guidelines in 2018, this recommendation remained unaltered

but its strength was downgraded from ‘strong’ to ‘condi-

tional’.3 The 2016 recommendation was based on a meta-

analysis of 15 RCTs of perioperative oxygen therapy per-

formed by members of the WHO guideline development

group,4 and remain controversial amongst the international

anaesthetic community.5e7 Notably, the findings of the single

largest trial available when the 2016 recommendation was

published (the PeRioperative OXygen Fraction - effect on sur-

gical site Infection and pulmonary complications after

abdominal surgery (PROXI) study, n¼13788) were deemed bio-

logically implausible by the guideline development group for

reasons that remain obscure.2 Post hoc analyses from the

PROXI study have suggested that higher intraoperative FiO2

could be associated with higher long-term mortality in
• Population
    ° Inclusion criteria:
         ▪ Adults (age >18yr)
         ▪ Undergoing anaesthesia for surgery, reco
    ° Exclusion criteria:
         ▪ Medical patients only (no surgical proced
         ▪ Animal studies
         ▪ Patients undergoing cardiopulmonary by
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• Intervention
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         ▪ Any measurement of reactive oxygen spe
• Study types
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         ▪ Randomised controlled trials
    ° Exclusion
         ▪ controlled clinical trials, cohort studies or
           undergoing emergency laparotomy
         ▪ Editorials, opinions, narrative reviews

Fig 1. Inclusion and exclusion criteria for studies.
patients with cardiac disease, cancer, or both.9,10 A better

understanding of the mechanisms underlying such outcome

differences is essential to successfully resolve this debate.

Systemic detrimental effects of oxygen are often thought to

be mediated through ‘oxidative stress’ e an imbalance be-

tween the production of highly reactive by-products of meta-

bolism (reactive oxygen species [ROS]) and endogenous

antioxidant defence mechanisms.11e13 ROS are largely formed

during oxidative phosphorylation in the mitochondrial elec-

tron transport chain, or within neutrophils/macrophages and

non-phagocytic cells.14e16 Interaction of these chemical spe-

cies with cellular constituents can irreversibly damage lipids,

proteins, and DNA; injuring cells, tissues or end organs and

ultimately resulting in cell death through apoptosis or necro-

sis.14,15 Oxidative stress can be beneficial (e.g. the innate im-

mune system uses this process to attack and destroy invading

pathogens) but can also lead to tissue damage and organ

failure.17,18

Direct detection of ROS remains a challenge because of

their high reactivity and short half-life. Alternative biomarkers

are therefore used as indirect measures of ROS activity, for

example:

1. Markers of oxidation (after interactions with ROS that alter

the cell microenvironment).19,20

2. Antioxidants and markers of cellular redox status, which

change biochemical status after exposure to redox stress.21
vering from anaesthesia/surgery, or both

ure performed before/during/after study)

pass, neurosurgery, or one lung anaesthesia

 oxygen (FiO2) intraoperatively

ratively

cies/oxidative stress markers

 case series with any subgroup of patients



19 438 initial results
MEDLINE, EMBASE, Cochrane

18 330 excluded through initial title
and abstract screening

116 excluded through full text review:
Incorrect primary outcomes:
Surgical site infection (n=30)
Inflammation (n=2)
Pulmonary function (n=30)
Post-operative nausea and vomiting
(n=16)
Maternal and fetal physiology (n=23)
Cardiac function (n=8)
Surgical complications (n=3)
Cerebral blood flow (n=2)
Haematological counts (n=2)

18 454 titles and abstracts read

984 duplicates excluded

Excluded due to lack of data (n=1)

124 full texts accessed

8 RCTs included for methodological
quality assessment

7 RCTs fully analysed
(patient n=422)

Fig 2. CONSORT diagram. CONSORT, Consolidated Standards of Reporting Trials.
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Common markers of oxidation include lipid peroxides (e.g.

malondialdehyde [MDA], F2-isoprostanes, and organic hydro-

peroxide [OHP]), which indicate the levels of cellular lipid

oxidation.19,22 8-Isoprostane is a lipid peroxidation product of

arachidonic, widely utilised by redox scientists.23 MDA is also

formed from peroxidation of fatty acids and used historically

to detect ROS, which degrade lipids to formMDA. MDA is itself

toxic to cells; binding and oxidising DNA to cause cross-linking

of nucleic acid bases, and reacting with other cellular amine

groups.24 Similarly, protein carbonyl moieties (PCO) or

methionine sulfoxide can be measured to reflect levels of

cellular protein oxidation,25 and DNA oxidation can be

assessed by measuring concentrations of 8-oxo-20-
deoxyguanosine.

Across the surgical literature, xanthine oxidase (XO), an

enzyme which generates ROS, has been widely used by re-

searchers to quantify ischaemic/reperfusion injury in patients

perioperatively; with tissue damage thought to bemediated by

adenosine diphosphate catabolism, acidosis, and subsequent

XO production and neutrophil mediation.26e28

Antioxidants act as the cellular counterbalance to oxida-

tion reactions. They can be measured both individually and

cumulatively, as their individual effects are additive.29 Well-

studied antioxidant enzymes include superoxide dismutase
(SOD), glutathione peroxidase, and catalase. Chain-breaking

antioxidants (including vitamin E, thiols, nitric oxide, and

ubiquinol) act by attenuating ROS-triggered chain reactions by

transferring electrons across aqueous or lipid cellular com-

partments.30,31 Thiols (proteins or non-protein compounds

with free sulfhydryl groups) are also major targets of ROS-

induced oxidation. Reactive aldehydes (e.g. MDA) can react

further with sulfhydryl and amino moieties of proteins and

transcription factors to modulate a variety of cell functions

and interfere with redox signalling.32 The ratio of reduced over

oxidised glutathione (GSG/GSSG) is a common marker of

cellular redox status intracellularly, whereas extracellularly

(e.g. in plasma), total free thiols are more convenient markers

of oxidative status as serum albumin (with one single free

sulfhydryl group) accounts for the majority of thiols and free

glutathione concentrations are much lower.32

Total antioxidant status (TAS) represents the additive

function of antioxidants through a colorimetric assay using a

specific test solution. The value produced represents the so-

lution’s antioxidant capacity and can act as a figure with

which to compare levels of antioxidation across different

clinical samples.29,33

Although anaesthetists are becoming increasingly aware of

the role oxidative stress plays in the inflammatory surgical



Table 1Combined results of RCTs reporting onmarkers of oxidative stress in arterial blood, fetal blood, and bronchial lavage samples. *P<0.05; **P<0.01. EL C/S elective Caesarean section;
EM C/S: emergency Caesarean section.

Authors Patient
no.

Control vs
intervention
(FiO2)

Sample Isoprostane
(various)

Organic
hydroperoxides
(mmol L¡1)

Malondialdehyde,
MDA (various)

Protein carbonyl,
PCO (nmol mg¡1)

Xanthine oxidase, XO
(mU mg protein¡1)

Khaw and colleagues41 44 0.21 vs 0.6 Maternal arterial 121.8 vs
200.6**(mmol
L�1)

0.14 vs 0.14 0.89 vs 1.2** (mmol
L�1)

e e

Umbilical venous 135.3 vs 403.0**
(mmol L�1)

0.15 vs 0.5* 0.47 vs 0.78* (mmol
L�1)

e e

Umbilical arterial 122.1 vs 215**
(mmol L�1)

0.18 vs 0.39** 0.4 vs 0.4** (mmol
L�1)

e e

Khaw and colleagues42 125 0.21 vs 0.6 Maternal venous 225 vs 240.7 (pg
ml�1)

e e e e

Umbilical venous 427 vs 471 (pg
ml�1)

e e e e

Umbilical arterial 457 vs 473 (pg
ml�1)

e e e e

Khaw and colleagues43 39 0.3 vs 0.5 vs 1.0 Maternal arterial 154 vs 156 vs
158 (pg ml�1)

e e e e

Umbilical venous 480 vs 416 vs
441 (pg ml�1)

e e e e

Umbilical arterial 410 vs 368 vs
468 (pg ml�1)

e e e e

Koksal and colleagues44 40 0.4 vs 0.8 Subject arterial e e 8.1 vs 8.1 (nmol
mg�1)

5.8 vs 7.5 e

Subject bronchial
lavage

e e 7.7 vs 12.6** (nmol
mg�1)

10.1 vs 4.5** e

Ahuja and colleagues45 60 (EL
C/S)

0.21 vs 0.5 Maternal arterial e e 6.1 vs 6.2 (mmol) e e

Umbilical venous e e 5.3 vs 4.8 (mmol) e e

Umbilical arterial e e 5.4 vs 4.3 (mmol) e e

60 (EM
C/S)

0.21 vs 0.5 Maternal arterial e e 6.1 vs 6.2 (mmol) e e

Umbilical arterial e e 5.1 vs 5.5 (mmol) e e

Umbilical venous e e 5.4 vs 4.8 (mmol) e e

Garcia de la Asuncion
and colleagues39

30 0.3 vs 0.8 Subject arterial 1 h
after induction

e e 0.6 vs 0.5 (nmol
ml�1)

e e

Subject arterial 6 h
postoperatively

e e 0.65 vs 0.4* (nmol
ml�1)

e e

Garcia de la Asuncion
and colleagues40

24 0.3 vs 0.8 Subject mucosal e e 2.0 vs 1.0** (nmol
mg�1 protein�1)

595 vs 310*

Subject arterial e e 1.5 vs 0.4** (nmol
mg�1 ml�1)
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Fig 3. Bias grid.
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stress response, how intraoperative oxygen affects this re-

mains unclear.34,35 The aim of this review is to determine

whether a lower FiO2 during general anaesthesia reduces the

magnitude of perioperative oxidative stress.
Methods

This review is reported in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA),36 and was prospectively registered online at Inter-

national Prospective Register of Systematic Reviews (PROS-

PERO, ID: CRD42017078995).
Selection criteria

RCTs, published in English, in adult (aged 18 yr or older) pa-

tients undergoing any noncardiac procedure in an operating

theatre under general anaesthesia and not requiring one lung

ventilation, neurosurgery or hyperbaric oxygen therapy were

eligible. All included studies reported biochemical levels of

oxidative stress (as agreed by all authors) in response to

administration of either a high or low intraoperative FiO2 (>0.6
vs <0.4, or �20% difference between interventional groups)

(Fig. 1).
Search strategy

EMBASE, MEDLINE, and Cochrane databases were searched

from inception until March 9, 2020 for keywords relating to

ROS, oxidative stress, oxygen, hyperoxia, anaesthesia, and

surgery. Full search strategies are detailed in Appendix A. Two

authors (AO and AC) independently identified potentially

eligible studies by screening all titles and abstracts using

Rayyan (systematic review web application37). Any disagree-

ments were resolved by discussion with all other authors. Full

texts of potentially eligible studies were obtained and

reviewed by two authors (AO and AC). Review by other authors

was available if consensus could not be reached, but not

necessary. Included articles’ references were then hand-

searched for completeness.
Data extraction and assessment of methodological
quality

Data were extracted, placed in an analysis table, and inde-

pendently cross-checked by two authors (AO and AC). One

author (AO) used the Cochrane Collaboration Tool (The

Nordic Cochrane Centre, Copenhagen, Denmark) to assess

Risk of Bias to assess methodological quality. Studies were
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scored as high, low, or unclear risk in each of the following

domains: random sequence generation, allocation conceal-

ment, blinding of participants and personnel, blinding of

outcome assessment, complete outcome data, selective

reporting, and other biases. Because of the high level of het-

erogeneity in the small number of results, a meta-analysis

was not performed.
Results

The initial search yielded 19 438 results, of which 984 were

duplicates. Overall, 124 were deemed potentially eligible after

title and abstract review; however, 116 were excluded on

reviewing the full texts, leaving eight eligible studies (Fig. 2).

The most common reasons for exclusion were only reporting

clinical outcomes and not specifically reporting on biochem-

ical measures. One article was subsequently excluded from

the analysis owing tomissing data despite attempts to contact

the authors.38 Data from 422 patients in seven studies were

included in the final analysis.
Characteristics of included studies

From available data across the seven studies with a total of 422

participants, mean age was 38 (standard deviation [SD], 13.9) yr

and weight 66.9 (3.1) kg. Of the six trials reporting participants’

sex (n¼392 total), only 47 (12%) participants were male. All

seven RCTs included in the analysis reported different bio-

markers of oxidative stress in surgical patients (Table 1).39e45

Four studies (three of which were from the same group) re-

ported oxidative stress in maternal and fetal blood samples

collected during either elective or emergency Caesarean

section.41e43,45 One trial reported markers of oxidative stress

in serum and bronchoalveolar lavage (BAL) samples collected

from 40 patients undergoing a hemicolectomy procedure un-

der general anaesthesia,44 and the final two studies (both from

the same group) studied both mucosal and arterial levels of

MDA intraoperatively and postoperatively during colon

surgery.39,40
Risk of bias in included studies

Of the seven studies analysed, four were deemed to have low

risk of bias across all domains,42e45 and three articles were

deemed to have amoderate risk of bias because of no reporting

on blinding and patient group allocation concealment.39e41 A

risk bias summary grid depicting these results is shown in

Figure 3. Combined results are listed in Tables 1 and 2.
Markers of oxidation

MDAwas themost commonly reported biomarker of oxidative

stress, reported in five of the seven studies.39e41,44,45 Two

studies demonstrated significant increases in MDA with

higher FiO2 in maternal and umbilical serum,41 and bronchial

lavage.44 Two other studies (from the same group) reported

significantly lower mucosal and postoperative arterial MDA

concentrations with an FiO2 of 0.8,39,40 and neither maternal

nor umbilical MDA concentrations changed in the remaining

study.45

Three separate studies (from the same group) reported

maternal and umbilical isoprostane concentrations.41e43

Although the earliest of these reported significant increases
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in the higher FiO2 (¼0.6) group,41 no significant differences

were demonstrated in the latter two studies.42,43

High FiO2 was also associated with higher fetal OHP con-

centrations,41 lower bronchial PCO concentrations,44 and

lower mucosal XO concentrations40 in three separate studies.
Antioxidant and cellular redox status

No differences in oxidised and reduced glutathione were

demonstrated, either intraoperatively (1 h after induction) or 6

h after surgery, in two separate studies (both FiO2 0.3 vs 0.8)

from the same group.39,40

Only two RCTs reported on other markers of antioxidant

status (Table 2). Koksal and colleagues44 reported significant

decreases in arterial and BAL SOD and PSH, and also BAL non-

protein sulfhydryl (NPSH), with lower FiO2 (0.4 vs 0.8) in 40

patients having colorectal surgery, and Ahuja and colleagues45

reported no changes in TAS between control (FiO2 0.21) and

intervention (FiO2 0.5) and inmaternal arterial, fetal arterial, or

fetal venous blood during elective and emergency Caesarean

section.
Discussion

Evidence from this systematic review suggests that higher

intraoperative FiO2 could be associated with increased peri-

operative oxidative stress. Evidence from 138 patients across

four studies demonstrated increased biomarkers of oxidative

stress in serum and alveolar samples collected from patients

receiving high FiO2.
39e41,44 However, the number and size of all

of these studies were small, and considerable uncertainty re-

mains about which redox pathways might be most affected by

intraoperative oxygen administration.

Oxygen is one of the most commonly administered peri-

operative drugs, yet paradoxically the debate about howmuch

oxygen patients should receive whilst undergoing surgery re-

mains highly controversial. Even though studies and publica-

tions frequently state that hyperoxia increases levels of

oxidative stress during surgery, direct mechanistic evidence

during the perioperative period appears limited. We believe

this to be the first systematic review reporting oxidative stress

in response to different FiO2s during surgery and our findings

show few (all small single-centre) trials have explored this

during surgery to date. This is evenmore interesting given one

of the most contentious aspects of this debate amongst

anaesthetists is that the WHO’s guideline development group

considered the PROXI trial’s findings to be ‘mechanistically

implausible’.2 This is surprising given that excess oxygen

administration is well documented to be associated with a

lack of benefit or increased harm in a variety of related clinical

settings, including acute illness,46 critical illness,47,48 cardiac

disease,49 post resuscitation,50 stroke,51 and traumatic brain

injury.52e54 High FiO2 is also thought to cause acute cardio-

pulmonary complications including pulmonary oedema,

atelectasis, and fibrosis in the critical care setting.55,56

Similarly redox biomarkers have increasingly been associ-

ated with adverse clinical outcomes in a range of clinical

conditions. High cysteine/glutathione ratios are associated

with increased mortality in coronary artery disease.57 Total

free thiol concentrationswere tightly inversely correlated both

with all-cause mortality in renal transplant patients, and with

adverse features in patients with chronic heart failure.58,59 A

pro-oxidant change in the free thiol ratio has also been

demonstrated in patients with active malignancy,60
myocardial infarction,61 atrial fibrillation,62 chronic obstruc-

tive pulmonary disease,63 and asthma.64 Many risk factors

known to increase perioperative risk have also been associ-

ated with thiol oxidation, including ageing, smoking, alcohol

abuse, and obesity.65 It is also plausible that ROS produced

under hyperoxic conditions may contribute to cellular carci-

nogenesis, damage DNA, and impair DNA polymerase activity,

negatively affecting DNA synthesis and repair.66,67

Significant increases in MDA (used as a serum and tis-

sue marker in four of the seven included trials) were

observed across neonatal cord blood, arterial, bronchial,

and colon mucosal samples given high FiO2. MDA and

isoprostane represent the final oxidation products of

polyunsaturated fatty acids, suggesting FiO2 might affect

lipid membrane composition during surgery. Interestingly,

serum MDA concentrations showed no change between

different FiO2 levels (0.4 and 0.8) in one study, but did in-

crease within BAL and arterial samples, suggesting most

oxidative stress may occur within the pulmonary vascula-

ture.44 ROS induced hyperoxia-induced acute lung injury, a

state of increased permeability of the alveolar/vascular

interface and endothelial disruption (also mediated by in-

terleukins, cytokines, and chemokines) is well described,68

and direct disruption of type 2 epithelial cells by oxidative

and inflammatory mediators promotes cellular apoptotic

and necrotic pathways.69

In contrast, during elective C-section, isoprostane andMDA

concentrations in both maternal and umbilical serum

increased up to two-fold with FiO2 0.6,41 supporting other

research showing that redox mediators can cross the

placenta.70 However, MDA concentrations did not change in a

second study wheremothers received FiO2 of 0.21 or 0.5 during

both elective and emergency operations,45 possibly because of

either the lower FiO2 or shorter duration (<10 vs >52 min) of

oxygen exposure. Oxidative stress has been implicated in

multiple obstetric complications including preterm labour,

maternal vascular disease, and miscarriage, with ROS forma-

tion causing lipid peroxidation, membrane disruption of

placental tissue, and dysregulation of fetal growth and devel-

opment.71e73 It is worth noting that all participants in two of

the trials conducted by Khaw and colleagues41,42 received

spinal (regional) anaesthesia alone, so these results may not

be directly comparable with patients undergoing endotracheal

intubation and general anaesthesia.

Only one trial reported XO expression, an enzyme family

known to directly generate ROS,40 suggesting that inspiring

high FiO2 may attenuate XO activity at a tissue level and

reduce ROS production. Given that urate, a common product

of XO activity, is also one of the main constituents of many

assays used to measure total antioxidant capacity,74 other

measures of antioxidant activity might also be expected to

respond similarly to hyperoxia. Lack of consistency as to how

antioxidant status is reported makes direct comparison chal-

lenging e two studies only reported oxidised and reduced

glutathione concentrations,39,40 whereas two other trials re-

ported alternative markers of activity including SOD, NPSH,

PSH, and TAS.44,45 In one of these latter trials, SOD expression

and both NPSH and PSH concentrations were significantly

reduced with high FiO2 administration,44 suggesting that

lower concentrations of oxygen may stimulate a greater anti-

oxidant response or that excess oxygen might ‘consume’

cellular antioxidant capacity. In contrast, the other trial re-

ported no significant differences in TAS,45 suggesting oxida-

tive stress was not associated with reciprocal anti-oxidation
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responses in these procedures performed under regional (as

opposed to general) anaesthesia.

Hyperoxia-induced vasoconstriction is recognised to in-

crease afterload and reduce cardiac output,75,76 as well as

reduce coronary blood flow.77 Moreover, high flow oxygen

administration is no longer routinely used to manage

myocardial infarction.49,78 A meta-analysis looking at all

in vivo and ex vivo animal studies of oxygen-induced vaso-

constriction concluded that vasoconstriction was directly

proportional to the degree of oxygen exposure, and greatest

within the vascular smooth muscle.79 High FiO2 may also

contribute to peripheral and coronary vasoconstriction during

anaesthesia, increasing tissue ischaemia.

Our analysis is limited by the quantity and quality of

research conducted in this area. Of the seven studies identified

in the current systematic review, only four studies were

deemed to have low risk of reporting bias in all domains

(Fig. 3). Furthermore, a high proportion of participants were

young females as four of the seven included studies only

recruited participants having Caesarean section procedures. It

is not known how perioperative redox changes might differ

between obstetric and non-obstetric surgery, but redox

markers are known to vary with age, sex, body habitus and

pregnancy.35 Another limitation that has hampered progress

in this field is the lack of a conceptual framework for what

oxidative stress actually means in vivo. Many different read-

outs have been proposed and are currently being used as in-

dicators of the involvement of ROS in clinical setting without a

clear understanding what any of these analytes actually

‘mark’ or how these different ‘readouts of cellular activity’

may interact with each other.80

Taken together, our findings evidence a striking lack of

high-quality research exploring the cellular consequences of

perioperative oxygen administration. Historically, periopera-

tive oxygen research has focused on the effects of hyperoxia

on SSI rates as well as nausea and vomiting.81e83 However,

larger trials (such as PROXI) and meta-analyses demonstrate

that the presumed association between hyper-oxygenation

and reduction in SSI rates is uncertain,8,84 and there remains

strong evidence to suggest that ROS formation increases

perioperative tissue inflammation.35 Understanding whether

oxygen causes shifts in the production of ROS and antioxi-

dants has considerable implications for clinical practice, and

further work is urgently needed to explore these mechanisms

that underlie so many current practices in perioperative

medicine.
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