
ARTICLE

Brief segments of neurophysiological activity
enable individual differentiation
Jason da Silva Castanheira 1,3, Hector Domingo Orozco Perez2,3, Bratislav Misic 1✉ & Sylvain Baillet 1✉

Large, openly available datasets and current analytic tools promise the emergence of

population neuroscience. The considerable diversity in personality traits and behaviour

between individuals is reflected in the statistical variability of neural data collected in such

repositories. Recent studies with functional magnetic resonance imaging (fMRI) have con-

cluded that patterns of resting-state functional connectivity can both successfully distinguish

individual participants within a cohort and predict some individual traits, yielding the notion of

an individual’s neural fingerprint. Here, we aim to clarify the neurophysiological foundations

of individual differentiation from features of the rich and complex dynamics of resting-state

brain activity using magnetoencephalography (MEG) in 158 participants. We show that akin

to fMRI approaches, neurophysiological functional connectomes enable the differentiation of

individuals, with rates similar to those seen with fMRI. We also show that individual differ-

entiation is equally successful from simpler measures of the spatial distribution of neuro-

physiological spectral signal power. Our data further indicate that differentiation can be

achieved from brain recordings as short as 30 seconds, and that it is robust over time: the

neural fingerprint is present in recordings performed weeks after their baseline reference data

was collected. This work, thus, extends the notion of a neural or brain fingerprint to fast and

large-scale resting-state electrophysiological dynamics.
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Understanding the biological nature of individual traits and
behavior is an overarching objective of neuroscience
research1–4. The increasing availability of large, openly

available datasets and advanced computational tools propels the
field toward this aim5–7. Yet, with bigger and deeper data
volumes, neuroscientists are confronted with a paradox: while
big-data neuroscience approaches the realm of population neu-
roscience, we remain challenged by understanding how inter-
individual data variability echoes the singularity of the self1,3,8,9.

This epistemological question has become particularly vivid
with recent research showing that individuals can be differ-
entiated from a cohort via their respective neural fingerprints
derived from structural magnetic resonance imaging (MRI)10,11,
functional MRI (fMRI)12–16, electroencephalography (EEG)17–19,
or functional near-infrared spectroscopy (fNIRS)20. Neural fin-
gerprints are associated with individual differences in intelligence
test performance, working memory, and attention21–24. Most
published work so far is methodologically based on inter-
individual similarity measures of functional connectivity—
understood as statistical dependencies between ongoing signals
across brain regions in task-free awake conditions25,26—as
defining features of neural fingerprints. Yet, the indirect coupling
between hemodynamic and neural brain signaling interrogates
the neurophysiological nature of brain fingerprints.

In electrophysiology, ongoing brain dynamics at rest are rich
and complex26 and have long been considered a nuisance, a by-
product of neural noise27–29. Recent experimental evidence,
spurred by systems neuroscience models, indicates that sponta-
neous brain activity captured using electrophysiological techni-
ques expresses similar resting-state connectomes as fMRI and
influences conscious, sensory processes30–32. Ongoing neurophy-
siological activity varies considerably between individuals and
across the lifespan. One instance is the inter-individual variability
of prominent features of human brain neurophysiological activity,
such as the alpha rhythm (8–12 Hz) peak frequency33,34. Previous
EEG fingerprinting work was restricted to scalp data, and there-
fore, provided limited neuroanatomical insight17–19. Another
distinctive aspect of electrophysiology is the contamination of
recordings by artifacts of different natures including environment
and instrument noise, muscle contractions, eye and head move-
ments, which can be distinctive of individuals and can bias fin-
gerprinting with non-neural signal features. Overall, the unique
signature components of fast neurophysiological brain dynamics
across individuals remain unchartered.

In this work, we use resting-state recordings of magnetoence-
phalography MEG35 from a cohort of participants to identify neu-
rophysiological features of individual differentiation. We both derive
measures of functional organization (i.e., functional connectivity)
inspired by fMRI neural fingerprinting approaches, and spectral
signal markers that are proper to the wider frequency spectrum of
brain signaling accessible to neurophysiological data. Our data
exemplify that individual differentiation based on connectome fea-
tures is akin to previous fMRI reports, and further demonstrate that
we can equally differentiate individuals with simpler measures of the
spatial distribution of neurophysiological spectral signal power. In
addition, individual differentiation is achieved with recordings as
short as 30 seconds and is robust across recordings preformed weeks
after their baseline reference data was collected. Together, our work
extends the notion of a neural fingerprint to the fast and large-scale
resting-state dynamics of electrophysiology.

Results
We used MEG data from 158 participants available from the
Open MEG Archives OMEGA6. Data collected on multiple days
were available for a subset of these participants (N= 47; mean

duration between consecutive sessions: 201.7 days; Fig. 1). The
participants were both healthy and patient volunteers (ADHD
and chronic pain) spanning in age from 18–73-years old
(see Supplemental Information). T1-weighted structural MRI
volumes were available from OMEGA for all participants and
were used to produce source maps of resting-state brain
activity36. We derived several neurophysiological signal features
from MEG brain source time series summarized within the
Desikan-Killiany atlas—68 regions of interest (ROIs) parcellating
the entire cortical surface37. The MEG features comprised power-
spectral-density estimates (PSD) within each of the 68 ROIs37,
and 68 × 68 functional connectomes (FC) between these ROIs.
The approach is illustrated in Fig. 1 and the FC and PSD
methodological details are provided in “Methods”.

Participant differentiation was performed across pairs of MEG
data segments taken from either the same (within-session dif-
ferentiation) or a repeated session (between-session differentia-
tion) using two distinct datasets (Fig. 1a) and based either on FC
or PSD features (referred as connectome and spectral finger-
printing, respectively). The within-session challenge with longer
data segments was considered to assess the baseline performances
of the MEG fingerprinting approaches proposed. The more
challenging situations developed in the present report concern
individual differentiation from shorter 30 s time segments within
or between recording sessions. For each pair of participants, the
Pearson’s correlation coefficient between their respective features
(i.e., FC or PSD) was the corresponding entry in the group cor-
relation matrix (see Supplemental Information). The finger-
printing procedure for each individual proceeded via a lookup
operation through the corresponding row of the correlation
matrix; the index of the column featuring the largest
correlation coefficient determined the predicted (anon-
ymous) identity of the individual in the cohort. Thus, if a given
individual’s data features from the first dataset were most cor-
related to the data features from their second dataset, the indi-
vidual would be correctly differentiated. Note that taking the
maximum along the rows or columns simply switches which
dataset is used for deriving the differentiation features (e.g., dif-
ferentiating individuals using dataset 1 from features derived
from dataset 2; results for all possible combinations of datasets
are reported in Supplemental Information). The overall accuracy
of the neural fingerprinting procedure was computed as the
proportion of participants correctly differentiated. We ran three
types of differentiation challenges: within-session fingerprinting
consisted of the differentiation between 158 participants (i.e., the
datasets were from same-day recordings split in half); a between-
session differentiation challenge for a subset of 47 participants for
whom the datasets were from two separate days; and a between-
session differentiation using considerably shorter data segments
(30 s) (Fig. 1a). We conducted the differentiation challenges using
either broadband MEG data or band-limited versions within the
typical frequency bands used in neurophysiology. We also derived
a differentiability score for every participant, which indicates the
saliency of the differentiation of any given individual in the tested
cohort (see “Methods”).

Within-session connectome and spectral data differentiate
individuals. Within-session MEG connectome and spectral fin-
gerprinting achieved 94.9% and 96.2% participant differentiation
accuracy, respectively (Fig. 2). This outcome was robust to
switching datasets (Supplemental Information). While previous
work12 reported that data reduction strategies improved finger-
printing performances, this was not the case with our data. Data
reduction strategies only marginally improved individual differ-
entiation, as explained in Supplemental Information.
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We also ran the differentiation procedure for each of the
typical frequency bands of electrophysiology to understand
whether the expression of certain ranges of brain rhythms would
be more specific of individual differentiation. We bandpass
filtered MEG signals in the delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high gamma
(50–150 Hz) frequency bands before running the same within-
session fingerprinting procedure using the resulting narrowband
signals. Narrowband connectome fingerprinting yielded differ-
entiation accuracy scores of 98.7% for delta, 100% for theta,
99.4% for alpha, 100% for beta, 98.7% for gamma, and 94.9% for
high gamma. Narrowband spectral fingerprinting produced
differentiation accuracies of 94.9% for delta, 95.6% for theta,
95.6% for alpha, 96.2% for beta, 96.2% for gamma, and 97.5% for
high gamma. These results are summarized Fig. 2a.

MEG fingerprinting is robust against physiological, artefactual,
and demographics confounds. We investigated the robustness of
these results against variables of no interest and possible confounds.
We first processed each individual session’s empty-room recordings
in an identical fashion to participants brain data. We produced
pseudo brain maps of empty-room sensor data using the same
imaging kernels as those used for each session’s participant brain
data. The implication is that imaging kernels designs are based on
information that are specific of each participant, such as their
respective head positions in the MEG sensor array and individual
anatomy brain features that constrain MEG source maps. We,
therefore, tested whether such individual information unrelated to
brain activity contributed substantially to individual differentiation
from MEG source maps. We found that differentiation performances

were considerably reduced using empty-room data (<20% across all
tested models; Fig. 2). These results based on source maps were
corroborated by the low fingerprinting performances obtained by
using empty-room sensor data only (<5% across all tested models;
Supplemental Information).

We then performed Pearson correlation analyses between
differentiability scores and recording parameters, typical MEG
artifacts, and demographic variables. There was no association
between the duration of scans and differentiability for con-
nectome (r=−0.02, p= 0.75) and spectral (r= 0.02, p= 0.8)
fingerprinting (Supplemental Information). Further, none of the
tested MEG artifacts due to eye movements, heartbeats, and head
motion were related to individual differentiation from either
connectome or spectral fingerprinting. Indeed, differentiability
was not correlated to motion (connectome: r= 0.06, p= 0.5;
spectral: r=−0.01, p= 0.9), cardiac (connectome: r= 0.05,
p= 0.6; spectral: r= 0.07, p= 0.4), or ocular (connectome:
r=−0.09, p= 0.3; spectral: r=−0.05, p= 0.5) artifacts (Fig. 2b).

Lastly, we further hypothesized that fingerprinting perfor-
mances may have been skewed by sample heterogeneity in terms
of data from healthy vs. patient participants. Yet, there were <1%
differences in differentiation accuracy after restricting fingerprint-
ing to healthy participant data (Supplemental Information). We
also verified that participant demographics such as age, sex, and
handedness did not contribute to differentiability either (Supple-
mental Information).

MEG fingerprinting is robust over time. We tested whether
participants who underwent MEG sessions on separate days were
differentiable from datasets collected weeks to months apart (with

Fig. 1 Neural fingerprinting analysis pipeline and definition of differentiability. a Schematic of exemplar MEG data divided into datasets used in each of
the specified differentiation challenges. (i) Within-session challenge: the session data was split in half to generate segments of equal duration; (ii)
Between-sessions challenge: differentiation was performed using data recorded on two separate days; (iii) Between-session shortened challenge: data
recorded on two different days were split into three 30 s segments. b Schematic of the data analysis pipeline: source modeling was first performed before
extracting features from each region of the Desikan-Killiany atlas37. These features were vectorized and subsequently used to fingerprint individuals,
yielding a participant correlation matrix. c Features for the between-session challenge from an exemplar subject. Left panel depicts amplitude envelope
correlation (AEC) functional connectivity matrices across two datasets; both matrices feature the Pearson correlation coefficients between all 68 regions of
the Desikan-Killiany atlas37. Right panel plots the power spectrum density estimates from two regions of the atlas, across two datasets. d Differentiability
was derived for each participant as the z-score of their correlation to themselves, relative to the correlation between themselves and the rest of the cohort.
A participant with a high correlation to themselves and low correlations to others was qualified as highly differentiable. An individual highly correlated to
both themselves and many others in the cohort was qualified as less differentiable.
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a range of 1–1029 days apart and an average of 201.7 days,
SD= 210.1). We applied the above fingerprinting procedures
towards this between-session challenge on the subset of partici-
pants concerned (N= 47). Connectome fingerprinting decreased
in performance compared to the differentiation accuracy scores
obtained from the within-session challenge (89.4%). Performance
of connectome fingerprinting from narrowband signals also
decreased, with the greatest robustness obtained from using sig-
nals in the beta and theta bands (Fig. 3 and Supplemental
Information). In contrast, spectral fingerprinting was robust
longitudinally, with differentiation accuracy scores of 97.9%
(broadband) and >90% (narrowband) that were similar to those
obtained in the within-session challenge (Fig. 3 and Supplemental
Information). Differentiability scores were not correlated with the
number of days between MEG sessions (connectome: r= 0.09,
p= 0.5; spectral: r= 0.08, p= 0.65).

We further challenged MEG individual differentiation between
sessions days apart using shorter data segments. We extracted
three 30 s segments from the between-session data on each day
(Fig. 1a) and ran the same fingerprinting procedures as above.
Differentiation performances from connectome fingerprinting
remained high across all 30 s segments tested (Fig. 3c) using
broadband MEG signals (differentiation accuracy 83.8%). Per-
formance of spectral fingerprinting was decreased (differentiation
accuracy: 61.6% Fig. 3c). We observed similar discrepancies in
performance robustness between connectome and spectral

fingerprinting using narrowband signals (Fig. 3), especially in
the delta, theta, and alpha bands. We report results obtained from
using sensor data only and for the within-session shortened
challenge in Supplemental Information.

Salient neurophysiological features for fingerprinting. We
identified the features which were the most characteristic of
individuals for MEG fingerprinting. We derived measures of
intraclass correlation (ICC)12 to quantify how much each feature,
such as an edge of the FC connectome or the signal power in a
frequency band from an anatomical parcel, contributed to fin-
gerprinting (see “Methods”). This metric was reported in previous
brain fingerprinting studies and captures the inter-rater reliability
of each participant as their own rater, to identify the neurophy-
siological signal features that are the most consistent across
individuals12,38. We performed this analysis for both the broad-
band connectome and the band-specific spectral fingerprinting
within-session challenges. The data show that the dorsal attention
and visual networks were the most specific across individuals for
connectome fingerprinting, in all frequency bands (Fig. 4). Beta-
band connectivity of the limbic network was particularly dis-
tinctive of individuals. For spectral fingerprinting, theta, alpha,
beta, and gamma bands discriminated individuals along midline,
parietal, lateral temporal, and visual areas (Fig. 4b). These results
are consistent with our narrowband analysis (see Fig. 2a), which
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Fig. 2 Within-session differentiation is not related to recording artifacts. a Differentiation accuracy of connectome and spectral fingerprinting based on
broadband and narrowband brain signals. Horizontal gray bars indicate reference differentiation levels obtained from empty-room data recorded on the
same days as participants (see “Methods”). b Differentiability scores were not related to typical confounds such as head motion, eye movements, and
heartbeats. Top row: using connectome fingerprinting; bottom row: spectral fingerprinting. Source data are provided as a Source Data file.
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(b) differentiability does not decrease with time
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Fig. 3 Between-session fingerprinting accuracy. a Differentiation accuracy for connectome and spectral between-session fingerprinting. Fingerprinting
performances are similar to those from the within-session challenge. b Pearson correlation analyses did not reveal an association between differentiability
and the delay between session recordings (connectome fingerprinting: r= 0.09, p= 0.5; spectral fingerprinting: r= 0.08, p= 0.60). c Between-session-
shortened differentiation accuracy using shorter 30 s data segments collected days apart (average: 201.7 days). Each data point represents one
combination of datasets used for fingerprinting (see “Methods” for details). d Scatter plots of all fingerprinting challenges across frequency bands for
source (brain) and sensor (scalp) level fingerprinting (Supplemental Information details the results obtained for all sensor data fingerprinting challenges).
Source data are provided as a Source Data file.
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highlights beta activity as the most informative in differentiating
individuals.

Neurophysiological fingerprinting features are associated with
demographics. Beyond differentiating individuals in a cohort, we
tested whether resting-state neurophysiological features could
also predict meaningful participant traits, using an exploratory
partial-least-squares (PLS) analysis (see “Methods”39). Briefly,
PLS explains the structure of the covariance between two obser-
vation matrices—here a demographic matrix and a neurophy-
siological signal matrix composed of ROI-specific connectome of
spectral measures—with latent components. PLS analysis of our
data revealed three significant latent components, which were
distinct for connectome and spectral fingerprinting (Supple-
mental Information). The first latent component in connectome
fingerprinting was related to clinical population (r= 0.2, 95% CI
[0.160, 0.3]) and handedness (r= 0.2, 95% CI [0.1, 0.3]). This
demographic profile was associated with reduced beta-band
functional connectivity over the frontal-parietal network (Fig. 5).
For spectral fingerprinting, the first salient latent component was
related to a younger age (r=−0.3, 95% CI [−0.1, −0.5]), female
(r= 0.4, 95% CI [0.2, 0.5]) and clinical population (r= 0.5, 95%
CI [0.2, 0.5]). This demographic profile was associated with
stronger expressions of broadband neurophysiological signal
power in superior parietal regions and the pericalcarine gyrus
bilaterally, and reduced neurophysiological signals in the isthmus
cingulate (Fig. 5).

Discussion
The recent leveraging of large, open fMRI datasets has brought
empirical evidence that individuals may be differentiated within a
cohort from their brain imaging functional connectivity, inspiring

the metaphor of a neural fingerprint. Unlike hand fingerprints,
their cerebral counterpart predicts task performance and a variety
of traits14,21–24. These intriguing findings require a better
understanding of their neurophysiological foundations, which we
sought to characterize from direct neural signals captured at a
large scale with MEG.

Our data show that individuals can be differentiated in a cohort
of 158 unrelated participants from their respective resting-state
connectomes and spectral profiles in a range of fast brain signals.
MEG fingerprinting was successful using data lengths (30 s) much
shorter than those reported for fMRI fingerprinting14,40. Brain
electrophysiological signals are rich, complex, and convey
expressions of large-scale neural dynamics channeled by indivi-
dual structural anatomy and physiology41. Indeed, we also
showed that MEG fingerprinting is robust across time, making
individuals potentially differentiable from data collected days,
months, or years apart. Lastly, we characterized whether indivi-
dual differences in resting-state neural dynamics are demo-
graphically meaningful through an exploratory PLS analysis. We
showed that both resting-state connectomes and spectra predict
latent demographic components. Recent findings corroborate our
results, demonstrating individual differences between functional
connectivity derived from resting-state electrophysiology42.
Future work will be required to replicate and expand these
findings in more samples of individuals.

Connectome and spectral neurophysiological fingerprints. Our
results highlight two sets of brain-wide electrophysiological fea-
tures that contributed to successful fingerprinting: connectome
and spectral measures across the neurophysiological frequency
spectrum. Overall, connectome and spectral fingerprinting with
MEG performed equivalently to fMRI approaches, achieving
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overall differentiation rates above 90%, with robust individual
differentiation over time and against noise12,14,43.

We found that for connectome fingerprinting, the anatomical
regions the most characteristic of individuals differed between
MEG and fMRI. While fMRI highlighted the default-mode
network and the fronto-parietal resting-state networks, MEG
connectome fingerprinting emphasized functional connectivity
within limbic and visual networks as contributing to individual
specific neurophysiological signatures. In contrast, both MEG and
fMRI fingerprinting emphasize the importance of the dorsal
attention network14. These observations are not mutually
exclusive, considering the different nature of brain signals
captured by the respective modalities. One possible interpreta-
tion—requiring further investigation—is that the fast neurophy-
siological signals that contribute to differentiation with MEG have
hemodynamic counterparts that are not as salient in fMRI as the
fingerprinting networks reported so far. Nevertheless, our data
indicate that neurophysiological signals in the beta band
contribute to the highest differentiation accuracy amongst all
other typical bands. This finding is compatible with previous
work reporting that correlated amplitude changes of MEG brain
signals are related to the microstructure of white matter tracts and
reveal, with the same amplitude envelope correlation method as
used here, MEG resting-state brain networks that align with
fMRI’s44,45. Beta-band activity also emerges from recent literature
as a signalling vehicle of re-afferent “top-down” communications
in brain circuits46,47. One can therefore speculate that beta-band
signals would convey electrophysiological representations of
internal cognitive models that are by essence intimately specific
of each individual35.

Such brain signal amplitude signatures are further emphasized
by the ability of simple spectral brain maps to enable MEG
fingerprinting. Within- and between-session spectral fingerprint-
ing were achieved with remarkable accuracy (>90%) with
broadband MEG brain signals or restricted to the typical bands
of electrophysiology. Spectral differentiation based on signals
from the faster bands (gamma and high-gamma) was overall the
most robust longitudinally and against using shorter data
segments. This observation is consistent with the width of (high)
gamma frequency bands spanning broader ranges (here between
30–50 Hz and 50–150 Hz) than slower bands such as delta
(1–4 Hz), theta (4–8 Hz) and alpha (8–12 Hz). The spectral
estimates averaged across the broader (high) gamma bands were,
therefore, the most robust against using shorter data segments.
The reduced number of sliding time windows available over
shorter data durations increased the variance of the summary
statistics extracted to derive the spectral fingerprints from the
signals defined over narrower bands. The higher frequency bands
were less affected because the larger number of frequency bins
involved in the extraction of their summary power statistics
tended to compensate the higher empirical variance of spectral
estimates from a lesser number of observations over time.
Connectome fingerprinting was more immune against using
shorter data durations. The underlying approach indeed did not
require spectral transformations but resorted to a bank of
narrowband filters applied over the original duration of MEG
recordings before the resulting filtered signals were segmented in
shorter epochs for the fingerprinting challenges. The consequence
is that the number of data points used for all narrowband signals
was identical across all frequency bands, yielding moderate
variability in differentiation performances compared to those
obtained with the spectral approach. Another point of robustness
for connectome fingerprinting is that connectivity weights
between network nodes may fluctuate very slowly over time in
task-free brain activity: Florin and Baillet30 reported fluctuation
rates of 0.01 Hz in MEG, indicating typical time cycles of 100 s—a

duration substantially longer than the 30 s shortest time window
used here. Over longer periods of time though, such as in the
between-session challenge, spectral fingerprinting outperformed
its connectome counterpart. We note a slight increase of spectral
differentiation accuracy in the between-session challenge (e.g.,
+1.6% for broadband fingerprinting) compared to within-
session, which was a statistical fluctuation due to using a smaller
sample of participants.

On average across all source fingerprinting challenges reported
herein, and despite successful fingerprinting across lower
frequency bands (delta 54.4%, theta 62,3%, alpha 65.5%),
performances were markedly better using high-frequency signal
components (beta 82.0%; gamma 82.5%; high gamma 77.9%).
Gamma and faster activity have long been associated with
concurrent and colocalized hemodynamic fluctuations48,49.
Because they may be seen as dual manifestations of BOLD
signaling used in fMRI fingerprinting, this may explain why these
signals contributed robustly to MEG brain fingerprinting in our
data. However, gamma-band and faster brain signals are on
average weaker in amplitude and therefore may be masked by
contamination from artifacts and noise50–52. The preprocessing
applied to our data attenuated such nuisance to a point where
individuals were not differentiable from typical sources of signal
contamination such as individual head motion behavior.

Although a rhythm of prominent amplitude in humans during
rest, alpha-band activity (8–12 Hz) was not particularly specific to
differentiate individuals in the cohort. In that respect, our data is
aligned with previous MEG works on resting-state connectomes
extracted from neurophysiological MEG signals, which did not
report on a salient role of alpha activity in driving inter-regional
connectivity30,44. We argue that the spatial topography of alpha
resting activity may be relatively stereotypical across individuals,
involving thalamo-cortical loops that project focally to the
parieto-occipital junction, with limited variability across
individuals6. In task, alpha activity has been related to attention
orienting, alertness and anticipation, and the registration of
(multimodal) sensory information, thereby reflecting transient
mental states32,53–56 rather than individual traits.

The data also indicates that MEG fingerprinting is robust
against typical recording artifacts that may be idiosyncratic of
individuals and therefore, could have confounded fingerprinting.
Session environmental conditions captured by empty-room MEG
recordings were not sufficient to differentiate individuals within
or between sessions. The participant’s anatomical and head-
position information embedded in their respective MEG source
imaging kernels were also not sufficient to differentiate
individuals. Note that head position changed between sessions.
Further studies are required to clarify how these results may vary
depending on the type of MEG source modeling adopted. We
anticipate little influence of the type of source model used though,
based on evidence that beamforming kernels are mathematically
equivalently to other major classes of linear source estimation
kernels, such as weighted minimum-norm estimators57. Future
work should corroborate these results with regards to fingerprint-
ing. The choice of connectivity measure to derive electrophysio-
logical connectomes may also influence fingerprinting58. We look
forward to current progress in electrophysiological brain
connectomics to put forward measures of network connectivity
informed by mechanistic principles and emerging as a standard
metrics in the field to confirm and expand present fingerprinting
results59.

While our present data show robust longitudinal fingerprinting
performances, future work involving more participants with
multiple MEG visits is required to both replicate these
observations and investigate whether individual deviations from
baseline fingerprints could be early signals of asymptomatic
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neuropathophysiology35. We hope the remarkable ability to
fingerprint individuals from the present electrophysiological
features serves as a stepping stone for future investigation, which
may include multimodal noninvasive assessments based on MEG,
combined with, e.g., fMRI and/or EEG.

Neural fingerprints of individual traits. Our data suggest that
individual differences in resting-state neurophysiological func-
tional connectivity and spectral power relate to latent demo-
graphic clusters. These observations are in line with previous
fMRI work that showed that connectomes are predictive of
individual differences in attention, working memory, and intel-
ligence test performance. For instance, connectivity patterns
between the default mode and the dorsal attention networks
predict attentional behavior during the task and self-reported
mind wandering22,60 (see61 for review). Overall, a possible con-
ceptual framework is that task-free neural dynamics are the sig-
natures of an individual scaffold of brain functions that is
predictive of task behavior. This view is also that of the sponta-
neous trait reactivation hypothesis wherein the organization of
the human cortex at rest (manifested e.g., by functional con-
nectivity) is a window into the self’s unique traits and abilities62.
Early evidence indeed suggests that functional connectivity and
brain activity are associated with personality traits and even
inter-personal closeness in social networks63,64.

Yet, the mechanistic implementation of these intriguing
observations remains elusive. Inter-individual variability in the
distribution of synaptic weights across the cerebrum, shaped
through lifetime experiences according to Hebbian principles,
may account—at least in part—for connectome fingerprinting62.
The heritability of functional connectivity has also been
discussed, especially for a variety of brain networks (e.g., dorsal
and ventral attention network and the default mode
network)65–67. Heritability of brain spectral characteristics is also
actively discussed68–70. This emerging literature and the empirical
evidence of brain fingerprinting certainly motivate more research
on new, fascinating questions about the biological nature of
the self.

Sampling population diversity for personalized interventions.
Robust individual signatures of brain activity may be transfor-
mative to neurophysiological phenotyping and population neu-
roscience. With the increasing availability of multi-omic data
repositories, there is a research opportunity to span the diversity
of statistical normative characteristics of brain fingerprints across
the population in relation to behavior, environmental, and clin-
ical variables1,3,35. Our study highlights the utility of datasets of
individuals who have been scanned on multiple occasions to
capture and characterize interindividual variability as meaningful
information. Ideally, large databanks of individual variants sam-
pled across multiple dimensions of socio-economic, age, and
geographic factors enable normative modeling approaches to
establish the risk traits of developing syndromes of, e.g., early
cognitive decline, neurodegeneration, or mental illness. Previous
work has shown that mental disorders may affect the stability of
individual fingerprints over time and therefore points at possible
translational applications of the approach15,71. We also foresee
that changes over time or lack thereof of a person’s brain fin-
gerprint may also constitute a new class of non-invasive markers
of responses to neurological and other treatment in a variety of
chronic, neurodegenerative, or acute (e.g., stroke) conditions.
Brain fingerprints derived from short, task-free sessions may play
a leading role to realize this vision in practice.

Brain fingerprinting may also contribute to future endeavors in
establishing how oscillatory dynamics at rest support cognitive

functions across the lifespan. MEG brain fingerprinting presents
several potential advantages in terms of safety, shorter scan
duration, and the immediate proximity of a care person during
data collection, especially for special populations.

The methodological approaches proposed herein can, in
principle, transfer to EEG fingerprinting17–19, which would be
more readily available in clinics. Whether results would be as
robust with EEG as MEG remains to be demonstrated. Indeed,
EEG source mapping is more prone to contamination from
muscle artifacts and is more sensitive to approximations in the
biophysical modeling of head tissues, which may compromise
further fingerprinting capabilities35.

In sum, our study extends the concept of neural or brain
fingerprint to fast and large-scale resting-state electrophysiologi-
cal dynamics, which encapsulate meaningful individual differ-
ences in both functional connectivity and neuroanatomical maps
of power spectrum characteristics. We are hopeful that the
present contribution paves the way to replication and extension
using larger open datasets. Many fascinating outstanding
questions remain about the biological nature of inter-individual
variability expressed via neural oscillations and brain network
dynamics, and more specifically how these differences associate
with behavior and diseases natural history. The research ahead is
for future population neuroscience studies.

Methods
The Open MEG Archives (OMEGA). We used data from the Open MEG Archives
(OMEGA6;) consisting of resting-state MEG recordings acquired using the same
MEG system (275 channels whole-head CTF; Port Coquitlam, British Columbia,
Canada). The sampling rate was 2400 Hz, with an antialiasing filter applied at
600 Hz cut-off, and built-in third-order spatial gradient noise cancellation (see ref. 6

for details on data acquisition).
We analyzed MEG resting-state data from 158 unrelated OMEG participants

(77 females, 31.9 ± 14.7 years old). Recordings were ~5-min long. Supplementary
Table 1 provides details on scanning procedures and Supplementary Table 2 on
demographics. A subset of these individuals (N= 47) had recordings over multiple
visits (different days) and were used in the between-session fingerprinting
challenge. The OMEGA data management protocol was approved by the research
ethics board of the Montreal Neurological Institute. We followed the ethical
procedure of our local ethics board (the Montreal Neurological Institute).

MEG data preprocessing and feature extraction. MEG data were preprocessed
using Brainstorm72; version Oct-12-2018 in MATLAB 2017b (Mathworks, Inc.,
Massachusetts, USA) following good-practice guidelines73. Unless specified, all
steps below were performed using the Brainstorm toolkit, with default parameters.
Line noise artifact (60 Hz) along with 10 of its harmonics were removed using a
notch filter bank. Slow-wave and DC-offset artifacts were removed using a high-
pass FIR filter with a 0.3-Hz cut-off. We derived Signal-Space Projections (SSPs) to
remove cardiac and ocular artifacts. We used electro-cardiogram and -oculogram
recordings to define signal projectors around identified artifact occurrences. We
also applied SSPs to attenuate low-frequency (1–7 Hz) and high-frequency noisy
components (40–400 Hz) due to saccades and muscle activity, respectively.
Bandpass filtered duplicates of the cleaned data were produced for each frequency
band of interest (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz,
gamma: 30–50 Hz, and high gamma: 50–150 Hz). Distinct brain source models
were then derived for all narrowband versions of the MEG sensor data.

Each individual T1-weighted MRI data were automatically segmented and
labeled with Freesurfer74. Coregistration with MEG sensor locations was derived
using dozens of digitized head points collected at each MEG session. We produced
MEG forward head models for each participant using the overlapping spheres
approach, and cortical source models with linearly-constrained minimum-variance
(LCMV) beamforming, all using Brainstorm with default parameters (2016 version
for source estimation processes). We performed data covariance regularization. To
reduce the effect of variable source depth, the estimated source variance was
normalized by the noise covariance matrix. Elementary MEG source orientations
were constrained normal to the surface at 15,000 locations of the cortex. Noise
statistics for source modeling were estimated from two-minute empty-room
recordings collected as close as possible in time to each participant’s MEG session.
Source timeseries were clustered into 68 cortical ROIs defined from the Desikan-
Killiany atlas37 and dimension-reduced via the first principal component of all
signals within each ROI.

Connectome and spectral fingerprinting features were computed from ROI
source timeseries. Individual connectomes were derived in all frequency bands
from the amplitude envelope correlation (AEC) approach75. ROI timeseries were
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Hilbert transformed and all possible pairs of resulting amplitude envelopes were
used to derive the corresponding Pearson correlation coefficients, yielding a
68 × 68 symmetric connectome array. We used Welch’s method to derive power
spectrum density (PSD) estimates for each ROI76, using time windows of 2 s with
50% overlap sled over all ROI timeseries and averaged across all PSDs within each
ROI. The resulting frequency range of PSDs was 0–150 Hz, with a frequency
resolution of 0.5 Hz. The connectome and spectral features were then exported to
Python (3.7.6) for subsequent fingerprinting analyses.

Fingerprinting and differentiability. We used a fingerprinting approach directly
adapted from fMRI connectome fingerprinting methods12,14, which relies on
correlational scoring of individuals between datasets. A given probe participant is
differentiated from a cohort by computing all Pearson correlation coefficients
between the spectral or connectome features of said probe at one timepoint (e.g.,
dataset 1) and the entire cohort at a different timepoint (e.g., dataset 2). The entry
presenting the highest correlation to the probe determined the probe’s estimated
identity, i.e., identified entry in the cohort. This approach was applied between all
pairs of participants in the cohort, yielding an asymmetric correlation matrix
spanning the cohort. We report scores of differentiation accuracy as the ratio
between the number individuals correctly differentiated with the described pro-
cedure and the total number of individuals in the cohort. Differentiation accuracy
scores are obtained from fingerprinting challenges from dataset 1 to dataset 2 and
vice-versa, within- and between-sessions. Figure 1 details the definition of the
dataset labels used, and Supplemental Information contains the results from across
all combinations of datasets/sessions.

Amico and Goñi12 proposed an identifiability score to quantify, for a given
participant, the reliability of its differentiation from others in the cohort. Here, we
extend this notion with the introduction of a differentiability measure, Dself. Let A
be the correlation matrix spanning the cohort (square, asymmetric) between
dataset 1 and dataset 2, and N be the number of participants to differentiate. We
define Dself as the z-score of participant Pi’s correlation to themselves between
dataset 1 and dataset 2, with respect to Pi’s correlation to all other individuals in the
cohort, noted: Dself (i)= (Corrii – μij)/σij, where Corrii is the Pi’s correlation between
dataset 1 and dataset 2, μij is the mean correlation between participant Pi in dataset
1 and all other individuals in dataset 2 (i.e., the mean along the ith row of matrix
A), and σi is the empirical standard deviation of inter-individual features
correlations. Thus, if a participant is easily differentiable, its differentiability
increases; whereas small differentiability scores indicate a participant that is
particularly difficult to differentiate from the rest of the cohort.

Recording artifacts and differentiability. To investigate the effects of recording
parameters and artifacts on fingerprinting, we related each individual’s differ-
entiability to several possible confounds. The duration of each scan was compared
to differentiability to verify that longer recordings available from a subset of
individuals did not make them easier to differentiate. We also correlated the root
mean square (RMS) of signals that measured ocular, cardiac, and head movement
artifacts over the duration of the entire recording to participants’ differentiability
score. For cardiac artifacts for instance, we derived the RMS of ECG recordings; for
ocular artifacts we used the HEOG and VEOG electrode recordings; and for
motion artifacts we extracted the RMS of all three head coil signals that measured
3-D head movements during MEG recordings. These derivations were conducted
for both the connectome and spectral broadband within-session fingerprinting
challenge.

Fingerprinting across frequency bands. We replicated the above fingerprinting
approach using data restricted to each frequency band of interest (delta 1–4 Hz,
theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, gamma 30–50 Hz, and high gamma
50–150 Hz). We report the differentiation accuracy obtained from each narrow-
band signal in both the spectral and connectome fingerprinting challenges in
Figs. 2 and 3, for the within- and between-session fingerprinting challenges
respectively.

We also performed fingerprinting tests based on sensor data only. We used the
same connectome and spectral approaches as the MEG source maps, considering
the time series of each of the 275 MEG channels instead of the 68 ROI time series
derived from the brain map parcels. We report the differentiation performances
from both the sensor and source analyses in Fig. 3 and in Supplemental
Information.

Between-session and shortened fingerprinting challenges. We verified the
robustness of MEG fingerprinting with respect to (1) the ability to differentiate
participants over time and (2) reduced data durations. We subdivided participants
into three additional challenges: the within-session-shortened, between-session,
and between-session-shortened challenge. First, we used the participant data
described in the within-session analysis and extracted connectome and spectral
fingerprinting features over three 30-second non-overlapping time segments. This
duration was based on the length of the shortest recording in the data sample
(Fig. 1aii). We applied the same fingerprinting procedure as described in Finger-
printing and Differentiability across all possible combinations of the three 30 s

datasets. Second, we assessed the stability of the fingerprinting outcomes using a
subset of participants with consecutive MEG sessions separated by several days
(N= 47; separated on average by 201.7 days, see Supplemental Information for
details). Again, we applied the same fingerprinting procedure as described in
Fingerprinting and Differentiability for this between-session challenge. Lastly, we
applied the same shortened analysis—described above—to the subset of individuals
with multiple scans (i.e., the between-sessions data). We report all possible com-
binations of datasets (i.e., three 30 s segments from day 1 and three 30 s segments
from day 2; see Fig. 1a for example) in Fig. 3.

Empty-room fingerprinting. We tested whether environment and instrument
noise daily conditions would bias individual differentiation using empty-room
recordings collected from each MEG session. The empty-room data was processed
identically to the participants data, using the same individual imaging kernels, and
were used to differentiate participants. We ran all possible combinations of empty-
room vs. participants datasets (e.g., empty-room 1 vs. participant dataset 1, empty-
room 2 vs. participant dataset 1, etc.) and computed the sample mean of the
differentiation accuracies across all dataset combinations. The differentiation
accuracies obtained represent estimates of baseline reference performances that can
be compared to each form of fingerprinting based on actual participant data (i.e.,
connectome or spectral, broadband or band-specific; see Fig. 2 and Supplemental
Information). In a similar fashion, we also used sensor-level empty-room record-
ings of each participant for fingerprinting—attempting to differentiate individuals’
recordings from their empty-room features. The results of this analysis are reported
in the Supplemental Information.

Most characteristic features for fingerprinting. We quantified the contribution
of each feature (i.e., edges in the connectivity matrix or a frequency band in an
anatomical parcel) towards differentiating individuals using intraclass correlations
(ICC). ICC is commonly used to measure the agreement between two observers
(e.g., ratings vs. scores). The stronger the agreement, the higher the ICC12,38. ICC
derives a random effects model whereby each item is rated by different raters from a
pool of potential raters. We selected this measure to capture the inter-rater relia-
bility of each participant as their own rater to identify which edges (e.g., connections
in FC) are the most consistent (i.e., which features of a participant Pi in dataset 1 are
most like dataset 2). Here, the higher the ICC, the more consistent a given feature
was within individuals. In addition, we computed two other measures of edgewise
contribution proposed by Finn and colleagues14: group consistency and differential
power (Supplemental Information). We applied all measures (i.e., ICC, group
consistency, and differential power) in the context of the broadband within-session
fingerprinting challenge. The source maps shown in Figs. 4, 5 and Supplemental
Information were generated using R (V 3.6.377; with the ggseg package78).

Partial Least-Squares: MEG features of participant demographics. We con-
ducted a Partial Least-Squares (PLS) analysis with the Rotman-Baycrest PLS
toolbox79 in MATLAB 2017b (Mathworks, Inc., Massachusetts, USA). PLS is a
multivariate statistical method that relates two matrices of variables (e.g., neural
activity and participant demographics) by estimating a weighted linear combina-
tion of variables from both data matrices to maximize their covariance. The
associated weights can be interpreted neural patterns (e.g., functional connections)
and their associated demographic profiles. PLS used singular value decompositions
of the z-scored neural activity-demographics covariance matrix. This decomposi-
tion yielded orthogonal latent variables (LV) associated to a pattern of neural
activity (i.e., functional connectivity or spectral power) and demographics. To
assess the significance of these multivariate patterns, we computed permutation
tests (10,000 permutations). Each permutation shuffled the order of the observa-
tions (i.e., the rows) of the demographic data matrix before running PLS on the
resulting surrogate data under the null hypothesis that there was no relationship
between the demographic and neural data. A p-value for the LVs was computed as
the proportion of times the permuted singular values exceeded that of the original
data. We explored the first significant LV from the broadband connectome and
spectral fingerprinting features. We also assessed the contribution of each variable
in the demographics and neural activity matrices by bootstrapping observations
with replacement (10,000 bootstraps). We computed 95% confidence intervals for
the demographic weights and bootstrap ratios for the neural weights. The bootstrap
ratio was computed as the ratio between each variable’s weight and the bootstrap-
estimated standard error.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Resting-state data were obtained from the OMEGA repository6. Raw MEG recordings
can be accessed by requesting the data (https://www.mcgill.ca/bic/omega-registration).
The power spectra and connectomes derived from the preprocessed OMEGA samples
and used to differentiate individuals in the present study can be reproduced using the
code that has been made available and are available from the corresponding author upon
reasonable request. Source data are provided with this paper.
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Code availability
All codes for preprocessing and data analysis can be found on the project’s GitHub
(https://github.com/neurohazardous/megFingerprinting and at Zenodo (https://
zenodo.org/record/5181836)80.

Received: 16 December 2020; Accepted: 7 September 2021;

References
1. Dubois, J. & Adolphs, R. Building a science of individual differences from

fMRI. Trends Cogn. Sci. 20, 425–443 (2016).
2. Miller, M. B. & Van, J. D. Horn, Individual variability in brain activations

associated with episodic retrieval: a role for large-scale databases. Int. J.
Psychophysiol. 63, 205–213 (2007).

3. Van Horn, J. D., Grafton, S. T. & Miller, M. B. Individual variability in brain
activity: a nuisance or an opportunity? Brain Imaging Behav. 2, 327 (2008).

4. Yarkoni, T. in APA handbook of personality and social psychology, Volume 4:
Personality Processes and Individual Differences (eds. Mikulincer, M, Shaver, P.
R., Cooper, M. L. & Larsen, R. J.) pp. 61–83 (American Psychological
Association, Washington, 2015).

5. Marcus, D. S. et al. Essen, Informatics and data mining tools and strategies for
the human connectome project. Front. Neuroinformatics 5, 4 (2011).

6. Niso, G. et al. OMEGA: The Open MEG Archive. NeuroImage 124, 1182–1187
(2016).

7. Poldrack, R. A. & Gorgolewski, K. J. Making big data open: data sharing in
neuroimaging. Nat. Neurosci. 17, 1510–1517 (2014).

8. Mars, R. B., Passingham, R. E. & Jbabdi, S. Connectivity fingerprints: from
areal descriptions to abstract spaces. Trends Cogn. Sci. 22, 1026–1037 (2018).

9. Mišić, B. & Sporns, O. From regions to connections and networks: new
bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).

10. Valizadeh, S. A., Liem, F., Mérillat, S., Hänggi, J. & Jäncke, L. Identification of
individual subjects on the basis of their brain anatomical features. Sci. Rep. 8,
5611 (2018).

11. Wachinger, C., Golland, P., Kremen, W., Fischl, B. & Reuter, M. BrainPrint: a
discriminative characterization of brain morphology. NeuroImage 109,
232–248 (2015).

12. Amico, E. & Goñi, J. The quest for identifiability in human functional
connectomes. Sci. Rep. 8, 8254 (2018).

13. Bari, S., Amico, E., Vike, N., Talavage, T. M. & Goñi, J. Uncovering multi-site
identifiability based on resting-state functional connectomes. NeuroImage 202,
115967 (2019).

14. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals
using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

15. Kaufmann, T. et al. Delayed stabilization and individualization in connectome
development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515
(2017).

16. Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of
the functional connectome. PLoS ONE 9, e111048 (2014).

17. Fraschini, M., Hillebrand, A., Demuru, M., Didaci, L. & Marcialis, G. L. An
EEG-Based Biometric System Using Eigenvector Centrality in Resting State
Brain Networks. IEEE Signal Process. Lett. 22, 666–670 (2015).

18. Kong, W., Wang, L., Xu, S., Babiloni, F. & Chen, H. EEG fingerprints: phase
synchronization of EEG signals as biomarker for subject identification. IEEE
Access 7, 121165–121173 (2019).

19. Rocca, D. L. et al. Human brain distinctiveness based on EEG spectral
coherence connectivity. IEEE Trans. Biomed. Eng. 61, 2406–2412 (2014).

20. de Souza Rodrigues, J., Ribeiro, F. L., Sato, J. R., Mesquita, R. C. & Júnior, C. E.
B. Identifying individuals using fNIRS-based cortical connectomes. Biomed.
Opt. Express 10, 2889–2897 (2019).

21. Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain
state manipulation improves prediction of individual traits. Nat. Commun. 9,
2807 (2018).

22. Rosenberg, M. D. et al. Functional connectivity predicts changes in attention
observed across minutes, days, and months. Proc. Natl Acad. Sci. USA 117,
3797–3807 (2020).

23. Yamashita, M. et al. A prediction model of working memory across health and
psychiatric disease using whole-brain functional connectivity. eLife https://
doi.org/10.7554/eLife.38844 (2018).

24. Yoo, K. et al. Connectome-based predictive modeling of attention: Comparing
different functional connectivity features and prediction methods across
datasets. NeuroImage 167, 11–22 (2018).

25. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat.
Rev. Neurosci. 13, 336–349 (2012).

26. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends
Cogn. Sci. 17, 666–682 (2013).

27. Başar, E., Chaos in Brain Function: Containing Original Chapters by E. Basar
and T. H. Bullock and Topical Articles Reprinted from the Springer Series in
Brain Dynamics (Springer Science & Business Media, 1990).

28. Stein, R. B., Gossen, E. R. & Jones, K. E. Neuronal variability: noise or part of
the signal? Nat. Rev. Neurosci. 6, 389–397 (2005).

29. Uddin, L. Q. Bring the noise: reconceptualizing spontaneous neural activity.
Trends Cogn. Sci. 24, 734–746 (2020).

30. Florin, E. & Baillet, S. The brain’s resting-state activity is shaped by
synchronized cross-frequency coupling of neural oscillations. NeuroImage
111, 26–35 (2015).

31. Iemi, L. et al. Multiple mechanisms link prestimulus neural oscillations to
sensory responses. eLife https://doi.org/10.7554/eLife.43620 (2019).

32. Samaha, J., Iemi, L., Haegens, S. & Busch, N. A. Spontaneous brain
oscillations and perceptual decision-making. Trends Cogn. Sci. 24, 639–653
(2020).

33. Bodenmann, S. et al. The functional Val158Met polymorphism of COMT
predicts interindividual differences in brain alpha oscillations in young men. J.
Neurosci. J. Soc. Neurosci. 29, 10855–10862 (2009).

34. Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J. & Nobre, A. C. Inter- and
intra-individual variability in alpha peak frequency. NeuroImage 92, 46–55
(2014).

35. Baillet, S. Magnetoencephalography for brain electrophysiology and imaging.
Nat. Neurosci. 20, 327–339 (2017).

36. Baillet, S., Mosher, J. C. & Leahy, R. M. Electromagnetic brain mapping. IEEE
Signal Process. Mag. 18, 14–30 (2001).

37. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage
31, 968–980 (2006).

38. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86, 420–428 (1979).

39. McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging
data. Annu. Rev. Psychol. 64, 499–525 (2013).

40. Noble, S. et al. Influences on the test-retest reliability of functional
connectivity MRI and its relationship with behavioral utility. Cereb. Cortex 27,
5415–5429 (2017).

41. Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically
evolves on multiple time-scales over a static structural connectome: models
and mechanisms. NeuroImage 160, 84–96 (2017).

42. Nentwich, M. et al. Functional connectivity of EEG is subject-specific, associated
with phenotype, and different from fMRI. NeuroImage 218, 117001 (2020).

43. Horien, C. L., Shen, X., Scheinost, D. & Constable, R. T. The individual
functional connectome is unique and stable over months to years. Neuroimage
https://doi.org/10.1016/j.neuroimage.2019.02.002 (2019).

44. Brookes, M. J. et al. Investigating the electrophysiological basis of resting state
networks using magnetoencephalography. Proc. Natl Acad. Sci. USA 108,
16783–16788 (2011).

45. Hunt, B. A. E. et al. Relationships between cortical myeloarchitecture and
electrophysiological networks. Proc. Natl Acad. Sci. USA 113, 13510
(2016).

46. Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and
feedforward influences among human visual cortical areas. Neuron 89,
384–397 (2016).

47. Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory
attention. Proc. Natl Acad. Sci. USA 114, E8913–E8921 (2017).

48. Haufe, S. et al. Elucidating relations between fMRI, ECoG, and EEG through a
common natural stimulus. NeuroImage 179, 79–91 (2018).

49. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A.
Neurophysiological investigation of the basis of the fMRI signal. Nature 412,
150–157 (2001).

50. Nottage, J. F. & Horder, J. State-of-the-art analysis of high-frequency (gamma
range) electroencephalography in humans. Neuropsychobiology 72, 219–228
(2015).

51. Whitham, E. M. et al. Scalp electrical recording during paralysis: Quantitative
evidence that EEG frequencies above 20Hz are contaminated by EMG. Clin.
Neurophysiol. 118, 1877–1888 (2007).

52. Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I. & Deouell, L. Y.
Transient induced gamma-band response in EEG as a manifestation of
miniature saccades. Neuron 58, 429–441 (2008).

53. Bagherzadeh, Y., Baldauf, D., Pantazis, D. & Desimone, R. Alpha synchrony
and the neurofeedback control of spatial attention. Neuron 105, 577–587.e5
(2020).

54. Clayton, M. S., Yeung, N. & Cohen Kadosh, R. The many characters of visual
alpha oscillations. Eur. J. Neurosci. 48, 2498–2508 (2018).

55. Foster, J. J. & Awh, E. The role of alpha oscillations in spatial attention: limited
evidence for a suppression account. Curr. Opin. Psychol. 29, 34–40
(2019).

56. Lennert, T., Samiee, S. & Baillet, S. Coupled oscillations enable rapid temporal
recalibration to audiovisual asynchrony. Commun. Biol. 4, 559 (2021).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25895-8

10 NATURE COMMUNICATIONS |         (2021) 12:5713 | https://doi.org/10.1038/s41467-021-25895-8 | www.nature.com/naturecommunications

https://github.com/neurohazardous/megFingerprinting
https://zenodo.org/record/5181836
https://zenodo.org/record/5181836
https://doi.org/10.7554/eLife.38844
https://doi.org/10.7554/eLife.38844
https://doi.org/10.7554/eLife.43620
https://doi.org/10.1016/j.neuroimage.2019.02.002
www.nature.com/naturecommunications


57. Mosher, J. C., Baillet, S. & Leahy, R. M. in IEEE Workshop on Statistical Signal
Processing, 2003 (2003), pp. 294–297.

58. Sareen, E. et al. Exploring MEG brain fingerprints: evaluation, pitfalls, and
interpretations. NeuroImage 240, 118331 (2021).

59. Sadaghiani, S., Brookes, M. J. & Baillet, S. Connectomics of human
electrophysiology. Preprint at PsyArXiv https://doi.org/10.1101/
2021.02.15.431253 (2021).

60. Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-
brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

61. Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T. & Chun, M. M.
Characterizing attention with predictive network models. Trends Cogn. Sci. 21,
290–302 (2017).

62. Harmelech, T. & Malach, R. Neurocognitive biases and the patterns of
spontaneous correlations in the human cortex. Trends Cogn. Sci. 17, 606–615
(2013).

63. Cai, H., Zhu, J. & Yu, Y. Robust prediction of individual personality
from brain functional connectome. Soc. Cogn. Affect. Neurosci. 15, 359–369
(2020).

64. Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Similar neural responses
predict friendship. Nat. Commun. 9, 332 (2018).

65. Glahn, D. C. et al. Genetic control over the resting. Brain. Proc. Natl Acad. Sci.
USA 107, 1223–1228 (2010).

66. Korgaonkar, M. S., Ram, K., Williams, L. M., Gatt, J. M. & Grieve, S. M.
Establishing the resting state default mode network derived from functional
magnetic resonance imaging tasks as an endophenotype: a twins study. Hum.
Brain Mapp. 35, 3893–3902 (2014).

67. Miranda-Dominguez, O. et al. Heritability of the human connectome: A
connectotyping study. Netw. Neurosci. Camb. Mass 2, 175–199 (2018).

68. Hodgkinson, C. A. et al. Genome-wide association identifies candidate genes
that influence the human electroencephalogram. Proc. Natl Acad. Sci. USA
107, 8695–8700 (2010).

69. Leppäaho, E. et al. Discovering heritable modes of MEG spectral power. Hum.
Brain Mapp. 40, 1391–1402 (2019).

70. Salmela, E. et al. Evidence for genetic regulation of the human parieto-
occipital 10-Hz rhythmic activity. Eur. J. Neurosci. 44, 1963–1971 (2016).

71. Kaufmann, T. et al. Stability of the brain functional connectome fingerprint in
individuals with schizophrenia. JAMA Psychiatry 75, 749 (2018).

72. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a
user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci.
2011, 879716 (2011).

73. Gross, J. et al. Good practice for conducting and reporting MEG research.
NeuroImage 65, 349–363 (2013).

74. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
75. Bruns, A., Eckhorn, R., Jokeit, H. & Ebner, A. Amplitude envelope correlation

detects coupling among incoherent brain signals. Neuroreport 11, 1509–1514
(2000).

76. Welch, P. The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Trans. Audio Electroacoustics 15, 70–73 (1967).

77. R Core Team, R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, Vienna, Austria, 2020).

78. Mowinckel, A. M. & Vidal-Piñeiro, D. ggseg: Plotting Tool for Brain Atlases.
https://CRAN.R-project.org/package=ggseg (2021).

79. McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of
neuroimaging data: applications and advances. NeuroImage 23, S250–S263
(2004).

80. da Silva Castanheira, J., Orozco, H., Misic, B., & Baillet, S. MEG, myself, and I:
individual identification from neurophysiological brain activity,
megFingerprinting https://zenodo.org/record/5181836 (2021).

81. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

Acknowledgements
S.B. is grateful for the support received from the NIH (R01 EB026299), a Discovery Grant
from the Natural Science and Engineering Research Council of Canada (436355-13), the
CIHR Canada Research Chair in Neural Dynamics of Brain Systems, the Brain Canada
Foundation with support from Health Canada, and the Innovative Ideas program from
the Canada First Research Excellence Fund, awarded to McGill University for the Healthy
Brains for Healthy Lives initiative. This research was undertaken thanks in part to funding
from the Canada First Research Excellence Fund, awarded to McGill University for the
Healthy Brains for Healthy Lives initiative. BM acknowledges support from the Natural
Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN
\#017-04265) and from the Canada Research Chairs Program. J.D.S.C. acknowledges the
support of the Alexander Graham-Bell Doctoral NSERC fellowship.

Author contributions
All authors conceptualized the study, J.d.S.C. and H.D.O.P. performed the analyses, S.B.
and B.M. provided guidance with methods and data interpretation, J.d.S.C. wrote the first
draft of the manuscript, all authors contributed to the writing and editing of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25895-8.

Correspondence and requests for materials should be addressed to Bratislav Misic or
Sylvain Baillet.

Peer review information Nature Communications thanks Matthew Brookes, Matteo
Fraschini and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25895-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5713 | https://doi.org/10.1038/s41467-021-25895-8 | www.nature.com/naturecommunications 11

https://doi.org/10.1101/2021.02.15.431253
https://doi.org/10.1101/2021.02.15.431253
https://CRAN.R-project.org/package=ggseg
https://zenodo.org/record/5181836
https://doi.org/10.1038/s41467-021-25895-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Brief segments of neurophysiological activity enable individual differentiation
	Results
	Within-session connectome and spectral data differentiate individuals
	MEG fingerprinting is robust against physiological, artefactual, and demographics confounds
	MEG fingerprinting is robust over time
	Salient neurophysiological features for fingerprinting
	Neurophysiological fingerprinting features are associated with demographics

	Discussion
	Connectome and spectral neurophysiological fingerprints
	Neural fingerprints of individual traits
	Sampling population diversity for personalized interventions

	Methods
	The Open MEG Archives (OMEGA)
	MEG data preprocessing and feature extraction
	Fingerprinting and differentiability
	Recording artifacts and differentiability
	Fingerprinting across frequency bands
	Between-session and shortened fingerprinting challenges
	Empty-room fingerprinting
	Most characteristic features for fingerprinting
	Partial Least-Squares: MEG features of participant demographics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




